1
|
Corsini A, Perticarini L, Palermi S, Bettinsoli P, Marchini A. Re-Evaluating Platelet-Rich Plasma Dosing Strategies in Sports Medicine: The Role of the "10 Billion Platelet Dose" in Optimizing Therapeutic Outcomes-A Narrative Review. J Clin Med 2025; 14:2714. [PMID: 40283544 PMCID: PMC12027823 DOI: 10.3390/jcm14082714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Platelet-rich plasma (PRP) therapy is increasingly recognized as a promising treatment for musculoskeletal disorders, including osteoarthritis (OA), tendinopathy, and muscle injuries. This narrative review synthesizes the current literature to evaluate the efficacy of PRP, with a focus on platelet dosing strategies, leukocyte composition, and preparation protocols. Evidence suggests that optimal therapeutic outcomes are achieved when platelet doses exceed 3.5 billion per injection, with cumulative doses of 10-12 billion across multiple treatments. In intra-articular applications, leukocyte-poor PRP (LP-PRP), characterized by reduced neutrophil content, demonstrates superior efficacy compared to leukocyte-rich PRP (LR-PRP). However, its effectiveness in tendon and muscle regeneration remains a subject of debate. Preliminary data suggest that the inclusion of peripheral blood mononuclear cells (PBMNCs) may enhance PRP efficacy, though robust clinical trials are required to confirm these findings. Furthermore, red blood cell contamination and pre-activation have been identified as detrimental to PRP effectiveness, highlighting the need for standardized preparation protocols. This review emphasizes the importance of tailoring PRP formulations to patient-specific factors and musculoskeletal conditions. Future research should focus on refining PRP preparation techniques, identifying optimal leukocyte compositions, and establishing standardized guidelines to enhance clinical outcomes.
Collapse
Affiliation(s)
| | - Loris Perticarini
- Fondazione Poliambulanza Istituti Ospedalieri, 25125 Brescia, Italy;
| | - Stefano Palermi
- Department of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00187 Rome, Italy;
| | | | | |
Collapse
|
2
|
Everts PA, Podesta L, Lana JF, Shapiro G, Domingues RB, van Zundert A, Alexander RW. The Regenerative Marriage Between High-Density Platelet-Rich Plasma and Adipose Tissue. Int J Mol Sci 2025; 26:2154. [PMID: 40076775 PMCID: PMC11900530 DOI: 10.3390/ijms26052154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The use of autologous biological preparations (ABPs) and their combinations fills the void in healthcare treatment options that exists between surgical procedures, like plastic reconstructive, cosmetic, and orthopedic surgeries; non-surgical musculoskeletal biological procedures; and current pharmaceutical treatments. ABPs, including high-density platelet-rich plasma (HD-PRP), bone marrow aspirate concentrates (BMACs), and adipose tissue preparations, with their unique stromal vascular fractions (SVFs), can play important roles in tissue regeneration and repair processes. They can be easily and safely prepared at the point of care. Healthcare professionals can employ ABPs to mimic the classical wound healing cascade, initiate the angiogenesis cascade, and induce tissue regenerative pathways, aiming to restore the integrity and function of damaged tissues. In this review, we will address combining autologous HD-PRP with adipose tissue, in particular the tissue stromal vascular fraction (t-SVF), as we believe that this biocellular combination demonstrates a synergistic effect, where the HD-PRP constituents enhance the regenerative potential of t-SVF and its adipose-derived mesenchymal stem cells (AD-MSCs) and pericytes, leading to improved functional tissue repair, tissue regeneration, and wound healing in variety of clinical applications. We will address some relevant platelet bio-physiological aspects, since these properties contribute to the synergistic effects of combining HD-PRP with t-SVF, promoting overall better outcomes in chronic inflammatory conditions, soft tissue repair, and tissue rejuvenation.
Collapse
Affiliation(s)
- Peter A. Everts
- Medical School (GBCS), The University of Queensland, Brisbane, QLD 4006, Australia;
- Center for Collaborative Research, Zeo Scientifix, Inc., NOVA Southeastern University, Fort Lauderdale, FL 33328, USA;
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
| | - Luga Podesta
- Bluetail Medical Group and Podesta Orthopedic Sports Medicine, Naples, FL 34109, USA;
- Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| | - José Fabio Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| | - George Shapiro
- Center for Collaborative Research, Zeo Scientifix, Inc., NOVA Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Rafael Barnabé Domingues
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| | - Andre van Zundert
- Medical School (GBCS), The University of Queensland, Brisbane, QLD 4006, Australia;
- Royal Brisbane Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert W. Alexander
- Regenevita Biocellular Aesthetic and Reconstructive Surgery, Cranio-Maxillofacial Surgery, Regenerative Medicine and Wound Healing, Hamilton, MT 5998840, USA;
- Department of Surgery and Maxillofacial Surgery, University of Washington, Seattle, WA 988104, USA
| |
Collapse
|
3
|
Ding Z, Du W, Huang J, Han J, Bai J, Yang G, Zhang Y, Ding Y. Allogeneic platelet lysate activates the SIRT1-PINK1/Parkin pathway: A promising approach for improving mitochondrial function in an in vitro model of intervertebral disc degeneration. Int Immunopharmacol 2025; 144:113700. [PMID: 39626535 DOI: 10.1016/j.intimp.2024.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common cause of low back pain and spinal issues. Allogeneic platelet lysate (APL) is a blood product for several growth agents. However, only a few studies have revealed that APL can increase autophagy in defective mitochondria by activating the SIRT1-PINK1/parkin pathway while enhancing mitochondrial function to decrease reactive oxygen species (ROS) levels. OBJECTIVE To elucidate the mechanism by which APL mediates mitochondrial autophagy via the SIRT1-PINK1/Parkin pathway in the treatment of IVDD in vitro. METHODS Pure platelet-rich plasma (P-PRP) was prepared by two-step centrifugation, and APL was prepared via freeze-thaw cycles. The nucleus pulposus cells of New Zealand white rabbits were harvested and grown. After the third generation, four groups of cells were cultured: (1) control group: standard culture conditions; (2) IL-1β group: intervention; (3) APL group: 24-hour IL-1β intervention followed by 24-hour APL treatment; and (4) APL + EX527 group: SIRT1 inhibitor EX527 24-hour treatment after 24-hour IL-1β and APL treatment. After interventions, cell activity was measured by Trypan blue staining. Apoptosis was measured by flow cytometry in each group. Immunofluorescence labeling measured mitochondrial permeability, ROS, and ROS. RT-PCR evaluated autophagy and inflammation-related gene mRNA expression. Western blot analysis revealed the protein levels of these genes. Electron microscopy reveals mitochondrial autophagy. RESULTS APL from P-PRP decreased ROS levels in an IVDD in vitro model, mediated autophagy in dysfunctional mitochondria, and alleviated inflammation via the SIRT1-PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Zhili Ding
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Navy Clinical College, Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wei Du
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Jie Huang
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jiaheng Han
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jie Bai
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Guangnan Yang
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yan Zhang
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| | - Yu Ding
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Navy Clinical College, Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Parsa A, Esmaeilian S, Anz AW, Naghibian F, Behjat M, Mirzaei N, Rahmanipour E, Ghorbani M. The Efficacy and Safety of Orthobiologic Treatments for Greater Trochanteric Pain Syndrome: A Comprehensive Scoping Review. THE ARCHIVES OF BONE AND JOINT SURGERY 2025; 13:176-187. [PMID: 40331002 PMCID: PMC12050079 DOI: 10.22038/abjs.2024.82620.3762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 05/08/2025]
Abstract
Objectives This scoping review aims to evaluate the safety and efficacy of orthobiologics in the treatment of Greater Trochanteric Pain Syndrome (GTPS), with a focus on pain relief, functional improvement, and quality of life. Methods We conducted a comprehensive search of PubMed, Embase, Cochrane Library, Web of Science, Scopus, Google Scholar, and CINAHL for studies published from January 1, 2000, to March 20, 2024. Eligible studies included case series, cohort studies, case-control studies, and randomized controlled trials (RCTs) that investigated the use of orthobiologics for GTPS. The primary outcomes assessed were pain, function, and quality of life. The quality of the studies was evaluated using the JADAD scale, the Cochrane Risk of Bias Tool, and the MINORS score. Results The review included 19 studies involving a total of 811 participants. Platelet-rich plasma (PRP) was found to significantly reduce pain, as measured by the VAS scores, and to improve functional outcomes including the modified Harris Hip Score (mHHS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores. These findings suggest that PRP may be an effective treatment for GTPS. The studies reported minimal side effects that were generally mild and transient. Conclusion PRP and other orthobiologic treatments show promise in managing GTPS, showing good safety profiles and potential benefits. However, further high-quality RCTs are necessary to confirm long-term efficacy and to establish standardized treatment protocols.
Collapse
Affiliation(s)
- Ali Parsa
- Andrews Institute for Orthopedics and Sports Medicine, Gulf Breeze, FL, USA
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Esmaeilian
- Department of Radiology, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran
| | - Adam W. Anz
- Andrews Institute for Orthopedics and Sports Medicine, Gulf Breeze, FL, USA
| | - Farimah Naghibian
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Behjat
- Department of Orthopedic Surgery, School of medicine, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Mirzaei
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Rahmanipour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ghorbani
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Anitua E, Tierno R, Martínez de Lagrán Z, Alkhraisat MH. Impact of inflammatory skin conditions on the biological profile of plasma rich in growth factor. Tissue Cell 2024; 91:102560. [PMID: 39299031 DOI: 10.1016/j.tice.2024.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Plasma rich in growth factors (PRGF) can be used over patients suffering from dermatoses due to its anti-inflammatory effect. However, this population group might present soluble autoimmune components and there is limited information about the effect of chronic skin inflammation on PRGF bioactive properties. With the aim of characterizing PRGF composition, PRGF from healthy (H) donors and patients with atopic dermatitis (AD), psoriasis (PS), or lichen sclerosus (LS) was obtained. In order to reduce the inflammatory component, leukocyte exclusion and heat-inactivation (Immunosafe) were tested. Haematological-serological parameters, platelet functionality, clot microstructure, protein content and bioactivity were determined. Mean values and 95 % confidence intervals (mean[95 % CI]) were computed for key haematological parameters, such as platelet (410×103/mm3[371-449]) and leukocyte content (205×103/mm3[148-262]), platelet activation (resting: 4.3 %[3.1-5.5] and activated: 97.4 %[96.7-98.0]), the concentration of plasma proteins and morphogens, including immunoglobulins A (210.7 mg/dL[191.8-229.6]), G (933.1 mg/dL[887.2-978.9]), E (783.5 mg/dL[54.4-1512.6]), and M (115.0 mg/dL[97.1-133.0]), Complement Protein (31.6 mg/mL[26.6-36.6]), C-Reactive protein (3.1 mg/L[2.0-4.1]), TGF-β1 (35975.6 pg/mL[34221.3-37729.8]), fibronectin (146410.0 ng/mL[136518.3-156301.7]), PDGF-AB (13308.5 pg/mL[12401.0-14216.0]), CD40L (2389.3 pg/mL[1887.7-2890.8]), IL-4 (0.12 pg/mL[0.07-0.18]), IL-13 (35.4 pg/mL[21.0-49.7]), IL-1β (0.09 pg/mL[0.06-0.11]) and TNF-α (0.31 pg/mL[0.24-0.38]), and also for cell proliferation (332.9ngDNA/mL[317.4-348.3]), viability (135.6 %[132.0-139.2]) and migration (103.8cells/mm2[98.3-109.3]). Plasma from AD donors presented increased Immunoglobulin E (IgE) that was significantly reduced after Immunosafe along with the complement system and autoantibodies. Platelet functionality was altered for AD, but no microstructure differences were identified. Pathological groups presented reduced concentration of fibronectin (AD/LS) and Platelet-Derived Growth Factor (PDGF-AB) (P). Immunosafe treatment reduced Cluster of Differentiation 40 Protein (CD40L), interleukin 1β (IL-1β), and Tumor Necrosis Factor α (TNF-α) concentrations. Fibroblasts supplemented with PRGF obtained from pathological patients (PS/AD) showed reduced viability but Immunosafe increased cell proliferation and migration in SP (LS) and L-SP samples (PS/AD). In conclusion, PRGF derived from pathological patients present autoimmune components, but heat-inactivation or leukocyte exclusion could minimize local side effects.
Collapse
Affiliation(s)
- Eduardo Anitua
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain.
| | - Roberto Tierno
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain
| | | | - Mohammad H Alkhraisat
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain
| |
Collapse
|
6
|
Du K, Li A, Zhang CY, Guo R, Li SM. Platelet-rich plasma: A bibliometric and visual analysis from 2000 to 2022. Medicine (Baltimore) 2024; 103:e40530. [PMID: 39560585 PMCID: PMC11575995 DOI: 10.1097/md.0000000000040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP) is an integral biotherapeutic modality with evolving significance in the medical domain. Despite its expanding applications, a comprehensive bibliometric evaluation is essential to understand its development and impact. METHODS The Web of Science core collection subject search identified articles pertinent to PRP applications. Analytical tools, including CiteSpace, VOSviewer, Bibliometrix (R-Tool for R-Studio), TBtools, SCImago Graphica, Origin, and Excel, facilitated the bibliometric scrutiny. This examination spanned dimensions ranging from geographical and institutional contributions to thematic shifts and keyword prevalence. RESULTS A corpus of 5167 publications was analyzed, with the United States, particularly the Hospital for Special Surgery, emerging as major contributors. The American Journal of Sports Medicine was identified as the primary journal, and Anitua Eduardo as the leading author in the domain. Keyword analysis highlighted evolving research themes, with a shift from traditional applications in orthopedics and dentistry to emerging areas such as dermatology, aesthetics, and chronic pain management. CONCLUSION The bibliometric analysis of PRP research reveals a multifaceted array of applications across various medical disciplines and highlights areas requiring further exploration, particularly in standardization, personalization, and safety. Future advancements in PRP research will necessitate innovative exploration, ethical considerations, and rigorous scientific validation to fully harness the therapeutic potential of PRP and related therapies.
Collapse
Affiliation(s)
- Kai Du
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ao Li
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Chen-Yu Zhang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ren Guo
- Department of Pain Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Shu-Ming Li
- Department of Pain Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Ling SKK, Mak CTK, Lo JPY, Yung PSH. Effect of Platelet-Rich Plasma Injection on the Treatment of Achilles Tendinopathy: A Systematic Review and Meta-analysis. Orthop J Sports Med 2024; 12:23259671241296508. [PMID: 39611122 PMCID: PMC11603511 DOI: 10.1177/23259671241296508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 11/30/2024] Open
Abstract
Background Achilles tendinopathy is a common condition without a reproducible and timely treatment modality. Platelet-rich plasma (PRP) injection has been proposed as an enticing treatment option, but there is no consensus regarding its effectiveness. Purpose To pool the available data and evaluate the evidence of the effect of PRP injections on Achilles tendinopathy. Study Design Systematic review; Level of evidence, 1. Methods This review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. CINAHL via EBSCOhost, Cochrane Library, and PubMed databases were searched for randomized controlled trials comparing PRP injection with nonoperative treatment, with the Victorian Institute of Sport Assessment-Achilles (VISA-A) questionnaire score or maximal Achilles tendon (AT) thickness on ultrasound as outcome measures. Risk-of-bias assessment was performed of the included studies, and meta-analyses compared differences in outcome measures between PRP injection and control at the short-term (3-month), intermediate-term (6-month), and long-term (12-month) follow-ups. Results Of 409 publications, 6 publications (N = 422 patients with chronic midportion Achilles tendinopathy) were identified from the literature search. Risk-of-bias assessment revealed 2 studies were low risk, 1 was of some concern, and 3 were high risk of bias. Meta-analysis revealed no significant differences between PRP injection and control at any time point for both VISA-A score (short term: P = .29; intermediate term: P = .42; long term: P = .57) and maximal AT thickness (short term: P = .60; intermediate term: P = .20; long term: P = .55). Conclusion Our review demonstrated that although recent trends have shown an increasing popularity of PRP injection, no solid evidence has been established. The heterogenicity of the tendinopathy pathology and the PRP injection content and methodology should be controlled by better-designed clinical trials. Further research is needed before it should be recommended as a standard treatment.
Collapse
Affiliation(s)
- Samuel Ka-Kin Ling
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Clarence Tsz-Kit Mak
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Jasmine Pui-Yin Lo
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Patrick Shu-Hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| |
Collapse
|
8
|
Pitsilos C, Karachrysafi S, Fragou A, Gigis I, Papadopoulos P, Chalidis B. The Biological Effect of Platelet-Rich Plasma on Rotator Cuff Tears: A Prospective Randomized In Vivo Study. Int J Mol Sci 2024; 25:7957. [PMID: 39063199 PMCID: PMC11277466 DOI: 10.3390/ijms25147957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The positive effect of platelet-rich plasma (PRP) on tendon metabolism has been extensively investigated and proven in vitro. Additionally, in vivo animal studies have correlated the application of PRP with the enhancement of tenocyte anabolic activity in the setting of tendon degeneration. However, less is known about its in vivo effect on human tendon biology. The purpose of the current prospective randomized comparative study was to evaluate the effect of PRP on torn human supraspinatus tendon. Twenty consecutive eligible patients with painful and magnetic resonance imaging (MRI)-confirmed degenerative supraspinatus tendon tears were randomized in a one-to-one ratio into two groups. The patients in the experimental group (n = 10) underwent an ultrasound-guided autologous PRP injection in the subacromial space 6 weeks before the scheduled operation. In the control group (n = 10), no injection was made prior to surgery. Supraspinatus tendon specimens were harvested from the lateral end of the torn tendon during shoulder arthroscopy and were evaluated under optical and electron microscopy. In the control group, a mixed cell population of oval and rounded tenocytes within disorganized collagen and sites of accumulated inflammatory cells was detected. In contrast, the experimental group yielded abundant oval-shaped cells with multiple cytoplasmic processes within mainly parallel collagen fibers and less marked inflammation, simulating the intact tendon structure. These findings indicate that PRP can induce microscopic changes in the ruptured tendon by stimulating the healing process and can facilitate a more effective recovery.
Collapse
Affiliation(s)
- Charalampos Pitsilos
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (C.P.); (I.G.); (P.P.)
| | - Sofia Karachrysafi
- Research Team “Histologistas”, Interinstitutional Postgraduate Program “Health and Environmental Factors”, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Laboratory of Histology-Embryology, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aikaterini Fragou
- Laboratory of Biological Chemistry, Medical Department, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Gigis
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (C.P.); (I.G.); (P.P.)
| | - Pericles Papadopoulos
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (C.P.); (I.G.); (P.P.)
| | - Byron Chalidis
- 1st Orthopaedic Department, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
9
|
Banerjee S, Balamarthandapuram Gopalakrishna R, Elhence A. Role of orthobiologics in managing patellar tendinopathy: A narrative review. J Exp Orthop 2024; 11:e12099. [PMID: 39055393 PMCID: PMC11269623 DOI: 10.1002/jeo2.12099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Patellar tendinopathy is a relatively common cause of anterior knee pain in athletes. It is predominantly seen in sports involving jumping, running, abrupt change in direction like basketball, volleyball, soccer, sprinting and jumping. The main pathophysiology is considered to be repetitive microtrauma at the inferior pole of patella along with a poor healing response. Although eccentric exercises have shown to be beneficial, the improvement is often slow and may result in a less than satisfactory outcome. There is a growing interest of orthobiologics, mainly platelet-rich plasma (PRP) in multiple chronic musculoskeletal pathologies. This narrative review aimed to analyse the current evidence on the role of orthobiologics in the management of recalcitrant patellar tendinopathy. Multiple studies have shown significant clinical improvement with negligible adverse effects on PRP injection for patellar tendinopathy. Most studies assessed report that the effects of PRP are sustained. However, among all studies evaluated, there is a considerable heterogeneity in terms of PRP composition, number of injections, dosage interval and postinjection rehabilitation protocol, pointing to the need for further research to enable standardisation of PRP therapy. Stem cells too have shown potential to be effective as a treatment modality for chronic patellar tendinopathy, but there is limited data to recommend its use outside of research setting or to enable a meaningful comparison to PRP. There is a promising role of orthobiologics in management of chronic patellar tendinopathy not responding to conventional treatment. Level of Evidence Not applicable (narrative review).
Collapse
Affiliation(s)
- Sumit Banerjee
- Department of OrthopedicsAll India Institute of Medical SciencesJodhpurRajasthan
| | | | - Abhay Elhence
- Department of OrthopedicsAll India Institute of Medical SciencesJodhpurRajasthan
| |
Collapse
|
10
|
Ifarraguerri AM, Berk AN, Rao AJ, Trofa DP, Ahmad CS, Martin A, Fleischli JE, Saltzman BM. A systematic review of the outcomes of partial ulnar collateral ligament tears of the elbow in athletes treated non-operatively with platelet-rich plasma injection. Shoulder Elbow 2024; 16:413-428. [PMID: 39318405 PMCID: PMC11418690 DOI: 10.1177/17585732241235631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 09/26/2024]
Abstract
Background This study aimed to analyze the effects of platelet-rich plasma (PRP) for partial ulnar collateral ligament (UCL) tears in athletes and predicted positive outcomes. Methods The researchers systematically reviewed the PubMed, Cochrane CENTRAL, MEDLINE, Scopus, and Google Scholar databases to identify studies with clinical outcomes of PRP for partial UCL tears. They excluded studies that did not stratify data by tear type or included surgical management. Results Five studies with 156 patients were included. The timing, amount, platelet concentration, type, and number of PRP injections were highly variable among the studies. However, 75% (n = 97/127) of athletes returned to sport (RTS) at a weighted average of 82.1 days (37-84) after PRP injection. One study showed significant improvements in patient-reported outcomes. Two studies showed positive outcomes in the modified Conway scale, complete reconstitution of the UCL in 87% of patients on MRI, and significant improvement in the humeral-ulnar joint space after PRP injection via ultrasound. The Coleman methodology score (CMS) averaged 48/100, indicating an overall poor quality of evidence. Conclusion This review demonstrates favorable RTS, clinical, and radiographic outcomes in patients receiving PRP for partial UCL tears, but the literature remains heterogeneous and of low quality. Level of Evidence III.
Collapse
Affiliation(s)
- Anna M Ifarraguerri
- Sports Medicine Center, OrthoCarolina, Charlotte, NC, USA
- OrthoCarolina Research Institute, Charlotte, NC, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, NC, USA
| | - Alexander N Berk
- Sports Medicine Center, OrthoCarolina, Charlotte, NC, USA
- OrthoCarolina Research Institute, Charlotte, NC, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, NC, USA
| | - Allison J Rao
- University of Minnesota – Department of Orthopedic Surgery, University of Minnesota Physicians, Minneapolis, MN, USA
| | - David P Trofa
- New York Presbyterian, Department of Orthopaedics, Columbia University Medical Center, New York, NY, USA
| | - Christopher S Ahmad
- New York Presbyterian, Department of Orthopaedics, Columbia University Medical Center, New York, NY, USA
| | - Anthony Martin
- Musculoskeletal Institute, Atrium Health, Charlotte, NC, USA
| | - James E Fleischli
- Sports Medicine Center, OrthoCarolina, Charlotte, NC, USA
- OrthoCarolina Research Institute, Charlotte, NC, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, NC, USA
| | - Bryan M Saltzman
- Sports Medicine Center, OrthoCarolina, Charlotte, NC, USA
- OrthoCarolina Research Institute, Charlotte, NC, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
11
|
Chen LS, Chen CK, Pang JHS, Lin LP, Yu TY, Tsai WC. Leukocyte-poor platelet-rich plasma and leukocyte-rich platelet-rich plasma promote myoblast proliferation through the upregulation of cyclin A, cdk1, and cdk2. J Orthop Res 2024; 42:32-42. [PMID: 37442643 DOI: 10.1002/jor.25666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Muscle injuries are common among athletes and often treated with platelet-rich plasma (PRP). However, whether the leukocyte concentration affects the efficacy of PRP in treating muscle injuries remains unclear. This study investigated the effects of leukocyte-poor platelet-rich plasma (LP-PRP) and leukocyte-rich platelet-rich plasma (LR-PRP) on myoblast proliferation and the molecular mechanisms underlying these effects. Myoblasts were treated with 0.5% LP-PRP, 0.5% LR-PRP, 1% LP-PRP, or 1% LR-PRP for 24 h. The gene expression of the LP-PRP- and LR-PRP-treated myoblasts was determined using RNA sequencing analysis. Cell proliferation was evaluated using an bromodeoxyuridine (BrdU) assay, and cell cycle progression was assessed through flow cytometry. The expression of cyclin A, cyclin-dependent kinase 1 (cdk1), and cdk2 was examined using Western blotting. The expression of myoblast determination protein 1 (MyoD1) was examined through Western blotting and immunofluorescence staining. The LP-PRP and LR-PRP both promoted the proliferation of myoblasts and increased differential gene expression of myoblasts. Moreover, the LP-PRP and LR-PRP substantially upregulated the expression of cyclin A, cdk1, and cdk2. MyoD1 expression was induced in the LP-PRP and LR-PRP-treated myoblasts. Our results corroborate the finding that LP-PRP and LR-PRP have similar positive effects on myoblast proliferation and MyoD1 expression.
Collapse
Affiliation(s)
- Li-Siou Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Kuang Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jong-Hwei Su Pang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Li-Ping Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tung-Yang Yu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wen-Chung Tsai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center of Comprehensive Sports Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
12
|
Han W, Gu D, Chen H, Tao X, Chen L. HPF1 regulates tendon stem/progenitor cell senescence and tendon repair via PARP1-mediated poly-ADP ribosylation of HuR. Genes Genomics 2024; 46:27-36. [PMID: 37713069 DOI: 10.1007/s13258-023-01447-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Tendon stem/progenitor cells (TSPCs) play a vital role in tendon repair, regeneration and homeostasis. However, the specific mechanism of TSPCs aging is still unclear. OBJECTIVE This study aims to explore the role and molecular mechanism of HPF1 in the aging of TSPCs. METHODS Young and aged TSPCs (Y-TSPCs and A-TSPCs) were acquired from 3 to 4 and 24-26-month-old Sprague-Dawley male rats, TSPCs (Y-TSPCs and A-TSPCs) were subjected to senescence-associated β-galactosidase (SA-β-Gal))staining and telomerase activity detection, p16, p21, Scx, Tnmd, Col1, Col3HPF1 and PAPR1 expression levels were detected by Western blot or Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR), Reciprocal co-immunoprecipitation (co-IP) was used to explore the interaction between HPF1 and PARP1. Ribonucleoprotein immunoprecipitation (RNP-IP) was used to analyze the binding of HuR to the senescence marker gene mRNAs, IP was used to perform HPF1 to the PARylation of HuR, and the half-life of p16 and p21 were detected. Finally, we established an in vivo model, and the tendon tissue was used to perform hematoxylin and eosin (HE) and masson's trichrome staining, as well as the immunohistochemical analysis of Col I and TNMD. RESULTS Compared with Y-TSPCs, A-TSPCs had significantly enhanced cell senescence and significantly reduced tendon differentiation ability, and significantly increased the expression of HPF1 and PARP1. In addition, HPF1 and PARP1 interacted and coordinated the senescence and differentiation of TSPCs, HPF1 could also regulate the expression of p21 and p21, the interaction of p16 or p21 with HuR, and the poly-ADP ribosylation of PARP1 to HuR. HPF1 overexpression and siHuR co-transfection significantly reduced the half-life of p16 and p21, and HPF1 and PARP1 regulated the mRNA levels of p16 and p21 through HuR. Finally, in vivo experiments have shown that HPF1 or PARP1 overexpression could both inhibit the ability of tendon differentiation and promote cell senescence. CONCLUSIONS HPF1 promoted the senescence of TSPCs and inhibits the tendon differentiation of TSPCs through PARP1-mediated poly-ADP ribosylation of HuR.
Collapse
Affiliation(s)
- Weifeng Han
- Department of Orthopaedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dongqiang Gu
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 10048, China
| | - Hongguang Chen
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 10048, China
| | - Xu Tao
- Sports Medicine Center, The First Affiliated Hospital of Military Medical University of the Army, Chongqing, 400038, China.
| | - Lei Chen
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 10048, China.
| |
Collapse
|
13
|
Hu B, Wang L, Sun N, Rui G, Lin S. Leukoreduced PRP enhanced proliferation and ECM production yet inhibited senescence, inflammation, and multi-differentiation potential of AFSCs by downregulating HMGB1. Immunopharmacol Immunotoxicol 2023; 45:730-741. [PMID: 37436160 DOI: 10.1080/08923973.2023.2232106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND This study assessed the role and potential mechanism of platelet-rich plasma (PRP) in the progression of intervertebral disk degeneration (IVDD). METHODS Annulus fibrosus (AF)-derived stem cells (AFSCs) from New Zealand white rabbits received the transfection with high mobility group box 1 (HMGB1) plasmids and the subsequent treatment with bleomycin, 10% leukoreduced PRP or leukoconcentrated PRP. Dying cells were indicated by immunocytochemistry analysis for senescence-associated β-galactosidase (SA-β-gal) staining. The proliferation of these cells was evaluated based on the population doubling time (PDT). The expressions of HMGB1, pro-aging and anti-aging molecules, extracellular matrix (ECM)-related catabolic/anabolic factors, and inflammatory genes at the molecular or transcriptional levels were quantified via Western blot or reverse transcription-quantitative PCR (RT-qPCR). Besides, the adipocytes, osteocytes, and chondrocytes were separately dyed by Oil Red O, Alizarin Red S, and Safranin O staining. RESULTS Bleomycin enhanced the senescent morphological changes and increased the PDT and the expressions of SA-β-gal, pro-aging molecules, ECM-related catabolic factors, inflammatory genes, and HMGB1 while suppressing the expressions of anti-aging and anabolic molecules. Leukoreduced PRP reversed the effects of bleomycin and inhibited the differentiation of AFSCs into adipocytes, osteocytes, and chondrocytes. Besides, HMGB1 overexpression offset the roles of leukoreduced PRP in AFSCs. CONCLUSION Leukoreduced PRP promotes cell proliferation and ECM production of AFSCs, while inhibiting their senescence, inflammation, and multi-differentiation potentials via downregulating HMGB1 expression.
Collapse
Affiliation(s)
- Baoshan Hu
- Department of Orthopaedics, The First Affiliated Hospital of XiaMen University; (Xiamen First Hospital Affiliated to Fujian Medical University), Xiamen, Fujian Province, China
| | - Lianxin Wang
- Department of Orthopaedics, The First Affiliated Hospital of XiaMen University; (Xiamen First Hospital Affiliated to Fujian Medical University), Xiamen, Fujian Province, China
| | - Naikun Sun
- Department of Orthopaedics, The First Affiliated Hospital of XiaMen University; (Xiamen First Hospital Affiliated to Fujian Medical University), Xiamen, Fujian Province, China
| | - Gang Rui
- Department of Orthopaedics, The First Affiliated Hospital of XiaMen University; (Xiamen First Hospital Affiliated to Fujian Medical University), Xiamen, Fujian Province, China
| | - Shengrong Lin
- Department of Orthopaedics, The First Affiliated Hospital of XiaMen University; (Xiamen First Hospital Affiliated to Fujian Medical University), Xiamen, Fujian Province, China
| |
Collapse
|
14
|
Liang S, Zheng Z, Li Y, Yang Y, Qin L, Zhao Z, Wang L, Wang H. A review of platelet-rich plasma for enteric fistula management. Front Bioeng Biotechnol 2023; 11:1287890. [PMID: 38033816 PMCID: PMC10685294 DOI: 10.3389/fbioe.2023.1287890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Enteric fistula (EF), a serious complication after abdominal surgery, refers to unnatural communication between the gastrointestinal tract and the skin or other hollow organs. It is associated with infection, massive fluid/electrolyte loss, and malnutrition, resulting in an unhealed course. Despite advances in surgical techniques, wound care, infection control, and nutritional support, EF remains associated with considerable morbidity and mortality. Autologous platelet-rich plasma (PRP) containing elevated platelet concentrations has been proposed to promote healing in many tissues. However, the mechanism of action of PRP in EF treatment remains unclear owing to its complicated clinical manifestations. In this review, we summarized the clinical approaches, outlined the principal cytokines involved in the healing effects, and discussed the advantages of PRP for EF therapy. In addition, we defined the mechanism of autologous PRP in EF management, which is essential for further developing EF therapies.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zhangdian District People’s Hospital of Zibo City, Zibo, China
| | - Zhiqiang Zheng
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaxin Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanming Yang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lifeng Qin
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhen Zhao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Licun Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Mochizuki T, Ushiki T, Suzuki K, Sato M, Ishiguro H, Suwabe T, Edama M, Omori G, Yamamoto N, Kawase T. Characterization of Leukocyte- and Platelet-Rich Plasma Derived from Female Collage Athletes: A Cross-Sectional Cohort Study Focusing on Growth Factor, Inflammatory Cytokines, and Anti-Inflammatory Cytokine Levels. Int J Mol Sci 2023; 24:13592. [PMID: 37686398 PMCID: PMC10488049 DOI: 10.3390/ijms241713592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Platelet-rich plasma (PRP) has been increasingly used in sports medicine owing to its various advantages. The purpose of our project was to standardize the parameters before performing large-scale clinical trials in the near future to precisely evaluate individual PRP quality. To examine the effects of regular exercise on PRP quality, this study focused on young female athletes, who have been relatively less studied. Blood samples were obtained from female college athletes (n = 35) and ordinary healthy adults (n = 30), which were considered as controls, and leukocyte-rich PRP (L-PRP) was prepared manually. Body composition indices were determined using a bathroom weight scale equipped with an impedance meter. Growth factors and cytokines were quantified using ELISA kits. Platelet-derived growth factor-BB (PDGF-BB) and Transforming-growth factors β1 (TGFβ1) levels (per platelet) in L-PRP were significantly lower in female athletes than in controls. In contrast, Interleukin-1β and Interleukin 1 receptor antagonist (IL-1RA) levels (per platelet and L-PRP) in L-PRP were significantly higher in athletes, and this difference was more prominent in IL-1RA. These findings suggest that L-PRP from athletes may facilitate the inflammatory phase of the healing process by regulating the pro-inflammatory and anti-inflammatory balance. These chemical compositions can be adopted as "must-check" parameters to characterize individual PRP preparations prior to clinical trials.
Collapse
Affiliation(s)
- Tomoharu Mochizuki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan;
| | - Takashi Ushiki
- Division of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata 951-9518, Japan;
- Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan; (K.S.)
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan; (H.I.); (T.S.)
| | - Katsuya Suzuki
- Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan; (K.S.)
| | - Misato Sato
- Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan; (K.S.)
| | - Hajime Ishiguro
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan; (H.I.); (T.S.)
| | - Tatsuya Suwabe
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan; (H.I.); (T.S.)
| | - Mutsuaki Edama
- Department of Health and Sports, Faculty of Health Sciences, Niigata University of Health and Welfare, Niigata 950-3102, Japan; (M.E.); (G.O.)
| | - Go Omori
- Department of Health and Sports, Faculty of Health Sciences, Niigata University of Health and Welfare, Niigata 950-3102, Japan; (M.E.); (G.O.)
| | - Noriaki Yamamoto
- Department of Orthopaedic Surgery, Niigata Rehabilitation Hospital, Niigata 950-3304, Japan;
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
16
|
Poff G, Spencer E, Scott B, Sleadd R, Broyles J. Comparison of Clinical Outcomes after Platelet-Rich Plasma and Rotator Cuff Repair in High-Grade Intrasubstance Partial Rotator Cuff Tears. J Clin Med 2023; 12:5554. [PMID: 37685621 PMCID: PMC10488403 DOI: 10.3390/jcm12175554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Platelet-rich plasma injections have been shown to have many useful applications in various musculoskeletal pathologies. Research on the use of PRP for intrasubstance partial-thickness rotator cuff tears is lacking, although these tears have unique properties that may increase the efficacy of platelet-rich plasma injections. Patients with MRI-confirmed high-grade intrasubstance partial-thickness rotator cuff tears, that had failed traditional non-operative treatment, were offered either surgical repair (Group 1) or a single ultrasound-guided platelet-rich plasma injection into the tear site (Group 2). Patients were followed at 2 weeks, 6 weeks, 3 months, and a minimum of 2 years post-injection with ASES scores. A total of 25 patients received platelet-rich plasma injections, compared to 20 patients who had rotator cuff repair for intrasubstance tears in the last 3 years. The mean pre-injection ASES score for the platelet-rich plasma group was 53.2 and this improved to 92.9 at a minimum 2-year follow-up. The average convalescence period following platelet-rich plasma injection was 3.3 months. The average post-operative convalescence period for arthroscopic rotator cuff repair was 4.6 months. Both surgical repair and platelet-rich plasma injection into the tear site are equally effective in the treatment of high-grade intrasubstance partial-thickness rotator cuff tears, while platelet-rich plasma provides significantly shorter recovery time.
Collapse
Affiliation(s)
- Grayson Poff
- Ortho Tennessee, Knoxville, TN 37923, USA; (E.S.); (B.S.); (R.S.); (J.B.)
| | | | | | | | | |
Collapse
|
17
|
Lu J, Li H, Zhang Z, Xu R, Wang J, Jin H. Platelet-rich plasma in the pathologic processes of tendinopathy: a review of basic science studies. Front Bioeng Biotechnol 2023; 11:1187974. [PMID: 37545895 PMCID: PMC10401606 DOI: 10.3389/fbioe.2023.1187974] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Tendinopathy is a medical condition that includes a spectrum of inflammatory and degenerative tendon changes caused by traumatic or overuse injuries. The pathological mechanism of tendinopathy has not been well defined, and no ideal treatment is currently available. Platelet-rich plasma (PRP) is an autologous whole blood derivative containing a variety of cytokines and other protein components. Various basic studies have found that PRP has the therapeutic potential to promote cell proliferation and differentiation, regulate angiogenesis, increase extracellular matrix synthesis, and modulate inflammation in degenerative tendons. Therefore, PRP has been widely used as a promising therapeutic agent for tendinopathy. However, controversies exist over the optimal treatment regimen and efficacy of PRP for tendinopathy. This review focuses on the specific molecular and cellular mechanisms by which PRP manipulates tendon healing to better understand how PRP affects tendinopathy and explore the reason for the differences in clinical trial outcomes. This article has also pointed out the future direction of basic research and clinical application of PRP in the treatment of tendinopathy, which will play a guiding role in the design of PRP treatment protocols for tendinopathy.
Collapse
Affiliation(s)
- Jialin Lu
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Han Li
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Ziyu Zhang
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Rui Xu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hui Jin
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Li C, Wang J, Yang W, Yu K, Hong J, Ji X, Yao M, Li S, Lu J, Chen Y, Yan S, Wu H, Ma C, Yu X, Jiang G, Liu A. 3D-printed hydrogel particles containing PRP laden with TDSCs promote tendon repair in a rat model of tendinopathy. J Nanobiotechnology 2023; 21:177. [PMID: 37268942 DOI: 10.1186/s12951-023-01892-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/11/2023] [Indexed: 06/04/2023] Open
Abstract
Long-term chronic inflammation after Achilles tendon injury is critical for tendinopathy. Platelet-rich plasma (PRP) injection, which is a common method for treating tendinopathy, has positive effects on tendon repair. In addition, tendon-derived stem cells (TDSCs), which are stem cells located in tendons, play a major role in maintaining tissue homeostasis and postinjury repair. In this study, injectable gelatine methacryloyl (GelMA) microparticles containing PRP laden with TDSCs (PRP-TDSC-GM) were prepared by a projection-based 3D bioprinting technique. Our results showed that PRP-TDSC-GM could promote tendon differentiation in TDSCs and reduce the inflammatory response by downregulating the PI3K-AKT pathway, thus promoting the structural and functional repair of tendons in vivo.
Collapse
Affiliation(s)
- Congsun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Jie Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Weinan Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Hangzhou, Zhejiang, PR China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Xiaoxiao Ji
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Sihao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Jinwei Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Yazhou Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Haobo Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China.
| | - Guangyao Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China.
| | - An Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
19
|
Tai H, Tsai W, Chang M, Praveen Rajneesh C, Tseng X, Hsu W, Wu Y, Chiang H. Intracavernous injection of platelet-rich plasma reverses erectile dysfunction of chronic cavernous nerve degeneration through reduction of prostate hyperplasia evidence from an aging-induced erectile dysfunction rat model. FASEB J 2023; 37:e22826. [PMID: 36856608 PMCID: PMC11977599 DOI: 10.1096/fj.202201443r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023]
Abstract
Age-induced erectile dysfunction (ED) is a convoluted medical condition, and restoring erectile function (EF) under geriatric conditions is highly complicated. Platelet-rich plasma (PRP) treatment is an inexpensive cell-based therapeutic strategy. We have aimed to restore EF in aged-ED rats with PRP as a therapeutic tool. Male rats were grouped into aged and young according to age. The young rats were considered as normal control (NC) and treated with saline. Aged were further divided into 2 groups and treated with intracavernous (IC) PRP and saline. Treatment was scheduled at the 9th and 10th week for NC and 41th and 42th week for aged-ED rats, with EF analysis scheduled on the 12th week for NC and 44th week for aged-ED rats, respectively. Erectile response, immunofluorescence staining, and electron microscopic analyses were performed. IC PRP treatment effectively reduced prostate hyperplasia (PH). EF response indicated a significant increase in crucial EF parameters in PRP-treated aged-ED rats. Histological evidence denoted a rigid and restored development of tunica adventitia of the dorsal artery, decreased vacuolation of the dorsal penile nerve, and structural expansion of the epineurium. Masson's trichrome and immunostaining results affirmed an elevated expression of α-smooth muscle actin (α-SMA) in the corpus cavernosum (CC). Ultrastructure findings revealed that PRP effectively rejuvenated degenerating nerves, preserved endothelium and adherent junctions of corporal smooth muscle, and restored the axonal scaffolds by upregulating neurofilament-H (NF-H) expression. Finally, PRP enhanced neural stability by enhancing the axonal remyelination processes in aged-ED rats. Hence, PRP treatment was proven to restore EF in aged-ED rats, which was considered a safe, novel, cost-effective, and hassle-free strategy for EF restoration in geriatric patients.
Collapse
Affiliation(s)
- Huai‐Ching Tai
- Department of Urology, Fu Jen Catholic University HospitalFu Jen Catholic UniversityNew Taipei CityTaiwan
- School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Wei‐Kung Tsai
- Department of UrologyMacKay Memorial HospitalTaipei CityTaiwan
- Ph.D. Program in Nutrition and Food ScienceFu Jen Catholic UniversityNew Taipei CityTaiwan
- Graduate Institute of Biomedical and Pharmaceutical ScienceFu Jen Catholic UniversityNew Taipei CityTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
- MacKay Junior College of Medicine, Nursing, and ManagementTaipei CityTaiwan
| | - Meng‐Lin Chang
- Department of Urology, Fu Jen Catholic University HospitalFu Jen Catholic UniversityNew Taipei CityTaiwan
- School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | | | - Xiao‐Wen Tseng
- Program in Pharmaceutical Biotechnology, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Wen‐Chun Hsu
- Graduate Institute of Nutrition and Food SciencesFu Jen Catholic UniversityNew Taipei CityTaiwan
- Department of Clinical PathologyCathay General HospitalTaipei CityTaiwan
| | - Yi‐No Wu
- School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Han‐Sun Chiang
- Department of Urology, Fu Jen Catholic University HospitalFu Jen Catholic UniversityNew Taipei CityTaiwan
- Graduate Institute of Biomedical and Pharmaceutical ScienceFu Jen Catholic UniversityNew Taipei CityTaiwan
- Division of Urology, Department of SurgeryCardinal Tien HospitalNew Taipei CityTaiwan
| |
Collapse
|
20
|
Is autologous platelet activation the key step in ovarian therapy for fertility recovery and menopause reversal? Biomedicine (Taipei) 2023; 12:1-8. [PMID: 36816178 PMCID: PMC9910228 DOI: 10.37796/2211-8039.1380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Platelets are a uniquely mammalian physiologic feature. As the only non-marine vertebrates to experience menopause, humans have a substantial post-reproductive lifespan and are believed to have a limited, non-renewable oocyte supply. Ovarian reserve typically declines after about age 35yrs, marking losses which cannot be recovered by available fertility medications. When in vitro fertilization fails due to low or absent ovarian response, gonadotropin adjustments are often ineffectual and if additional oocytes are occasionally harvested, egg quality is usually poor. This problem was confronted by Greek researchers who developed a new surgical method to insert autologous platelet-rich plasma (PRP) into ovaries; the first ovarian PRP success to improve reproductive outcomes was published from Athens in 2016. This innovation influenced later research with condensed platelet-derived growth factors, leading to correction of oocyte ploidy error, normal blastocyst development, and additional term livebirths. Yet women's health was among the last clinical domains to explore PRP, and its role in 'ovarian rejuvenation' remains unsettled. One critical aspect in this procedure is platelet activation, a commonly overlooked step in the cytokine release cascade considered essential for successful transition of undifferentiated ovarian stem cells to an oocyte lineage. Poor activation of platelets thus becomes an unforced error, potentially diminishing or even negating post-treatment ovarian follicular response. To answer this query, relevant theory, current disagreements, and new data on platelet activation are presented, along with clinical challenges for regenerative fertility practice.
Collapse
|
21
|
Troha K, Vozel D, Arko M, Bedina Zavec A, Dolinar D, Hočevar M, Jan Z, Kisovec M, Kocjančič B, Pađen L, Pajnič M, Penič S, Romolo A, Repar N, Spasovski V, Steiner N, Šuštar V, Iglič A, Drobne D, Kogej K, Battelino S, Kralj-Iglič V. Autologous Platelet and Extracellular Vesicle-Rich Plasma as Therapeutic Fluid: A Review. Int J Mol Sci 2023; 24:3420. [PMID: 36834843 PMCID: PMC9959846 DOI: 10.3390/ijms24043420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The preparation of autologous platelet and extracellular vesicle-rich plasma (PVRP) has been explored in many medical fields with the aim to benefit from its healing potential. In parallel, efforts are being invested to understand the function and dynamics of PVRP that is complex in its composition and interactions. Some clinical evidence reveals beneficial effects of PVRP, while some report that there were no effects. To optimize the preparation methods, functions and mechanisms of PVRP, its constituents should be better understood. With the intention to promote further studies of autologous therapeutic PVRP, we performed a review on some topics regarding PVRP composition, harvesting, assessment and preservation, and also on clinical experience following PVRP application in humans and animals. Besides the acknowledged actions of platelets, leukocytes and different molecules, we focus on extracellular vesicles that were found abundant in PVRP.
Collapse
Affiliation(s)
- Kaja Troha
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Domen Vozel
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Matevž Arko
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubjana, Slovenia
| | - Drago Dolinar
- Department of Orthopedic Surgery, University Medical Centre, Zaloška 9, SI-1000 Ljubljana, Slovenia
- MD-RI Institute for Materials Research in Medicine, Bohoričeva 5, SI-1000 Ljubljana, Slovenia
| | - Matej Hočevar
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia
| | - Zala Jan
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubjana, Slovenia
| | - Boštjan Kocjančič
- Department of Orthopedic Surgery, University Medical Centre, Zaloška 9, SI-1000 Ljubljana, Slovenia
| | - Ljubiša Pađen
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Manca Pajnič
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Samo Penič
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Anna Romolo
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Neža Repar
- University of Ljubljana, Research Group for Nanobiology and Nanotoxicology, Biotechnical Faculty, SI-1000 Ljubljana, Slovenia
| | - Vesna Spasovski
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Nejc Steiner
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vid Šuštar
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Research Group for Nanobiology and Nanotoxicology, Biotechnical Faculty, SI-1000 Ljubljana, Slovenia
| | - Ksenija Kogej
- University of Ljubljana, Chair of Physical Chemistry, Faculty of Chemistry and Chemical Technology, SI-1000 Ljubljana, Slovenia
| | - Saba Battelino
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Chalidis B, Givissis P, Papadopoulos P, Pitsilos C. Molecular and Biologic Effects of Platelet-Rich Plasma (PRP) in Ligament and Tendon Healing and Regeneration: A Systematic Review. Int J Mol Sci 2023; 24:2744. [PMID: 36769065 PMCID: PMC9917492 DOI: 10.3390/ijms24032744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Platelet-rich plasma (PRP) has been introduced and applied to a wide spectrum of acute and chronic ligament and tendon pathologic conditions. Although the biological effect of PRP has been studied thoroughly in both animal and human studies, there is no consensus so far on the exact mechanism of its action as well as the optimal timing and dosage of its application. Therefore, we conducted a systematic review aiming to evaluate the molecular effect of the administration of PRP in tendoligamentous injuries and degenerative diseases. The literature search revealed 36 in vitro and in vivo studies examining the healing and remodeling response of animal and human ligament or tendon tissues to PRP. Platelet-rich plasma added in the culture media was highly associated with increased cell proliferation, migration, viability and total collagen production of both ligament- and tendon-derived cells in in vitro studies, which was further confirmed by the upregulation of collagen gene expression. In vivo studies correlated the PRP with higher fibroblastic anabolic activity, including increased cellularity, collagen production and vascularity of ligament tissue. Similarly, greater metabolic response of tenocytes along with the acceleration of the healing process in the setting of a tendon tear were noticed after PRP application, particularly between the third and fourth week after treatment. However, some studies demonstrated that PRP had no or even negative effect on tendon and ligament regeneration. This controversy is mainly related to the variable processes and methodologies of preparation of PRP, necessitating standardized protocols for both investigation and ap-plication.
Collapse
Affiliation(s)
- Byron Chalidis
- 1st Orthopaedic Department, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Panagiotis Givissis
- 1st Orthopaedic Department, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Pericles Papadopoulos
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece
| | - Charalampos Pitsilos
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece
| |
Collapse
|
23
|
Han F, Li T, Li M, Zhang B, Wang Y, Zhu Y, Wu C. Nano-calcium silicate mineralized fish scale scaffolds for enhancing tendon-bone healing. Bioact Mater 2023; 20:29-40. [PMID: 35633872 PMCID: PMC9123220 DOI: 10.1016/j.bioactmat.2022.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Tendon-bone healing is essential for an effective rotator cuff tendon repair surgery, however, this remains a significant challenge due to the lack of biomaterials with high strength and bioactivity. Inspired by the high-performance exoskeleton of natural organisms, we set out to apply natural fish scale (FS) modified by calcium silicate nanoparticles (CS NPs) as a new biomaterial (CS-FS) to overcome the challenge. Benefit from its “Bouligand” microstructure, such FS-based scaffold maintained excellent tensile strength (125.05 MPa) and toughness (14.16 MJ/m3), which are 1.93 and 2.72 times that of natural tendon respectively, allowing it to well meet the requirements for rotator cuff tendon repair. Additionally, CS-FS showed diverse bioactivities by stimulating the differentiation and phenotypic maintenance of multiple types of cells participated into the composition of tendon-bone junction, (e.g. bone marrow mesenchymal stem cells (BMSCs), chondrocyte, and tendon stem/progenitor cells (TSPCs)). In both rat and rabbit rotator cuff tear (RCT) models, CS-FS played a key role in the tendon-bone interface regeneration and biomechanical function, which may be achieved by activating BMP-2/Smad/Runx2 pathway in BMSCs. Therefore, natural fish scale -based biomaterials are the promising candidate for clinical tendon repair due to their outstanding strength and bioactivity. Nano-calcium silicate mineralized fish scale scaffold was first developed for tendon defect repair. •CS-FS exhibited excellent mechanical properties superior to those of natural tendon. •CS-FS showed diverse bioactivities by stimulating the differentiation of multiple types of cells. •CS NPs accelerated tendon-bone interface tendon-bone healing enhancement and biomechanical recovery.
Collapse
|
24
|
Zhang L, Zhang Q, Cui L, Wu L, Gao S. Kartogenin Combined Platelet-Rich Plasma (PRP) Promoted Tendon-Bone Healing for Anterior Cruciate Ligament (ACL) Reconstruction by Suppressing Inflammatory Response Via targeting AKT/PI3K/NF-κB. Appl Biochem Biotechnol 2023; 195:1284-1296. [PMID: 36346560 DOI: 10.1007/s12010-022-04178-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/10/2022]
Abstract
Anterior cruciate ligament (ACL) rupture is the most common sports injuries and PRP has the potential to be a kartogenin (KGN) carrier to promote collagen fibril organization and cartilage regenerative in the tendon-bone interface. This paper aimed to investigate co-injection of KGN-PRP into the bone tunnels of ACL reconstructions which could enhance tendon-bone healing graft osteointegration effectively. HPLC was used to measured release rate of KGN from KGN-PRP gel. Then, an ACL injury reconstruction model in rabbits was established and the rabbits received saline, PRP, and KGN-PRP injection onto the tendon-bone interface after reconstruction. The tissue was harvested from the tendon-bone interface at 4 weeks and 8 weeks post-surgery, and the sections were stained with Safranin O/fast green to detected tendon-bone healing. Immunochemistry staining was used to analyze VEGF, collagen I, and HIF-1α expression, and ELISA assay was used for detecting IL-6, TNF-α, and COX-2 concentrations. The expression levels of AKT/PI3K/NF-κB-related protein and mRNA were presented by Western blot and qPCR. The release rate of KGN was high within 4 h of KGN-PRP gel and followed by a slow release until 7 days. The Safranin O/fast green staining results indicated that tendon-bone interface in sham and mock group existed gap and tissue disorganization. The KGN + PRP group showed the positive color of the healing interface was more obvious and cartilage tissue began to be generated in large amounts at this interface. The maximum tensile force of KGN-PRP injection tendon-bone healing site was significantly higher than that of PRP group, and KGN-PRP effectively promoted fibro chondrogenesis and tendon-bone healing. The expression of collagen I, VEGF, and HIF-1α in regenerated tissues at the healing interface was significantly increased by KGN-PRP treatment compared with the mock and sham groups. The expressions of IL-6, TNF-α, and COX-2 after KGN-PRP treatment were significantly decreased in tendon-bone interface compared to the mock group. WB and qPCR results showed KGN-PRP treatment effectively inhibits AKT/PI3K/NF-κB activation of inflammatory pathways, thereby reducing the level of inflammation to promote wound healing. PRP is an effective carrier for KGN with the sustained release of KGN. After ACL reconstruction, injection of KGN-PRP gel significantly reduced the inflammatory response and inhibited AKT/PI3K/NF-κB activation in cartilage tissue, which promoted tendon-bone healing.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopedics Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Qian Zhang
- Department of Orthopedics Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Lukuan Cui
- Department of Orthopedics Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Lijie Wu
- Department of Orthopedics Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Shijun Gao
- Department of Orthopedics Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
25
|
Advances in the Clinical Application of Platelet-Rich Plasma in the Foot and Ankle: A Review. J Clin Med 2023; 12:jcm12031002. [PMID: 36769649 PMCID: PMC9917505 DOI: 10.3390/jcm12031002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Autologous and recombinant biologic substances have been generated as a result of the research into the cellular features of the healing process. Orthobiologics are increasingly being used in sports medicine and musculoskeletal surgery. Nevertheless, clinical data are limited; consequently, further studies are required, particularly in foot and ankle pathologies. This review aims to provide evidence of the most recent literature results and ignite the interest of orthopedic specialists eager for an update about the most current discussion on platelet-rich plasma (PRP) clinical applications in the foot and ankle fields. Previous studies have shown that platelet-rich plasma can be beneficial in treating various conditions, such as chronic foot ulcers, osteoarthritis, Achilles tendinopathy, etc. Despite the positive effects of PRP on various musculoskeletal conditions, more prospective studies are needed to confirm its effectiveness at treating ankle and foot pathologies. In addition to clinical trials, other factors, such as the quality of the research and the procedures involved, must be considered before they can be used in patients. More long-term evaluations are needed to support or oppose its application in treating foot and ankle disorders. We present the most extensive review of PRP's clinical applications in the foot and ankle field.
Collapse
|
26
|
Zhou Y, Li H, Cao S, Han Y, Shao J, Fu Q, Wang B, Wu J, Xiang D, Liu Z, Wang H, Zhu J, Qian Q, Yang X, Wang S. Clinical Efficacy of Intra-Articular Injection with P-PRP Versus that of L-PRP in Treating Knee Cartilage Lesion: A Randomized Controlled Trial. Orthop Surg 2023; 15:740-749. [PMID: 36647244 PMCID: PMC9977604 DOI: 10.1111/os.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Platelet-rich plasma(PRP), with different concentration of leukocytes, may lead to varying effects in the treatment of cartilage lesions. So far, current research has not shown enough evidence on this. To evaluate the clinical efficacy and safety of intra-articular injection with pure platelet-rich plasma (P-PRP) versus those of leukocyte platelet-rich plasma (L-PRP) in treating knee cartilage lesions, we conducted a double-blind, randomized controlled clinical trial with a larger sample and longer follow-up period. METHODS From October 2019 to October 2020, 95 patients were invited to participate in our study, and 60 (63.2%) were randomized to P-PRP (n = 30) or L-PRP (n = 30) groups. Patients from the two groups were treated with knee intra-articular injections of P-PRP or L-PRP. Visual analog scale (VAS) and Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores were assessed using an unpaired t-test for independent samples preoperatively and at 6 weeks, 12 weeks, 6 months, and 12 months after intervention. RESULTS We followed up 27 cases in the P-PRP group and 26 cases in the L-PRP group. No significant differences in VAS and WOMAC scores were found between the two groups before the intervention (p > 0.05). The WOMAC Pain and VAS-Motions scores of the P-PRP group were significantly lower than those of the L-PRP group at 6 weeks after the intervention (p < 0.05). While the long-term clinical efficacy of both injections was similar and weakened after 12 months, more adverse events were found in the L-PRP group. CONCLUSIONS The short-term results demonstrate a positive effect in reducing pain and improving function in patients with knee cartilage lesions in the two groups. While the P-PRP injection showed better clinical efficacy in the early phase of postoperative rehabilitation and resulted in fewer adverse events, long-term follow-up showed similar and weakened efficacy after 12 months. TRIAL REGISTRATION ChiCTR1900026365. Registered on October 3, 2019, http://www.chictr.org.cn/showproj.aspx?proj=43911.
Collapse
Affiliation(s)
- Yiqin Zhou
- Department of Radiology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina,Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Haobo Li
- Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Shiqi Cao
- Department of OrthopaedicsChinese PLA General HospitalBeijingChina,Department of Orthopaedics of TCM Clinical Unit, 6th Medical CenterChinese PLA General HospitalBeijingChina
| | - Yaguang Han
- Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Jiahua Shao
- Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Qiwei Fu
- Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Bo Wang
- Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Jun Wu
- Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Dong Xiang
- Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Ziye Liu
- Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Huang Wang
- Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Jun Zhu
- Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Qirong Qian
- Department of Orthopedics, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Xiaolei Yang
- Department of Anesthesiology, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Song Wang
- Department of Radiology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
27
|
Johnson LG, Buck EH, Anastasio AT, Abar B, Fletcher AN, Adams SB. The efficacy of platelet-rich plasma in osseous foot and ankle pathology: a review. Regen Med 2023; 18:73-84. [PMID: 36382473 DOI: 10.2217/rme-2022-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of this review is to develop evidence-based practices for the use of platelet-rich plasma (PRP) to treat osseous pathologies of the lower extremity. There is moderate high-quality evidence to support the efficacy of PRP as a surgical augment to microfracture in osteochondral lesions of the talus (OLT). The literature supports a conceivable positive impact on bony union and osseous healing. There is insufficient evidence to support PRP injections in the conservative management of OLT or symptomatic ankle osteoarthritis. PRP may serve as a viable treatment method in the surgical augmentation of microfracture surgery in OLT and has promise for increasing bony union following surgical operations. Further high-quality, comparative studies with longer clinical follow-up are required.
Collapse
Affiliation(s)
- Lindsey G Johnson
- Orthopaedic Surgery Department, Duke University Medical Center, Durham, NC 27705, USA.,Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Erin H Buck
- Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Albert T Anastasio
- Orthopaedic Surgery Department, Duke University Medical Center, Durham, NC 27705, USA
| | - Bijan Abar
- Orthopaedic Surgery Department, Duke University Medical Center, Durham, NC 27705, USA
| | - Amanda N Fletcher
- Orthopaedic Surgery Department, Duke University Medical Center, Durham, NC 27705, USA
| | - Samuel B Adams
- Orthopaedic Surgery Department, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
28
|
Leukocyte and Platelet-Rich Plasma (L-PRP) in Tendon Models: A Systematic Review and Meta-Analysis of in vivo/ in vitro Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5289145. [PMID: 36569346 PMCID: PMC9780014 DOI: 10.1155/2022/5289145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Purpose To perform a systematic review on the application of leukocyte- and platelet-rich plasma (L-PRP) in tendon models by reviewing in vivo/in vitro studies. Methods The searches were performed via electronic databases including PubMed, Embase, and Cochrane Library up to September 2022 using the following keywords: ((tenocytes OR tendon OR tendinitis OR tendinosis OR tendinopathy OR tendon injury) AND (platelet-rich plasma OR PRP OR autologous conditioned plasma OR leukocyte- and platelet-rich plasma OR L-PRP OR leukocyte-richplatelet-rich plasma Lr-PRP)). Only in vitro and in vivo studies that assessed the potential effects of L-PRP on tendons and/or tenocytes are included in this study. Description of PRP, study design and methods, outcomes measured, and results are extracted from the data. Results A total of 17 studies (8 in vitro studies and 9 in vivo studies) are included. Thirteen studies (76%) reported leukocyte concentrations of L-PRP. Four studies (24%) reported the commercial kits. In in vitro studies, L-PRP demonstrated increased cell proliferation, cell migration, collagen synthesis, accelerated inflammation, and catabolic response in the short term. In addition, most in vivo studies indicated increased collagen type I content. According to in vivo studies reporting data, L-PRP reduced inflammation response in 71.0% of studies, while it enhanced the histological quality of tendons in 67.0% of studies. All 3 studies reporting data found increased biomechanical properties with L-PRP treatment. Conclusions Most evidence indicates that L-PRP has some potential effects on tendon healing compared to control. However, it appears that L-PRP works depending on the biological status of the damaged tendon. At an early stage, L-PRP may accelerate tendon healing, but at a later stage, it could be detrimental.
Collapse
|
29
|
Boksh K, Elbashir M, Thomas O, Divall P, Mangwani J. Platelet-Rich Plasma in acute Achilles tendon ruptures: A systematic review and meta-analysis. Foot (Edinb) 2022; 53:101923. [PMID: 36037774 DOI: 10.1016/j.foot.2022.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/13/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Platelet Rich Plasma (PRP) is known to exert multi-directional biological effects favouring tendon healing. However, conclusions drawn by numerous studies on its clinical efficacy for acute Achilles tendon rupture are limited. We performed a systematic review and meta-analysis to investigate this and to compare to those without PRP treatment. METHODS The Cochrane Controlled Register of Trials, Pubmed, Medline and Embase were used and assessed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria with the following search terms: ('plasma' OR 'platelet-rich' OR 'platelet-rich plasma' or 'PRP') AND ('Achilles tendon rupture/tear' OR 'calcaneal tendon rupture/tear' OR 'tendo calcaneus rupture/tear'). Data pertaining to biomechanical outcomes (heel endurance test, isokinetic strength, calf-circumference and range of motion), patient-reported outcome measures (PROMs) and incidence of re-ruptures were extracted. Meta-analysis was performed for same outcomes measured in at least three studies. Pooled outcome data were analysed by random- and fixed-effects models. RESULTS After abstract and full-text screening, 6 studies were included. In total there were 510 patients of which 256 had local PRP injection and 254 without. The average age was 41.6 years, mean time from injury to treatment 5.9 days and mean follow-up at 61 weeks. Biomechanically, there was similar heel endurance, isokinetic strength, calf circumference and range of motion between both groups. In general, there were no differences in patient reported outcomes from all scoring systems used in the studies. Both groups returned to their pre-injured level at a similar time and there were no differences on the incidence of re-rupture (OR 1.13, 95% CI, 0.46-2.80, p = 0.79). CONCLUSION PRP injections for acute Achilles tendon ruptures do not improve medium to long-term biomechanical and clinical outcomes. However, future studies incorporating the ideal application and biological composition of PRP are required to investigate its true clinical efficacy.
Collapse
Affiliation(s)
- Khalis Boksh
- Academic Team of Musculoskeletal Surgery, Department of Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | - Mohamed Elbashir
- Academic Team of Musculoskeletal Surgery, Department of Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Owain Thomas
- Academic Team of Musculoskeletal Surgery, Department of Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Pip Divall
- Academic Team of Musculoskeletal Surgery, Department of Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jitendra Mangwani
- Academic Team of Musculoskeletal Surgery, Department of Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
30
|
Daley P, Menu P, Louguet B, Crenn V, Dauty M, Fouasson-Chailloux A. Interest of platelet rich plasma in Achilles tendon rupture management: a systematic review. PHYSICIAN SPORTSMED 2022; 50:463-470. [PMID: 34392780 DOI: 10.1080/00913847.2021.1969216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Acute Achilles tendon rupture (ATR) is a disabling sport-related injury. Its management involves conservative treatment with early weight-bearing or surgical treatment. Platelet-rich plasma (PRP) has raised interest as an adjuvant for treatment, given its properties on tendon repair and its anti-inflammatory effect. We aimed to assess clinical impact of PRP use in surgical or non-surgical treatment of acute ATR: range of motion, muscle strength, function, return to sport and adverse events. METHOD A systematic literature research was performed using PubMed, ScienceDirect, and Google Scholar databases to collect studies reporting clinical outcomes after acute ATR treated with PRP. RESULTS Eight studies were eligible and included 543 acute ATR. Four were randomized comparative studies. A total of 128 patients were treated surgically and 415 were treated conservatively, 271 received PRP injection. Five studies described the type of PRP used, which was variable. Only one study including 12 patients found significant outcomes in favor of the PRP group, with a 4-week earlier recovery of a normal range of motion and a 7-week earlier return to running. No difference in clinical or morphological evaluations, strength measurement, and functional outcomes was found in other studies both at short and long-term. PRP did not seem to modify the frequency of adverse events. CONCLUSIONS Data are not clearly in favor of a significant effect of the PRP use for treatment of ATR. There might be a slight effect on evolution during the first months. Its interest should be assessed in future studies with strong methodology.
Collapse
Affiliation(s)
- Pauline Daley
- Chu Nantes, Service De Médecine Physique Et Réadapatation Locomotrice Et Respiratoire, Nantes, France.,Chu Nantes, Service De Médecine Du Sport, Nantes, France
| | - Pierre Menu
- Chu Nantes, Service De Médecine Physique Et Réadapatation Locomotrice Et Respiratoire, Nantes, France.,Chu Nantes, Service De Médecine Du Sport, Nantes, France.,Irms, Institut Régional De Médecine Du Sport, Nantes, France.,Inserm, Umr 1229, RMeS, Regenerative Medicine and Skeleton, Université De Nantes, Oniris, Nantes, France
| | - Bastien Louguet
- Chu Nantes, Service De Médecine Du Sport, Nantes, France.,Irms, Institut Régional De Médecine Du Sport, Nantes, France
| | - Vincent Crenn
- Chu Nantes, Clinique Chirurgicale Orthopédique Et Traumatologique, Nantes, France
| | - Marc Dauty
- Chu Nantes, Service De Médecine Physique Et Réadapatation Locomotrice Et Respiratoire, Nantes, France.,Chu Nantes, Service De Médecine Du Sport, Nantes, France.,Irms, Institut Régional De Médecine Du Sport, Nantes, France.,Inserm, Umr 1229, RMeS, Regenerative Medicine and Skeleton, Université De Nantes, Oniris, Nantes, France
| | - Alban Fouasson-Chailloux
- Chu Nantes, Service De Médecine Physique Et Réadapatation Locomotrice Et Respiratoire, Nantes, France.,Chu Nantes, Service De Médecine Du Sport, Nantes, France.,Irms, Institut Régional De Médecine Du Sport, Nantes, France.,Inserm, Umr 1229, RMeS, Regenerative Medicine and Skeleton, Université De Nantes, Oniris, Nantes, France
| |
Collapse
|
31
|
Everts PA, Mazzola T, Mautner K, Randelli PS, Podesta L. Modifying Orthobiological PRP Therapies Are Imperative for the Advancement of Treatment Outcomes in Musculoskeletal Pathologies. Biomedicines 2022; 10:biomedicines10112933. [PMID: 36428501 PMCID: PMC9687216 DOI: 10.3390/biomedicines10112933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Autologous biological cellular preparations have materialized as a growing area of medical advancement in interventional (orthopedic) practices and surgical interventions to provide an optimal tissue healing environment, particularly in tissues where standard healing is disrupted and repair and ultimately restoration of function is at risk. These cellular therapies are often referred to as orthobiologics and are derived from patient's own tissues to prepare point of care platelet-rich plasma (PRP), bone marrow concentrate (BMC), and adipose tissue concentrate (ATC). Orthobiological preparations are biological materials comprised of a wide variety of cell populations, cytokines, growth factors, molecules, and signaling cells. They can modulate and influence many other resident cells after they have been administered in specific diseased microenvironments. Jointly, the various orthobiological cell preparations are proficient to counteract persistent inflammation, respond to catabolic reactions, and reinstate tissue homeostasis. Ultimately, precisely delivered orthobiologics with a proper dose and bioformulation will contribute to tissue repair. Progress has been made in understanding orthobiological technologies where the safety and relatively easy manipulation of orthobiological treatment tools has been demonstrated in clinical applications. Although more positive than negative patient outcome results have been registered in the literature, definitive and accepted standards to prepare specific cellular orthobiologics are still lacking. To promote significant and consistent clinical outcomes, we will present a review of methods for implementing dosing strategies, using bioformulations tailored to the pathoanatomic process of the tissue, and adopting variable preparation and injection volume policies. By optimizing the dose and specificity of orthobiologics, local cellular synergistic behavior will increase, potentially leading to better pain killing effects, effective immunomodulation, control of inflammation, and (neo) angiogenesis, ultimately contributing to functionally restored body movement patterns.
Collapse
Affiliation(s)
- Peter A. Everts
- Education & Research Division, Gulf Coast Biologics, Fort Myers, FL 33916, USA
- Correspondence: ; Tel.: +1-239-961-6457
| | - Timothy Mazzola
- Breakthrough Regenerative Orthopedics, Boulder, CO 80305, USA
| | - Kenneth Mautner
- Department of Physical Medicine and Rehabilitation, Emory University, Atlanta, GA 30329, USA
| | - Pietro S. Randelli
- Instituto Orthopedico Gaetano Pini, Milan University, 20122 Milan, Italy
| | | |
Collapse
|
32
|
Keene DJ, Alsousou J, Harrison P, O’Connor HM, Wagland S, Dutton SJ, Hulley P, Lamb SE, Willett K. Platelet-rich plasma injection for acute Achilles tendon rupture : two-year follow-up of the PATH-2 randomized, placebo-controlled, superiority trial. Bone Joint J 2022; 104-B:1256-1265. [PMID: 36317349 PMCID: PMC9621093 DOI: 10.1302/0301-620x.104b11.bjj-2022-0653.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aims To determine whether platelet-rich plasma (PRP) injection improves outcomes two years after acute Achilles tendon rupture. Methods A randomized multicentre two-arm parallel-group, participant- and assessor-blinded superiority trial was undertaken. Recruitment commenced on 28 July 2015 and two-year follow-up was completed in 21 October 2019. Participants were 230 adults aged 18 years and over, with acute Achilles tendon rupture managed with non-surgical treatment from 19 UK hospitals. Exclusions were insertion or musculotendinous junction injuries, major leg injury or deformity, diabetes, platelet or haematological disorder, medication with systemic corticosteroids, anticoagulation therapy treatment, and other contraindicating conditions. Participants were randomized via a central online system 1:1 to PRP or placebo injection. The main outcome measure was Achilles Tendon Rupture Score (ATRS) at two years via postal questionnaire. Other outcomes were pain, recovery goal attainment, and quality of life. Analysis was by intention-to-treat. Results A total of 230 participants were randomized, 114 to PRP and 116 to placebo. Two-year questionnaires were sent to 216 participants who completed a six-month questionnaire. Overall, 182/216 participants (84%) completed the two-year questionnaire. Participants were aged a mean of 46 years (SD 13.0) and 25% were female (57/230). The majority of participants received the allocated intervention (219/229, 96%). Mean ATRS scores at two years were 82.2 (SD 18.3) in the PRP group (n = 85) and 83.8 (SD 16.0) in the placebo group (n = 92). There was no evidence of a difference in the ATRS at two years (adjusted mean difference -0.752, 95% confidence interval -5.523 to 4.020; p = 0.757) or in other secondary outcomes, and there were no re-ruptures between 24 weeks and two years. Conclusion PRP injection did not improve patient-reported function or quality of life two years after acute Achilles tendon rupture compared with placebo. The evidence from this study indicates that PRP offers no patient benefit in the longer term for patients with acute Achilles tendon rupture. Cite this article: Bone Joint J 2022;104-B(11):1256–1265.
Collapse
Affiliation(s)
- David J. Keene
- Kadoorie Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK,Correspondence should be sent to David J. Keene. E-mail:
| | - Joseph Alsousou
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Heather M. O’Connor
- Oxford Clinical Trials Research Unit, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Susan Wagland
- Kadoorie Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Susan J. Dutton
- Oxford Clinical Trials Research Unit, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Philippa Hulley
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah E. Lamb
- Kadoorie Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK,College of Medicine and Health, University of Exeter, Exeter, UK
| | - Keith Willett
- Kadoorie Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
33
|
Johnson LG, Buck EH, Anastasio AT, Abar B, Fletcher AN, Adams SB. Efficacy of Platelet-Rich Plasma in Soft Tissue Foot and Ankle Pathology. JBJS Rev 2022; 10:01874474-202210000-00002. [PMID: 36191089 DOI: 10.2106/jbjs.rvw.22.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
➢ The preparation methodology for platelet-rich plasma (PRP) may have important clinical implications with varying effectiveness with leukocyte, platelet, and growth factor concentrations. ➢ There is high-quality evidence to support the superiority of PRP over corticosteroids in the case of chronic plantar fasciitis. ➢ There is moderate-quality to high-quality evidence for PRP's ability to increase tendon thickness with no capacity to decrease pain, increase function, or augment percutaneous tenotomy in Achilles tendinopathy. ➢ There is insufficient evidence to support PRP injections in the definitive treatment of Achilles tendon rupture. However, PRP may contribute to postoperative recovery after tendon rupture repair, but this requires further research. ➢ The biochemical theory supporting the clinical use of PRP must be reinforced with high-level evidence research. Based on the current literature, PRP may serve as a viable treatment method in chronic plantar fasciitis. Further high-quality, comparative studies with longer clinical follow-up are required to support recommendations for use of PRP in the treatment of Achilles tendon pathology.
Collapse
Affiliation(s)
- Lindsey G Johnson
- Orthopaedic Surgery Department, Duke University Medical Center, Durham, North Carolina
- Campbell University School of Osteopathic Medicine, Lillington, North Carolina
| | - Erin H Buck
- Campbell University School of Osteopathic Medicine, Lillington, North Carolina
| | - Albert T Anastasio
- Orthopaedic Surgery Department, Duke University Medical Center, Durham, North Carolina
| | - Bijan Abar
- Orthopaedic Surgery Department, Duke University Medical Center, Durham, North Carolina
| | - Amanda N Fletcher
- Orthopaedic Surgery Department, Duke University Medical Center, Durham, North Carolina
| | - Samuel B Adams
- Orthopaedic Surgery Department, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
34
|
Gomri F, Vischer S, Turzi A, Berndt S. Swiss Medical Devices for Autologous Regenerative Medicine: From Innovation to Clinical Validation. Pharmaceutics 2022; 14:pharmaceutics14081617. [PMID: 36015243 PMCID: PMC9413293 DOI: 10.3390/pharmaceutics14081617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 12/01/2022] Open
Abstract
Regenerative medicine, based on the use of autologous tissues and embryonic, stem or differentiated cells, is gaining growing interest. However, their preparation, in a manner compliant with good practices and health regulations, is a technical challenge. The aim of this manuscript is to present the design of reliable CE marked medical devices for the preparation of standardized platelet-rich plasma (PRP) and other autologous biologics intended for therapeutic uses. There are numerous PRP isolation processes. Depending on the methodology used, PRP composition varies greatly in terms of platelet concentration, platelet quality, and level of contamination with red and white blood cells. This variability in PRP composition might affect the clinical outcomes. The devices presented here are based on a specific technology, patented all over the world, that allows the precise separation of blood components as a function of their density using thixotropic separator gels in closed systems. This allows the preparation, in an automated manner, of leukocyte poor PRP with a standardized composition. Production of different forms of PRP is a clinical asset to suit various therapeutic needs. Therefore, we are offering solutions to prepare PRP either in liquid or gel form, and PRP combined with hyaluronic acid. These biologics have been successfully used in many different therapeutic domains, resulting in more than 150 published clinical studies. We also developed the CuteCell technology platform for cell culture expansion for further autologous cell therapies. This technology enables the safe and rapid in vitro expansion of cells intended for therapeutic use in good manufacturing practices (GMP) and autologous conditions, using blood-derived products as culture media supplementation. We summarize in this article our 20 years’ experience of research and development for the design of PRP devices and, more recently, for PRP combined with hyaluronic acid.
Collapse
Affiliation(s)
- Farid Gomri
- Regen Lab SA, 1052 Le Mont-sur-Lausanne, Switzerland; (F.G.); (S.V.); (A.T.)
| | - Solange Vischer
- Regen Lab SA, 1052 Le Mont-sur-Lausanne, Switzerland; (F.G.); (S.V.); (A.T.)
| | - Antoine Turzi
- Regen Lab SA, 1052 Le Mont-sur-Lausanne, Switzerland; (F.G.); (S.V.); (A.T.)
| | - Sarah Berndt
- Regen Lab SA, 1052 Le Mont-sur-Lausanne, Switzerland; (F.G.); (S.V.); (A.T.)
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
35
|
Zhang C, Cai YZ, Wang Y. Injection of Leukocyte-Poor Platelet-Rich Plasma for Moderate-to-Large Rotator Cuff Tears Does Not Improve Clinical Outcomes but Reduces Retear Rates and Fatty Infiltration: A Prospective, Single-Blinded Randomized Study. Arthroscopy 2022; 38:2381-2388.e1. [PMID: 35247512 DOI: 10.1016/j.arthro.2022.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To determine whether leukocyte-poor platelet-rich plasma (Lp-PRP) reduced retear rates, reduced fatty infiltration, and improved functional outcomes in patients with degenerative moderate-to-large rotator cuff tears. METHODS This was a randomized controlled study at a single center. A consecutive series of 104 patients with moderate-to-large rotator cuff tears was enrolled and randomly allocated to a control group (double-row suture-bridge arthroscopic rotator cuff repair alone, n = 52) and a study group (double-row suture-bridge repair followed by 3 Lp-PRP injections at the tendon repair site during surgery, at days 7 and 14 after surgery, n = 52). All patients were followed up for 27.2 months (range 24-36 months), with University of California at Los Angeles (UCLA) shoulder rating scale, the Constant score, and a visual analog scale (VAS) evaluated respectively. The integrity and fatty infiltration of repaired tissue were assessed by magnetic resonance imaging using the Sugaya classification and Goutallier grade classification at 24 months after surgery. Statistical analysis was performed based on the t test, χ2 test, and the Kendall tau-b correlation coefficient. RESULTS Four patients refused follow-up, and 11 patients had incomplete data. Eventually, a total of 89 patients were available for 24 months follow-up. The mean UCLA score increased from 14.80 ± 2.53 to 29.37 ± 2.06 in control group and from 13.74 ± 3.30 to 30.14 ± 2.32 in study group (P = .103). The mean Constant score increased from 46.56 ± 5.90 to 86.83 ± 4.94 in control group and from 44.37 ± 7.92 to 88.80 ± 4.92 in study group (P = .063). The VAS score decreased from 3.22 ± 1.24 to 0.97 ± 1.12 in control group and in 3.49 ± 1.52 to 1.16 ± 0.99 in study group (P = .41). All differences in UCLA score, Constant score, and VAS between pre- and postoperation achieved minimal clinically important differences proposed for arthroscopic rotator cuff repair. Of the 89 patients, 76 had magnetic resonance imaging performed at 24 months after surgery. The retear rate was 17.6% in study group, which was lower than that in control group (38.1%, P = .049). In addition, the Goutallier grade was found to be significant difference between groups postoperatively (Kendall tau-b -0.24, P = .03) but no significant difference preoperatively (Kendall tau-b -0.18, P = .11). There were no complications in the patients. CONCLUSIONS Our procedures involving repeated injections of Lp-PRP during surgery and at days 7 and 14, as described in this study, have positive effects on reducing retear rate and promoting Goutallier grade in patients following arthroscopic rotator cuff repair and could also provide substantial clinical outcomes that reach the minimal clinically important difference for surgical treatment. However, given the numbers available for analysis, it did not promote better clinical results when compared with the control group. LEVEL OF EVIDENCE II, randomized controlled study.
Collapse
Affiliation(s)
- Chi Zhang
- Center for Sports Medicine, Hangzhou, China; First Affiliated Hospital, Zhejiang University School of Medicine and Institute of Sports Medicine of Zhejiang University, Hangzhou, China
| | - You-Zhi Cai
- Center for Sports Medicine, Hangzhou, China; First Affiliated Hospital, Zhejiang University School of Medicine and Institute of Sports Medicine of Zhejiang University, Hangzhou, China.
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, Hangzhou, China.
| |
Collapse
|
36
|
Rhee SM, Kim YH, Park JH, Jeong HJ, Han J, Jeon S, Oh JH. Allogeneic Dermal Fibroblasts Improve Tendon-to-Bone Healing in a Rabbit Model of Chronic Rotator Cuff Tear Compared With Platelet-Rich Plasma. Arthroscopy 2022; 38:2118-2128. [PMID: 34968652 DOI: 10.1016/j.arthro.2021.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare the effects of allogeneic dermal fibroblasts (ADFs) and platelet-rich plasma (PRP) on tendon-to-bone healing in a rabbit model of chronic rotator cuff tear. METHODS Thirty-two rabbits were divided into 4 groups (8 per group). In 2 groups, the supraspinatus tendon was detached and was left as such for 6 weeks. At 6 weeks after creating the tear model, we performed transosseous repair with 5 × 106 ADFs plus fibrin injection in the left shoulder and PRP plus fibrin in the right shoulder. The relative expression of the COL1, COL3, BMP2, SCX, SOX9, and ACAN genes was assessed at 4 weeks (group A) and 12 weeks (group B) after repair. Histologic and biomechanical evaluations of tendon-to-bone healing at 12 weeks were performed with ADF injection in both shoulders in group C and PRP injection in group D. RESULTS At 4 weeks, COL1 and BMP2 messenger RNA expression was higher in ADF-injected shoulders (1.6 ± 0.8 and 1.0 ± 0.3, respectively) than in PRP-injected shoulders (1.0 ± 0.3 and 0.6 ± 0.3, respectively) (P = .019 and P = .013, respectively); there were no differences in all genes in ADF- and PRP-injected shoulders at 12 weeks (P > .05). Collagen continuity, orientation, and maturation of the tendon-to-bone interface were better in group C than in group D (P = .024, P = .012, and P = .013, respectively) at 12 weeks, and mean load to failure was 37.4 ± 6.2 N/kg and 24.4 ± 5.2 N/kg in group C and group D, respectively (P = .015). CONCLUSIONS ADFs caused higher COL1 and BMP2 expression than PRP at 4 weeks and showed better histologic and biomechanical findings at 12 weeks after rotator cuff repair of the rabbit model. ADFs enhanced healing better than PRP in the rabbit model. CLINICAL RELEVANCE This study could serve as a transitional study to show the effectiveness of ADFs in achieving tendon-to-bone healing after repair of chronic rotator cuff tears in humans.
Collapse
Affiliation(s)
- Sung-Min Rhee
- Shoulder & Elbow Clinic, Department of Orthopaedic Surgery, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yun Hee Kim
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Joo Hyun Park
- Department of Orthopaedic Surgery, Bundang Jesaeng Hospital, Seongnam-si, Republic of Korea
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Jikhyon Han
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Saewha Jeon
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea.
| |
Collapse
|
37
|
Carr BJ. Platelet-Rich Plasma as an Orthobiologic: Clinically Relevant Considerations. Vet Clin North Am Small Anim Pract 2022; 52:977-995. [PMID: 35562219 DOI: 10.1016/j.cvsm.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Platelet-rich plasma (PRP) is an autologous blood-derived product processed to concentrate platelets and the associated growth factors. PRP has been shown to be relatively well-tolerated and safe to use for a number of conditions in humans, equines, and canines. There are multiple commercial systems that have been validated for canine use. These systems use a variety of methodologies to produce a PRP product. However, PRP products have been shown to differ greatly between systems. Further study is needed to fully elucidate optimal component concentrations for various indications.
Collapse
Affiliation(s)
- Brittany Jean Carr
- The Veterinary Sports Medicine and Rehabilitation Center, 4104 Liberty Highway, Anderson, SC 29621, USA.
| |
Collapse
|
38
|
Peng Y, Wu W, Li X, Shangguan H, Diao L, Ma H, Wang G, Jia S, Zheng C. Effects of leukocyte-rich platelet-rich plasma and leukocyte-poor platelet-rich plasma on the healing of bone-tendon interface of rotator cuff in a mice model. Platelets 2022; 33:1075-1082. [PMID: 35257633 DOI: 10.1080/09537104.2022.2044462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platelet-rich plasma (PRP) is widely used clinically to treat tendon injuries, and often contains leukocytes. However, the debate regarding the concentration of leukocytes in PRP is still ongoing. This study aimed to evaluate the therapeutic effects of leukocyte-rich platelet-rich plasma (LR-PRP) and leukocyte-poor platelet-rich plasma (LP-PRP) on the healing of the bone-tendon interface (BTI) of the rotator cuff. A total of 102 C57BL/6 mice were used. Thirty mice were used to prepare the PRP, while 72 underwent acute supraspinatus tendon injury repair. The animals were then randomly assigned to three groups: LR-PRP, LP-PRP and control groups. The mice were euthanized at 4 and 8 weeks postoperatively, and histological, immunological and biomechanical analyses were performed. The histological results showed that the fusion effect at the bone-tendon interface at 4 and 8 weeks after surgery was greater in the PRP groups and significantly increased at 4 weeks; however, at 8 weeks, the area of the fibrocartilage layer in the LP-PRP group increased significantly. M2 macrophages were observed at the repaired insertion for all the groups at 4 weeks. At 8 weeks, M2 macrophages withdrew back to the tendon in the control group, but some M2 macrophages were retained at the repaired site in the LR-PRP and LP-PRP groups. Enzyme-linked immunoassay results showed that the concentrations of IL-1β and TNF-α in the LR-PRP group were significantly higher than those in the other groups at 4 and 8 weeks, while the concentrations of IL-1β and TNF-α in the LP-PRP group were significantly lower than those in the control group. The biomechanical properties of the BTI were significantly improved in the PRP group. Significantly higher failure load and ultimate strength were seen in the LR-PRP and LP-PRP groups than in the control group at 4 and 8 weeks postoperatively. Thus, LR-RPR can effectively enhance the early stage of bone-tendon interface healing after rotator cuff repair, and LP-PRP could enhance the later stages of healing after rotator cuff injury.
Collapse
Affiliation(s)
- Yundong Peng
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Wenxia Wu
- College of Health Science, Wuhan Sports University, Wuhan, China.,Department of Rehabilitation Therapy, Jinci College of Shanxi Medical University, Jinzhong, China
| | - Xiaomei Li
- College of Health Science, Wuhan Sports University, Wuhan, China.,Medical College, Huainan Union University, Anhui, China
| | - Hengyi Shangguan
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Luyu Diao
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Haozhe Ma
- College of International Education, Wuhan Sports University, Wuhan, China
| | - Guanglan Wang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- College of Health Science, Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion, Wuhan Sports University, Wuhan, China
| | - Cheng Zheng
- Department of Sports Medicine, Affiliated Hospital, Wuhan Sports University, Wuhan, China
| |
Collapse
|
39
|
Peng Y, Guanglan W, Jia S, Zheng C. Leukocyte-Rich and Leukocyte-Poor Platelet-Rich Plasma in Rotator Cuff Repair: A Meta-analysis. Int J Sports Med 2022; 43:921-930. [PMID: 35255508 DOI: 10.1055/a-1790-7982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To systematically review of randomized controlled trials(RCTs) to compared the effects of leukocyte-rich and leukocyte-poor platelet-rich plasma in arthroscopic rotator cuff repair. Two independent reviewers comprehensively searched PubMed, Embase, and Cochrane library databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Comparison of leukocyte-rich platelet-rich plasma or leukocyte-poor platelet-rich plasma in rotator cuff repair in a level I RCTs. Methodological quality assessment was carried out using Cochrane Review Manager 5.3 software. P<0.05 was considered statistically significant. Nine RCTs with 540 patients were included in this review. Meta-analysis showed that leukocyte-poor platelet-rich plasma in significantly reduced retear rate in rotator cuff repair [RR=0.56 95%CI (0.42,0.75); P<0.05), and in clinical results, the constant score [MD=3.67, 95%CI (1.62,5.73); P=0.0005], UCLA score [MD=1.60, 95%CI (0.79,2.42); P=0.0001], ASES score [MD=2.16, 95%CI(0.12,4.20);P=0.04] were significantly improved. There was a significant result in favor of PRP for the Constant score [MD=-1.24, 95%CI(-1.50,-0.99); P<0.00001], while SST scores were not significantly different among all groups [MD=0.21, 95%CI(-0.21,0.64); P=0.32]. In conclusion, leukocyte-poor platelet-rich plasma can improved the clinical function and reduced retear rate in arthroscopic rotator cuff repair. In contrast, the efficacy of leukocyte-rich platelet-rich plasma was not significantly improved with the exception of VAS score.
Collapse
Affiliation(s)
- Yundong Peng
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Wang Guanglan
- School of Health Sciences, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Cheng Zheng
- Department of Sports Medicine, Affiliated Hospital, Wuhan Sports University, Wuhan, China
| |
Collapse
|
40
|
Eugenol-Preconditioned Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Antioxidant Capacity of Tendon Stem Cells In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3945195. [PMID: 35178155 PMCID: PMC8847013 DOI: 10.1155/2022/3945195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
Tendon stem cells (TSCs) are often exposed to oxidative stress at tendon injury sites, which impairs their physiological effect as well as therapeutic application. Recently, extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells (BMSCs) were shown to mediate cell protection and survival under stress conditions. The function of BMSC-EVs may be affected by pretreatment with various factors such as eugenol (EUG)—a powerful antioxidant. In our previous study, we found that H2O2 significantly impaired TSC proliferation and tenogenic differentiation capabilities. Apoptosis and intracellular ROS accumulation in TSCs were induced by H2O2. However, such H2O2-induced damage was prevented by treatment with EUG-BMSC-EVs. Furthermore, EUG-BMSC-EVs activated the Nrf2/HO-1 pathway to counteract H2O2-induced damage in TSCs. In a rat patellar tendon injury model, the ROS level was significantly higher than that in the normal tendon and TSCs not pretreated showed a poor therapeutic effect. However, EUG-BMSC-EV-pretreated TSCs significantly improved tenogenesis and matrix regeneration during tendon healing. Additionally, the EUG-BMSC-EV group had a significantly improved fiber arrangement. Overall, EUG-BMSC-EVs protected TSCs against oxidative stress and enhanced their functions in tendon injury. These findings provide a basis for potential clinical use of EUG-BMSC-EVs as a new therapeutic vehicle to facilitate TSC therapies for tendon regeneration.
Collapse
|
41
|
Sills ES. Why might ovarian rejuvenation fail? Decision analysis of variables impacting reproductive response after autologous platelet-rich plasma. Minerva Obstet Gynecol 2022; 74:377-385. [PMID: 35107239 DOI: 10.23736/s2724-606x.22.04996-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experience with platelet-rich plasma (PRP) has accumulated from use in dental restoration, post-infarct myocardial repair, tendon surgery, pain management, and aesthetic enhancements. Reproductive medicine joined this arena in 2016, beginning with reports of menopause reversal and fertility recovery after autologous PRP for senescent ovaries. Although recent publications have highlighted benefits of 'ovarian rejuvenation', the absence of randomized placebo-controlled clinical trial data has limited its acceptance. Because selection bias tends to underreport negative outcomes, reliable estimates cannot be calculated for how often intraovarian PRP is unsuccessful. Ample information is available, however, to permit an operational root-cause analysis when failures are considered. This assessment uses a PRP treatment care path with a decision theory model to critique pre-intake screening, baseline audit, sample processing, ovarian tissue placement method, equipment selection, and follow-up monitoring. These branched choice points enable interventions likely to determine outcome. Specimen handling for intraovarian PRP merits particular scrutiny, since enormous variation in platelet protocols already exists across unrelated clinical areas. As a new addition to fertility practice, intraovarian PRP requires validation of safety and efficacy to gain wider support. Borrowing PRP knowledge from other domains can facilitate this goal, ideally with appreciation of aspects unique to intraovarian use.
Collapse
Affiliation(s)
- E Scott Sills
- Plasma Research Section, FertiGen CAG/Regenerative Biology Group, San Clemente, CA, USA - .,Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA, USA -
| |
Collapse
|
42
|
White C, Brahs A, Dorton D, Witfill K. Platelet-Rich Plasma: A Comprehensive Review of Emerging Applications in Medical and Aesthetic Dermatology. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2021; 14:44-57. [PMID: 34980960 PMCID: PMC8675348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Platelet-rich plasma (PRP) has been integrated into numerous treatment regimens for medical and aesthetic dermatology. While some of these approaches are well-established, many uses are underreported in the literature. We sought to identify and summarize the emerging dermatologic applications for PRP by conducting a comprehensive PubMed search of studies published between 2000 and 2020. These studies were reviewed to synthesize collection methods, treatment schedule, adverse effects, and the impact of therapy for new and emerging uses for PRP. In general, we identified positive treatment outcomes for skin rejuvenation, scar revision, alopecia, pigmentary disorders, lichen sclerosus, leprosy-induced peripheral neuropathy, plaque psoriasis, and nail disorders. Widely, therapy was well-tolerated and suitable for all reported phototypes. The variations in collection and application sequences make concrete recommendations difficult to discern, underscoring the need for a standardized approach to preparation and treatment methods. We hope this review serves as an outline for new and interesting uses for PRP and will help readers familiarize themselves with this exciting technology for comfortable integration into their practices.
Collapse
Affiliation(s)
- Christopher White
- Dr. White is with Dermatology Partners in Strongsville, Ohio
- Drs. Brahs, Dorton, and Witfill are with the Department of Dermatology, HCA Healthcare/USF Morsani College of Medicine, Largo Medical Center, in Largo, Florida
| | - Allyson Brahs
- Dr. White is with Dermatology Partners in Strongsville, Ohio
- Drs. Brahs, Dorton, and Witfill are with the Department of Dermatology, HCA Healthcare/USF Morsani College of Medicine, Largo Medical Center, in Largo, Florida
| | - David Dorton
- Dr. White is with Dermatology Partners in Strongsville, Ohio
- Drs. Brahs, Dorton, and Witfill are with the Department of Dermatology, HCA Healthcare/USF Morsani College of Medicine, Largo Medical Center, in Largo, Florida
| | - Kristin Witfill
- Dr. White is with Dermatology Partners in Strongsville, Ohio
- Drs. Brahs, Dorton, and Witfill are with the Department of Dermatology, HCA Healthcare/USF Morsani College of Medicine, Largo Medical Center, in Largo, Florida
| |
Collapse
|
43
|
OPTIMIZING A PLATELET-RICH PLASMA CONCENTRATION PROTOCOL FOR SOUTH AMERICAN SEA LIONS ( OTARIA FLAVESCENS). J Zoo Wildl Med 2021; 52:956-965. [PMID: 34687512 DOI: 10.1638/2020-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2021] [Indexed: 11/21/2022] Open
Abstract
Accelerated healing in wild or captive South American sea lions (Otaria flavescens) is a key tool to help minimize infection and complications associated with open wounds, dental disease, and ocular pathology. Platelet-rich plasma (PRP) is an autogenous source for growth factors based on platelet concentration, which can be obtained by centrifuging whole blood collected in sodium citrate anticoagulant. Currently, there are well-defined PRP concentration protocols for humans and most domestic companion animal species. However, there is no clear centrifugation protocol for obtaining PRP in most marine mammal species. This study aimed to optimize the platelet concentration protocol based on whole blood centrifugation using speeds ranging from 500 to 5,000 rpm and times ranging from 3 to 6 min. Blood was drawn from seven adult South American sea lions, placed into 1-ml sodium citrate tubes, and centrifuged following 12 different centrifugation protocols. PRP was designated as the lower third fraction of the centrifuged plasma. Platelet counts were performed using flow cytometry and statistical analysis was carried out to establish a well-defined protocol for efficient PRP production. Transmission electron microscopy (TEM) analysis was performed to evaluate possible platelet degranulation during the different centrifugation protocols and measure platelet areas. Maximum concentration of platelets in PRP was 4.73-fold higher than the number of platelets in equal volume of whole blood, and significant differences in the concentrations obtained were found between the 12 centrifugation protocols evaluated using different speed and time combinations. The best one-step centrifugation protocol resulted from using 900-rpm speed for 3 min. The highest-fold increase was achieved using a two-step centrifugation protocol, which combined the most efficient one-step centrifugation protocol (900 rpm, 3 min) with a second centrifugation using 2,000-rpm speed for 6 min. TEM analysis confirmed that platelets were complete and maintained integrity after the proposed protocol.
Collapse
|
44
|
Padilla S, Nurden AT, Prado R, Nurden P, Anitua E. Healing through the lens of immunothrombosis: Biology-inspired, evolution-tailored, and human-engineered biomimetic therapies. Biomaterials 2021; 279:121205. [PMID: 34710794 DOI: 10.1016/j.biomaterials.2021.121205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system. In doing so, immunothrombosis endows humans with survival advantages, but entails vulnerabilities in the current unprecedented and increasingly challenging environment. Immunothrombosis and tissue repair appear to go hand in hand with common mechanisms mediating both processes, a fact that is underlined by recent advances that are deciphering the mechanisms of the repair process and of the biochemical pathways that underpins coagulation, hemostasis and thrombosis. This review is intended to frame both the universal aspects of tissue repair and the therapeutic use of autologous fibrin matrix as a biology-as-a-drug approach in the context of the evolutionary changes in coagulation and hemostasis. In addition, we will try to shed some light on the molecular mechanisms underlying the use of the autologous fibrin matrix as a biology-inspired, evolution-tailored, and human-engineered biomimetic therapy.
Collapse
Affiliation(s)
- Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| |
Collapse
|
45
|
Wang C, Fan H, Li Y, Yun Z, Zhang Z, Zhu Q. Effectiveness of platelet-rich plasma injections for the treatment of acute Achilles tendon rupture: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27526. [PMID: 34731144 PMCID: PMC8519239 DOI: 10.1097/md.0000000000027526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The effect of platelet-rich plasma (PRP) on patients with acute Achilles tendon rupture is still controversial. The purpose of this systematic review is to assess the efficacy of PRP injections treating acute Achilles tendon rupture. METHODS A comprehensive electronic literature search was performed in the PubMed, Embase, Cochrane Library, and Web of Science databases to identify relevant studies that were published prior to April 29, 2021. Randomized controlled trials evaluating the efficacy of PRP injections in treating patients with acute Achilles tendon rupture were included. Statistical analyses were conducted using RevMan software. RESULTS Five randomized controlled trials were included in this systematic review. The results of the meta-analysis showed that PRP has positive effects on ankle dorsiflexion angle, dorsal extension strength of the ankle, and calf circumference compared with that in controls. However, the current evidence failed to show that PRP effectively improves ankle plantar flexion angle, plantar flexion strength of the ankle, and pain. CONCLUSIONS PRP injections for the treatment of acute Achilles tendon rupture significantly improved ankle dorsiflexion angle, dorsal extension strength of the ankle, and calf circumference compared with that in controls. Additional studies with larger sample sizes, more rigorous designs and standardized protocols are needed to draw more reliable and accurate conclusions.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hua Fan
- Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qingsan Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Muthu S, Patel S, Selvaraj P, Jeyaraman M. Comparative analysis of leucocyte poor vs leucocyte rich platelet-rich plasma in the management of lateral epicondylitis: Systematic review & meta-analysis of randomised controlled trials. J Clin Orthop Trauma 2021; 19:96-107. [PMID: 34046304 PMCID: PMC8144683 DOI: 10.1016/j.jcot.2021.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023] Open
Abstract
STUDY DESIGN Systematic Review & Meta-analysis. OBJECTIVES We aim to comparatively analyse the efficacy and safety of using leucocyte-poor platelet rich plasma (LP-PRP) against leucocyte-rich platelet rich plasma (LR-PRP) in the management of lateral epicondylitis. MATERIALS AND METHODS We conducted independent and duplicate electronic database searches including PubMed, Embase, Web of Science and Cochrane Library till September 2020 for randomised controlled trials analyzing the efficacy and safety of LP-PRP and LR-PRP in the management of lateral epicondylitis. Visual Analog Score(VAS) for pain, Disabilities of the Arm, Shoulder and Hand (DASH) Score, Patient Reported Tennis-Elbow Evaluation (PRETEE) Score, Mayo Elbow Performance Score(MEPS) and adverse events were the outcomes analyzed. Analysis was performed in R-platform using OpenMeta[Analyst] software. RESULTS We performed a single arm meta-analysis of 26 studies involving 2034 patients. On analysis it was noted that significant improvement was noted in the VAS for pain (p < 0.001), DASH score (p < 0.001), PRETEE score (p < 0.001) and MEPS (p < 0.027) compared to their pre-operative state. No significant increase in adverse events were noted compared to the control group (p = 0.170). While stratifying the results based on the type of PRP used, no significant difference was noted between the use of LP-PRP or LR-PRP in any of the above-mentioned outcome measures. CONCLUSION PRP is a safe and effective treatment option for lateral epicondylitis with clinical improvements in pain and functional scores and both types of PRP (LR-PRP & LP-PRP) offer similar results.
Collapse
Affiliation(s)
- Sathish Muthu
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
| | - Sandeep Patel
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Preethi Selvaraj
- Department of Community Medicine, SRM Medical College Hospital and Research Centre, SRM University Chennai, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
47
|
Olmos Calvo I, Kuten-Pella O, Kramer K, Madár Á, Takács S, Kardos D, Simon D, Erdö-Bonyár S, Berki T, De Luna A, Nehrer S, Lacza Z. Optimization of Lyophilized Hyperacute Serum (HAS) as a Regenerative Therapeutic in Osteoarthritis. Int J Mol Sci 2021; 22:7496. [PMID: 34299123 PMCID: PMC8305834 DOI: 10.3390/ijms22147496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperacute serum (HAS) is a blood derivative product that promotes the proliferation of various cell types and controls inflammation in vitro. The aim of this study is to investigate the regenerative potential of different formulations of HAS, including lyophilized and hyaluronic acid combined versions, to obtain a stable and standardized therapeutic in osteoarthritis (OA), which may be able to overcome the variability limitations of platelet-rich plasma (PRP). Primary human osteoarthritic chondrocytes were used for testing cellular viability and gene expression of OA-related genes. Moreover, a co-culture of human explants of cartilage, bone and synovium under inflammatory conditions was used for investigating the inflammatory control capacities of the different therapeutics. In this study, one formulation of lyophilized HAS achieved the high cell viability rates of liquid HAS and PRP. Gene expression analysis showed that HAS induced higher Col1a1 expression than PRP. Cytokine quantification from supernatant fluids revealed that HAS treatment of inflamed co-cultures significantly reduced levels of IL-5, IL-15, IL-2, TNFα, IL-7 and IL-12. To conclude, lyophilized HAS is a stable and standardized therapeutic with high potential in joint regeneration.
Collapse
Affiliation(s)
- Isabel Olmos Calvo
- OrthoSera GmbH, Dr. Karl-Dorrek-Straße 23–29, 3500 Krems an der Donau, Austria; (O.K.-P.); (Á.M.); (S.T.)
| | - Olga Kuten-Pella
- OrthoSera GmbH, Dr. Karl-Dorrek-Straße 23–29, 3500 Krems an der Donau, Austria; (O.K.-P.); (Á.M.); (S.T.)
| | - Karina Kramer
- Center for Regenerative Medicine, Danube University of Krems, 3500 Krems an der Donau, Austria; (K.K.); (A.D.L.); (S.N.)
| | - Ágnes Madár
- OrthoSera GmbH, Dr. Karl-Dorrek-Straße 23–29, 3500 Krems an der Donau, Austria; (O.K.-P.); (Á.M.); (S.T.)
| | - Szilvia Takács
- OrthoSera GmbH, Dr. Karl-Dorrek-Straße 23–29, 3500 Krems an der Donau, Austria; (O.K.-P.); (Á.M.); (S.T.)
| | - Dorottya Kardos
- Research Center for Natural Sciences, 1117 Budapest, Hungary;
| | - Diána Simon
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.); (S.E.-B.); (T.B.)
| | - Szabina Erdö-Bonyár
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.); (S.E.-B.); (T.B.)
| | - Timea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.); (S.E.-B.); (T.B.)
| | - Andrea De Luna
- Center for Regenerative Medicine, Danube University of Krems, 3500 Krems an der Donau, Austria; (K.K.); (A.D.L.); (S.N.)
| | - Stefan Nehrer
- Center for Regenerative Medicine, Danube University of Krems, 3500 Krems an der Donau, Austria; (K.K.); (A.D.L.); (S.N.)
| | - Zsombor Lacza
- Department of Sport Physiology, University of Physical Education, 1123 Budapest, Hungary;
- Institute of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
48
|
Regenerative Potential of Blood-Derived Products in 3D Osteoarthritic Chondrocyte Culture System. Curr Issues Mol Biol 2021; 43:665-675. [PMID: 34287259 PMCID: PMC8929075 DOI: 10.3390/cimb43020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Intra-articular injection of different types of blood-derived products is gaining popularity and clinical importance in the treatment of degenerative cartilage disorders such as osteoarthritis. The regenerative potential of two types of platelet-rich plasma (PRP), prepared in the presence of EDTA (EPRP) and citrate (CPRP) and an alternative blood product-hyperacute serum (hypACT) was evaluated using a 3D osteoarthritic chondrocyte pellet model by assessing the metabolic cell activity, cartilage-related gene expression and extracellular matrix deposition within the pellets. Chondrocyte viability was determined by XTT assay and it revealed no significant difference in metabolic activity of OA chondrocyte pellets after supplementation with different blood products. Nevertheless, the selection of blood products influenced the cartilage-related genes expression, ECM morphology and the tissue quality of pellets. Both PRP types had a different biological effect depending upon concentration and even though CPRP is widely used in clinics our assessment did not reveal good results in gene expression either tissue quality. HypACT supplementation resulted in superior cartilage-related genes expression together with tissue quality and seemed to be the most stable product since no remarkable changes were observed between the two different concentrations. All in all, for successful regenerative therapy, possible molecular mechanisms induced by blood-derived products should be always carefully investigated and adapted to the specific medical indications.
Collapse
|
49
|
Muthuprabakaran K, Pai VV, Ahmad S, Shukla P. A cross-sectional analysis of the effects of various centrifugation speeds and inclusion of the buffy coat in platelet-rich plasma preparation. Indian J Dermatol Venereol Leprol 2021; 87:792-799. [PMID: 34245527 DOI: 10.25259/ijdvl_1050_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Platelet-rich plasma is an autologous blood preparation which is used in various medical specialties because of its regenerative properties. There is a wide variation in platelet-rich plasma preparation protocols and attaining the ideal platelet yield (>1 million platelets/μL) in a clinic setting can be challenging. We aimed at analyzing the centrifuge spin rates at which to attain an ideal platelet-rich plasma yield and also to study the effect of inclusion of the buffy coat after the first spin on the final platelet concentration in platelet-rich plasma. METHODS Seventy-five whole blood samples were obtained and divided into two groups - (1) leukocyte-rich platelet-rich plasma group and (2) leukocyte-poor platelet-rich plasma group. Samples in both groups were centrifuged using the dual spin method, at one of three centrifugation speed combinations (initial "soft" spin and second "hard" spin speeds, respectively): (1) 100 g/400 g, (2) 350 g/1350 g and (3) 900 g/1800 g. Platelet, red blood cell (RBC) and white blood cell (WBC) counts in both groups were compared. RESULTS The 100 g/400 g spin gave a high platelet yield (increase of 395.4 ± 111.1%) in the leukocyte-poor-platelet-rich plasma group, while in the leukocyte-rich platelet-rich plasma group both 100 g/400 g and 350 g/1350 g spins resulted in significantly higher yields with an increase of 691.5 ± 316.3% and 738.6 ± 193.3%, respectively. LIMITATIONS The study was limited by a smaller sample size in the pure platelet-rich plasma (leukocyte-poor platelet-rich plasma) group. CONCLUSION Ideal platelet yields can be achieved with both the 100 g/400 g as well as the 350 g/1350 g spins using the buffy coat inclusion method while the 100 g/400 g spin for "pure" platelet-rich plasma accomplishes a near-ideal platelet count with significantly reduced contamination with other cells.
Collapse
Affiliation(s)
- K Muthuprabakaran
- Department of Dermatology, Goa Medical College, Bambolim, Goa, India
| | | | - Suhail Ahmad
- Department of Dermatology, Goa Medical College, Bambolim, Goa, India
| | - Pankaj Shukla
- Department of Dermatology, Goa Medical College, Bambolim, Goa, India
| |
Collapse
|
50
|
Zhang C, Wu J, Li X, Wang Z, Lu WW, Wong TM. Current Biological Strategies to Enhance Surgical Treatment for Rotator Cuff Repair. Front Bioeng Biotechnol 2021; 9:657584. [PMID: 34178957 PMCID: PMC8226184 DOI: 10.3389/fbioe.2021.657584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Rotator cuff tear is one of the most common shoulder problems encountered by orthopedic surgeons. Due to the slow healing process and high retear rate, rotator cuff tear has distressed millions of people all around the world every year, especially for the elderly and active athletes. This disease significantly impairs patients' motor ability and reduces their quality of life. Besides conservative treatment, open and arthroscopic surgery contributes a lot to accelerate the healing process of rotator cuff tear. Currently, there are many emerging novel treatment methods to promote rotator cuff repair. A variety of biological stimulus has been utilized in clinical practice. Among them, platelet-rich plasma, growth factors, stem cells, and exosomes are the most popular biologics in laboratory research and clinical trials. This review will focus on the biologics of bioaugmentation methods for rotator cuff repair and tendon healing, including platelet-rich plasma, growth factors, exosomes and stem cells, etc. Relevant studies are summarized in this review and future research perspectives are introduced.
Collapse
Affiliation(s)
- Cheng Zhang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiang Li
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zejin Wang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Weijia William Lu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology (CAS), Shenzhen, China
| | - Tak-Man Wong
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|