1
|
Chen X, Xia Y, Min M, Qin L, Liu Y. Optimal dose of bone marrow mesenchymal stem cell transplantation for experimental ulcerative colitis. Regen Ther 2025; 29:177-183. [PMID: 40225050 PMCID: PMC11986536 DOI: 10.1016/j.reth.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 04/15/2025] Open
Abstract
Objective To investigate the optimal dose of bone marrow mesenchymal stem cell-transplantation for the ulcerative colitis rat. Methods The BMSC of SD rat were isolated, cultured and labelled with DAPI. SD rats were randomly distributed into 3 groups, Colitis was induced with immune-combined TNBS/ethanol in group A、B、C, 3 groups received caudal vein injection of 1 mL fluids, which contain cell number 1 × 106、5 × 106、1 × 107 separately. 5 rats in each group were sacrificed at day 7 and 14 after injection, Cryostat sections of gut, The number of BMSCs in colon and normal tissue surrounded was observed with fluorescent microscope. Results The DAPI marked BMSCs could been seen in the colic mucosa in each group on day 7、14, more cells in colon than the surrounding normal tissue, compared with 1 × 106 group, More cells in 5 × 106 group (P < 0.05), there were no significant difference (P > 0.05) between 5 × 106 group and 1 × 107 group. There were more cells in colon on 14 day than 7 day, and less in the surrounding normal tissue on 14 day than 7 day. Conclusions The density 5 × 106 is proper of bone mesenchymal stem cells for treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Pathology, Wuhan No.1 Hospital, Wuhan, 430030, China
| | - Yan Xia
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Min Min
- School of Clinical Medicine, School of Medicine, Hubei University of Science and Technology, Xianning, 437100, China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yangsheng Liu
- Department of Neurology, Xianning First People's Hospital, Zhongnan Hospital of Wuhan University, Xianning Hospital, Xianning, 437100, China
| |
Collapse
|
2
|
Xie Q, Gong S, Cao J, Li A, Kulyar MF, Wang B, Li J. Mesenchymal stem cells: a novel therapeutic approach for feline inflammatory bowel disease. Stem Cell Res Ther 2024; 15:409. [PMID: 39522034 PMCID: PMC11550560 DOI: 10.1186/s13287-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) poses a significant and growing global health challenge, affecting both humans and domestic cats. Research on feline IBD has not kept pace with its widespread prevalence in human populations. This study aimed to develop a model of feline IBD by incorporating dextran sulfate sodium (DSS) to evaluate the therapeutic potential of MSCs and to elucidate the mechanisms that enhance their action. METHODS We conducted a comprehensive clinical assessment, including magnetic resonance imaging (MRI), endoscopy, and histopathological examination. Additionally, alterations in intestinal microbiota were characterized by 16 S rDNA sequencing, and the influence of MSCs on IBD-related gene expression was investigated through transcriptome analysis. RESULTS According to our findings, MSC treatment significantly mitigated DSS-induced clinical manifestations, reduced inflammatory cell infiltration, decreased the production of inflammatory mediators, and promoted mucosal repair. Regarding the intestinal microbiota, MSC intervention effectively corrected the DSS-induced dysbiosis, increasing the presence of beneficial bacteria and suppressing the proliferation of harmful bacteria. Transcriptome analysis revealed the ability of MSCs to modulate various inflammatory and immune-related signaling pathways, including cytokine-cytokine receptor interactions, TLR signaling pathways, and NF-κB pathways. CONCLUSION The collective findings indicate that MSCs exert multifaceted therapeutic effects on IBD, including the regulation of intestinal microbiota balance, suppression of inflammatory responses, enhancement of intestinal barrier repair, and modulation of immune responses. These insights provide a solid scientific foundation for employing MSCs as an innovative therapeutic strategy for IBD and pave the way for future clinical explorations.
Collapse
Affiliation(s)
- Qiyun Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jintao Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P.R. China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bingyun Wang
- School of Life Science and Engineering, Foshan University, Foshan, P.R. China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| |
Collapse
|
3
|
Stavely R, Robinson AM, Fraser S, Filippone RT, Stojanovska V, Eri R, Apostolopoulos V, Sakkal S, Nurgali K. Bone marrow-derived mesenchymal stem cells mitigate chronic colitis and enteric neuropathy via anti-inflammatory and anti-oxidative mechanisms. Sci Rep 2024; 14:6649. [PMID: 38503815 PMCID: PMC10951223 DOI: 10.1038/s41598-024-57070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Current treatments for inflammatory bowel disease (IBD) are often inadequate due to limited efficacy and toxicity, leading to surgical resection in refractory cases. IBD's broad and complex pathogenesis involving the immune system, enteric nervous system, microbiome, and oxidative stress requires more effective therapeutic strategies. In this study, we investigated the therapeutic potential of bone marrow-derived mesenchymal stem cell (BM-MSC) treatments in spontaneous chronic colitis using the Winnie mouse model which closely replicates the presentation and inflammatory profile of ulcerative colitis. The 14-day BM-MSC treatment regimen reduced the severity of colitis, leading to the attenuation of diarrheal symptoms and recovery in body mass. Morphological and histological abnormalities in the colon were also alleviated. Transcriptomic analysis demonstrated that BM-MSC treatment led to alterations in gene expression profiles primarily downregulating genes related to inflammation, including pro-inflammatory cytokines, chemokines and other biomarkers of inflammation. Further evaluation of immune cell populations using immunohistochemistry revealed a reduction in leukocyte infiltration upon BM-MSC treatment. Notably, enteric neuronal gene signatures were the most impacted by BM-MSC treatment, which correlated with the restoration of neuronal density in the myenteric ganglia. Moreover, BM-MSCs exhibited neuroprotective effects against oxidative stress-induced neuronal loss through antioxidant mechanisms, including the reduction of mitochondrial-derived superoxide and attenuation of oxidative stress-induced HMGB1 translocation, potentially relying on MSC-derived SOD1. These findings suggest that BM-MSCs hold promise as a therapeutic intervention to mitigate chronic colitis by exerting anti-inflammatory effects and protecting the enteric nervous system from oxidative stress-induced damage.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ainsley M Robinson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | | | - Vanesa Stojanovska
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Rajaraman Eri
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
- Enteric Neuropathy Lab, Western Centre for Health, Research and Education, St Albans, VIC, 3021, Australia.
| |
Collapse
|
4
|
Stavely R, Ott LC, Rashidi N, Sakkal S, Nurgali K. The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders. Biomolecules 2023; 13:1586. [PMID: 38002268 PMCID: PMC10669114 DOI: 10.3390/biom13111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is increasingly recognized as a central player in a range of gastrointestinal (GI) disorders, as well as complications stemming from therapeutic interventions. This article presents an overview of the mechanisms of oxidative stress in GI conditions and highlights a link between oxidative insult and disruption to the enteric nervous system (ENS), which controls GI functions. The dysfunction of the ENS is characteristic of a spectrum of disorders, including neurointestinal diseases and conditions such as inflammatory bowel disease (IBD), diabetic gastroparesis, and chemotherapy-induced GI side effects. Neurons in the ENS, while essential for normal gut function, appear particularly vulnerable to oxidative damage. Mechanistically, oxidative stress in enteric neurons can result from intrinsic nitrosative injury, mitochondrial dysfunction, or inflammation-related pathways. Although antioxidant-based therapies have shown limited efficacy, recognizing the multifaceted role of oxidative stress in GI diseases offers a promising avenue for future interventions. This comprehensive review summarizes the literature to date implicating oxidative stress as a critical player in the pathophysiology of GI disorders, with a focus on its role in ENS injury and dysfunction, and highlights opportunities for the development of targeted therapeutics for these diseases.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leah C. Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
| |
Collapse
|
5
|
Afzali MF, Pannone SC, Martinez RB, Campbell MA, Sanford JL, Pezzanite L, Kurihara J, Johnson V, Dow SW, Santangelo KS. Intravenous injection of adipose-derived mesenchymal stromal cells benefits gait and inflammation in a spontaneous osteoarthritis model. J Orthop Res 2023; 41:902-912. [PMID: 36030381 PMCID: PMC9968820 DOI: 10.1002/jor.25431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a leading cause of morbidity among aging populations, yet symptom and/or disease-modification remains elusive. Adipose-derived mesenchymal stromal cells (adMSCs) have demonstrated immunomodulatory and anti-inflammatory properties that may alleviate clinical signs and interrupt disease onset and progression. Indeed, multiple manuscripts have evaluated intra-articular administration of adMSCs as a therapeutic; however, comparatively few evaluations of systemic delivery methods have been published. Therefore, the aim of this study was to evaluate the short-term impact of intravenous (IV) delivery of allogeneic adMSCs in an established model of spontaneous OA, the Hartley guinea pig. Animals with moderate OA received once weekly injections of 2 × 106 adMSCs or vehicle control for 4 weeks in peripheral veins; harvest occurred 2 weeks after the final injection. Systemic administration of adMSCs resulted in no adverse effects and was efficacious in reducing clinical signs of OA (as assessed by computer-aided gait analysis) compared to control injected animals. Further, there were significant decreases in key inflammatory mediators (including monocyte chemoattractant protein-1, tumor necrosis factor, and prostaglandin E2 ) both systemically (liver, kidney, and serum) and locally in the knee (joint tissues and synovial fluid) in animals treated with IV adMSCs relative to controls (as per enzyme-linked immunosorbent assay and/or immunohistochemistry, dictated by tissue sample). Thus, systemic administration of adMSCs by IV injection significantly improved gait parameters and reduced both systemic and intra-articular inflammatory mediators in animals with OA. These findings demonstrate the potential utility of alternative delivery approaches for cellular therapy of OA, particularly for patients with multiple affected joints.
Collapse
Affiliation(s)
- Maryam F. Afzali
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| | - Stephen C. Pannone
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| | - Richard B. Martinez
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| | - Margaret A Campbell
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| | - Joseph L. Sanford
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| | - Lynn Pezzanite
- Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Jade Kurihara
- Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Valerie Johnson
- Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - Steven W. Dow
- Department of Clinical Sciences College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Kelly S. Santangelo
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO
| |
Collapse
|
6
|
Gemayel J, Chaker D, El Hachem G, Mhanna M, Salemeh R, Hanna C, Harb F, Ibrahim A, Chebly A, Khalil C. Mesenchymal stem cells-derived secretome and extracellular vesicles: perspective and challenges in cancer therapy and clinical applications. Clin Transl Oncol 2023:10.1007/s12094-023-03115-7. [PMID: 36808392 DOI: 10.1007/s12094-023-03115-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
Stem cell-based therapies have been foreshowed as a promising therapeutic approach for the treatment of several diseases. However, in the cancer context, results obtained from clinical studies were found to be quite limited. Deeply implicated in inflammatory cues, Mesenchymal, Neural, and Embryonic Stem Cells have mainly been used in clinical trials as a vehicle to deliver and stimulate signals in tumors niche. Although these stem cells have shown some therapeutical promises, they still face several challenges, including their isolation, immunosuppression potential, and tumorigenicity. In addition, regulatory and ethical concerns limit their use in several countries. Mesenchymal stem cells (MSC) have emerged as a gold standard adult stem cell medicine tool due to their distinctive characteristics, such as self-renewal and potency to differentiate into numerous cell types with lower ethical restrictions. Secreted extracellular vesicles (EVs), secretomes, and exosomes play a crucial role in mediating cell-to-cell communication to maintain physiological homeostasis and influence pathogenesis. Due to their low immunogenicity, biodegradability, low toxicity, and ability to transfer bioactive cargoes across biological barriers, EVs and exosomes were considered an alternative to stem cell therapy through their immunological features. MSCs-derived EVs, exosomes, and secretomes showed regenerative, anti-inflammatory, and immunomodulation properties while treating human diseases. In this review, we provide an overview of the paradigm of MSCs derived exosomes, secretome, and EVs cell-free-based therapies, we will focus on MSCs-derived components in anti-cancer treatment with decreased risk of immunogenicity and toxicity. Astute exploration of MSCs may lead to a new opportunity for efficient therapy for patients with cancer.
Collapse
Affiliation(s)
- Jack Gemayel
- Faculty of Health Sciences, Balamand University, Beirut, Lebanon
| | - Diana Chaker
- INSERM, National Institute of Health and Medical Research, Paris XI, Paris, France
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Georges El Hachem
- Balamand University, Faculty of Medicine, Beirut, Lebanon
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Melissa Mhanna
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Rawad Salemeh
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Colette Hanna
- Faculty of Medicine, Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Ahmad Ibrahim
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
- Balamand University, Faculty of Medicine, Beirut, Lebanon
| | - Alain Chebly
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut, Lebanon
| | - Charbel Khalil
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon.
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi, UAE.
- Stem Cell Institute, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
7
|
Stavely R, Sahakian L, Filippone RT, Stojanovska V, Bornstein JC, Sakkal S, Nurgali K. Oxidative Stress-Induced HMGB1 Translocation in Myenteric Neurons Contributes to Neuropathy in Colitis. Biomolecules 2022; 12:biom12121831. [PMID: 36551259 PMCID: PMC9776169 DOI: 10.3390/biom12121831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released by dying cells to stimulate the immune response. During cell death, HMGB1 is translocated from the nucleus to the cytoplasm and passively released. High levels of secreted HMGB1 are observed in the faeces of inflammatory bowel disease (IBD) patients, indicating its role in IBD pathophysiology and potential as a non-invasive IBD biomarker. HMGB1 is important in regulating neuronal damage in the central nervous system; its pathological activity is intertwined with oxidative stress and inflammation. In this study, HMGB1 expression in the enteric nervous system and its relevance to intestinal neuroinflammation is explored in organotypic cultures of the myenteric plexus exposed to oxidative stimuli and in Winnie mice with spontaneous chronic colitis. Oxidative stimuli induced cytoplasmic translocation of HMGB1 in myenteric neurons in organotypic preparations. HMGB1 translocation correlated with enteric neuronal loss and oxidative stress in the myenteric ganglia of Winnie mice. Inhibition of HMGB1 by glycyrrhizic acid ameliorated HMGB1 translocation and myenteric neuronal loss in Winnie mice. These data highlight modulation of HMGB1 signalling as a therapeutic strategy to reduce the consequences of enteric neuroinflammation in colitis, warranting the exploration of therapeutics acting on the HMGB1 pathway as an adjunct treatment with current anti-inflammatory agents.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
| | - Lauren Sahakian
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Rhiannon T. Filippone
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Vanesa Stojanovska
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Health Translation Precinct, Melbourne, VIC 3168, Australia
| | - Joel C. Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
8
|
Stavely R, Hotta R, Picard N, Rahman AA, Pan W, Bhave S, Omer M, Ho WLN, Guyer RA, Goldstein AM. Schwann cells in the subcutaneous adipose tissue have neurogenic potential and can be used for regenerative therapies. Sci Transl Med 2022; 14:eabl8753. [PMID: 35613280 PMCID: PMC9745588 DOI: 10.1126/scitranslmed.abl8753] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem cell therapies for nervous system disorders are hindered by a lack of accessible autologous sources of neural stem cells (NSCs). In this study, neural crest-derived Schwann cells are found to populate nerve fiber bundles (NFBs) residing in mouse and human subcutaneous adipose tissue (SAT). NFBs containing Schwann cells were harvested from mouse and human SAT and cultured in vitro. During in vitro culture, SAT-derived Schwann cells remodeled NFBs to form neurospheres and exhibited neurogenic differentiation potential. Transcriptional profiling determined that the acquisition of these NSC properties can be attributed to dedifferentiation processes in cultured Schwann cells. The emerging population of cells were termed SAT-NSCs because of their considerably distinct gene expression profile, cell markers, and differentiation potential compared to endogenous Schwann cells existing in vivo. SAT-NSCs successfully engrafted to the gastrointestinal tract of mice, migrated longitudinally and circumferentially within the muscularis, differentiated into neurons and glia, and exhibited neurochemical coding and calcium signaling properties consistent with an enteric neuronal phenotype. These cells rescued functional deficits associated with colonic aganglionosis and gastroparesis, indicating their therapeutic potential as a cell therapy for gastrointestinal dysmotility. SAT can be harvested easily and offers unprecedented accessibility for the derivation of autologous NSCs from adult tissues. Evidence from this study indicates that SAT-NSCs are not derived from mesenchymal stem cells and instead originate from Schwann cells within NFBs. Our data describe efficient isolation procedures for mouse and human SAT-NSCs and suggest that these cells have potential for therapeutic applications in gastrointestinal motility disorders.
Collapse
|
9
|
Robinson AM, Stavely R, Miller S, Eri R, Nurgali K. Mesenchymal stem cell treatment for enteric neuropathy in the Winnie mouse model of spontaneous chronic colitis. Cell Tissue Res 2022; 389:41-70. [PMID: 35536444 DOI: 10.1007/s00441-022-03633-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gut inflammation with periods of acute flares and remission. Beneficial effects of a single dose of mesenchymal stem cell (MSC)-based treatment have been demonstrated in acute models of colitis. No studies investigated therapeutic effects of MSCs for the attenuation of enteric neuropathy in a chronic model of colitis. The short and long-term effects of MSC treatment in modulating inflammation and damage to the enteric nervous system (ENS) were studied in the Winnie mouse model of spontaneous chronic colitis highly representative of human IBD. Winnie mice received a single dose of either 1 × 106 human bone marrow-derived MSCs or 100µL PBS by intracolonic enema. C57BL/6 mice received 100µL PBS. Colon tissues were collected at 3 and 60 days post MSC administration to evaluate the short-term and long-term effects of MSCs on inflammation and enteric neuropathy by histological and immunohistochemical analyses. In a separate set of experiments, multiple treatments with 4 × 106 and 2 × 106 MSCs were performed and tissue collected at 3 days post treatment. Chronic intestinal inflammation in Winnie mice was associated with persistent diarrhea, perianal bleeding, morphological changes, and immune cell infiltration in the colon. Significant changes to the ENS, including impairment of cholinergic, noradrenergic and sensory innervation, and myenteric neuronal loss were prominent in Winnie mice. Treatment with a single dose of bone marrow-derived MSCs was ineffective in attenuating chronic inflammation and enteric neuropathy in Winnie.
Collapse
Affiliation(s)
- Ainsley M Robinson
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah Miller
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rajaraman Eri
- University of Tasmania, School of Health Sciences, Launceston, TAS, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Al Saedi A, Sharma S, Bani Hassan E, Chen L, Ghasem-Zadeh A, Hassanzadeganroudsari M, Gooi JH, Stavely R, Eri R, Miao D, Nurgali K, Duque G. Characterization of Skeletal Phenotype and Associated Mechanisms With Chronic Intestinal Inflammation in the Winnie Mouse Model of Spontaneous Chronic Colitis. Inflamm Bowel Dis 2022; 28:259-272. [PMID: 34347076 DOI: 10.1093/ibd/izab174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Osteoporosis is a common extraintestinal manifestation of inflammatory bowel disease (IBD). However, studies have been scarce, mainly because of the lack of an appropriate animal model of colitis-associated bone loss. In this study, we aimed to decipher skeletal manifestations in the Winnie mouse model of spontaneous chronic colitis, which carries a MUC2 gene mutation and closely replicates ulcerative colitis. In our study, Winnie mice, prior to the colitis onset at 6 weeks old and progression at 14 and 24 weeks old, were compared with age-matched C57BL/6 controls. We studied several possible mechanisms involved in colitis-associated bone loss. METHODS We assessed for bone quality (eg, microcomputed tomography [micro-CT], static and dynamic histomorphometry, 3-point bending, and ex vivo bone marrow analysis) and associated mechanisms (eg, electrochemical recordings for gut-derived serotonin levels, real-time polymerase chain reaction [qRT-PCR], double immunofluorescence microscopy, intestinal inflammation levels by lipocalin-2 assay, serum levels of calcium, phosphorus, and vitamin D) from Winnie (6-24 weeks) and age-matched C57BL6 mice. RESULTS Deterioration in trabecular and cortical bone microarchitecture, reductions in bone formation, mineral apposition rate, bone volume/total volume, osteoid volume/bone surface, and bone strength were observed in Winnie mice compared with controls. Decreased osteoblast and increased osteoclast numbers were prominent in Winnie mice compared with controls. Upregulation of 5-HTR1B gene and increased association of FOXO1 with ATF4 complex were identified as associated mechanisms concomitant to overt inflammation and high levels of gut-derived serotonin in 14-week and 24-week Winnie mice. CONCLUSIONS Skeletal phenotype of the Winnie mouse model of spontaneous chronic colitis closely represents manifestations of IBD-associated osteoporosis/osteopenia. The onset and progression of intestinal inflammation are associated with increased gut-derived serotonin level, increased bone resorption, and decreased bone formation.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
| | - Shilpa Sharma
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
| | - Ebrahim Bani Hassan
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
| | - Lulu Chen
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ali Ghasem-Zadeh
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
- Departments of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Jonathan H Gooi
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajaraman Eri
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Dengshun Miao
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Kulmira Nurgali
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Gustavo Duque
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Qi LL, Fan ZY, Mao HG, Wang JB. The Therapeutic Efficacy of Adipose Tissue-Derived Mesenchymal Stem Cell Conditioned Medium on Experimental Colitis Was Improved by the Serum From Colitis Rats. Front Bioeng Biotechnol 2021; 9:694908. [PMID: 34604183 PMCID: PMC8484792 DOI: 10.3389/fbioe.2021.694908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
Adipose derived mesenchymal stem cells (AD-MSCs) have shown therapeutic potential in treatments of inflammatory bowel disease (IBD). Due to the harsh host environment and poor survival of the cells, controversy concerning the homing, proliferation and differentiation of MSCs in lesion tissue still remains. It has been reported that conditioned media from MSCs could improve the colitis, whereas the therapeutic efficiency could be significantly elevated by the stimulation of pro-cytokines. In this study, we pre-treated the adipose derived MSCs with the serum from colitis rats and then the activated conditioned media (CM-AcMSC) were collected. To compare the therapeutic effects of CM-MSC and CM-AcMSC on IBD, we constructed dextran sodium sulphate (DSS)-induced colitis rat models. The colitis was induced in rats by administrating 5% DSS in drinking water for 10 days, and the disease symptoms were recorded daily. The colon histopathological changes were observed by different staining methods (H&E and PAS). The expression levels of MUC2 and tight junctions (TJs) were determined by RT-qPCR. The levels of inflammatory cytokines were analyzed by ELISA and western blot analysis. Our findings suggested that CM-AcMSC was more effective in ameliorating the clinical features and histological damage scores. Treatment with CM-AcMSC significantly increased the expression of MUC2 and TJs and suppressed the production of pro-inflammatory cytokines in colonic tissues of colitis rats. The inhibitory effects of CM-AcMSC on inflammatory responses of colitis rats were mediated by NF-κB signaling pathway. These results suggested that pre-activation of MSCs with serum from colitis rats could promote the production of paracrine factors and improve the therapeutic effects of conditioned medium on colitis rats.
Collapse
Affiliation(s)
- Li-Li Qi
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, China
| | - Zhe-Yu Fan
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, China
| | - Hai-Guang Mao
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, China
| | - Jin-Bo Wang
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, China
| |
Collapse
|
12
|
Stavely R, Abalo R, Nurgali K. Targeting Enteric Neurons and Plexitis for the Management of Inflammatory Bowel Disease. Curr Drug Targets 2021; 21:1428-1439. [PMID: 32416686 DOI: 10.2174/1389450121666200516173242] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are pathological conditions with an unknown aetiology that are characterised by severe inflammation of the intestinal tract and collectively referred to as inflammatory bowel disease (IBD). Current treatments are mostly ineffective due to their limited efficacy or toxicity, necessitating surgical resection of the affected bowel. The management of IBD is hindered by a lack of prognostic markers for clinical inflammatory relapse. Intestinal inflammation associates with the infiltration of immune cells (leukocytes) into, or surrounding the neuronal ganglia of the enteric nervous system (ENS) termed plexitis or ganglionitis. Histological observation of plexitis in unaffected intestinal regions is emerging as a vital predictive marker for IBD relapses. Plexitis associates with alterations to the structure, cellular composition, molecular expression and electrophysiological function of enteric neurons. Moreover, plexitis often occurs before the onset of gross clinical inflammation, which may indicate that plexitis can contribute to the progression of intestinal inflammation. In this review, the bilateral relationships between the ENS and inflammation are discussed. These include the effects and mechanisms of inflammation-induced enteric neuronal loss and plasticity. Additionally, the role of enteric neurons in preventing antigenic/pathogenic insult and immunomodulation is explored. While all current treatments target the inflammatory pathology of IBD, interventions that protect the ENS may offer an alternative avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas
(CSIC), Madrid, Spain,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences,
The University of Melbourne, Melbourne, Victoria, Australia,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Stavely R, Bhave S, Ho WLN, Ahmed M, Pan W, Rahman AA, Ulloa J, Bousquet N, Omer M, Guyer R, Nagy N, Goldstein AM, Hotta R. Enteric mesenchymal cells support the growth of postnatal enteric neural stem cells. Stem Cells 2021; 39:1236-1252. [PMID: 33938072 DOI: 10.1002/stem.3388] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/08/2021] [Indexed: 01/11/2023]
Abstract
Interplay between embryonic enteric neural stem cells (ENSCs) and enteric mesenchymal cells (EMCs) in the embryonic gut is essential for normal development of the enteric nervous system. Disruption of these interactions underlies the pathogenesis of intestinal aganglionosis in Hirschsprung disease (HSCR). ENSC therapy has been proposed as a possible treatment for HSCR, but whether the survival and development of postnatal-derived ENSCs similarly rely on signals from the mesenchymal environment is unknown and has important implications for developing protocols to expand ENSCs for cell transplantation therapy. Enteric neural crest-derived cells (ENCDCs) and EMCs were cultured from the small intestine of Wnt1-Rosa26-tdTomato mice. EMCs promoted the expansion of ENCDCs 9.5-fold by inducing ENSC properties, including expression of Nes, Sox10, Sox2, and Ngfr. EMCs enhanced the neurosphere-forming ability of ENCDCs, and this persisted after withdrawal of the EMCs. These effects were mediated by paracrine factors and several ligands known to support neural stem cells were identified in EMCs. Using the optimized expansion procedures, neurospheres were generated from small intestine of the Ednrb-/- mouse model of HSCR. These ENSCs had similar proliferative and migratory capacity to Ednrb+/+ ENSCs, albeit neurospheres contained fewer neurons. ENSCs derived from Ednrb-/- mice generated functional neurons with similar calcium responses to Ednrb+/+ ENSCs and survived after transplantation into the aganglionic colon of Ednrb-/- recipients. EMCs act as supporting cells to ENSCs postnatally via an array of synergistically acting paracrine signaling factors. These properties can be leveraged to expand autologous ENSCs from patients with HSCR mutations for therapeutic application.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wing Lam N Ho
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Minhal Ahmed
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- College of Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, People's Republic of China
| | - Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica Ulloa
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole Bousquet
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meredith Omer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Stavely R, Nurgali K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl Med 2020; 9:985-1006. [PMID: 32497410 PMCID: PMC7445024 DOI: 10.1002/sctm.19-0446] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (multipotent stromal cells; MSCs) have been under investigation for the treatment of diverse diseases, with many promising outcomes achieved in animal models and clinical trials. The biological activity of MSC therapies has not been fully resolved which is critical to rationalizing their use and developing strategies to enhance treatment efficacy. Different paradigms have been constructed to explain their mechanism of action, including tissue regeneration, trophic/anti-inflammatory secretion, and immunomodulation. MSCs rarely engraft and differentiate into other cell types after in vivo administration. Furthermore, it is equivocal whether MSCs function via the secretion of many peptide/protein ligands as their therapeutic properties are observed across xenogeneic barriers, which is suggestive of mechanisms involving mediators conserved between species. Oxidative stress is concomitant with cellular injury, inflammation, and dysregulated metabolism which are involved in many pathologies. Growing evidence supports that MSCs exert antioxidant properties in a variety of animal models of disease, which may explain their cytoprotective and anti-inflammatory properties. In this review, evidence of the antioxidant effects of MSCs in in vivo and in vitro models is explored and potential mechanisms of these effects are discussed. These include direct scavenging of free radicals, promoting endogenous antioxidant defenses, immunomodulation via reactive oxygen species suppression, altering mitochondrial bioenergetics, and donating functional mitochondria to damaged cells. Modulation of the redox environment and oxidative stress by MSCs can mediate their anti-inflammatory and cytoprotective properties and may offer an explanation to the diversity in disease models treatable by MSCs and how these mechanisms may be conserved between species.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Yousefi‐Ahmadipour A, Rashidian A, Mirzaei MR, Farsinejad A, PourMohammadi‐Nejad F, Ghazi‐Khansari M, Ai J, Shirian S, Allahverdi A, Saremi J, Ebrahimi‐Barough S. Combination therapy of mesenchymal stromal cells and sulfasalazine attenuates trinitrobenzene sulfonic acid induced colitis in the rat: The S1P pathway. J Cell Physiol 2018; 234:11078-11091. [DOI: 10.1002/jcp.27944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Aliakbar Yousefi‐Ahmadipour
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Amir Rashidian
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Reza Mirzaei
- Department of Clinical Biochemistry Faculty of Medicine Rafsanjan University of Medical Sciences Rafsanjan Iran
| | - Alireza Farsinejad
- Department of Hematology and Laboratory Sciences Faculty of Allied Medicine, Kerman University of Medical Sciences Kerman Iran
| | - Fatemeh PourMohammadi‐Nejad
- Department of Periodontics School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan Kerman Iran
| | - Mahmoud Ghazi‐Khansari
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Sadegh Shirian
- Department of Pathology School of Veterinary Medicine, Shahrekord University Shahrekord Iran
| | - Amir Allahverdi
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Jamileh Saremi
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Somayeh Ebrahimi‐Barough
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
16
|
Stavely R, Fraser S, Sharma S, Rahman AA, Stojanovska V, Sakkal S, Apostolopoulos V, Bertrand P, Nurgali K. The Onset and Progression of Chronic Colitis Parallels Increased Mucosal Serotonin Release via Enterochromaffin Cell Hyperplasia and Downregulation of the Serotonin Reuptake Transporter. Inflamm Bowel Dis 2018; 24:1021-1034. [PMID: 29668991 DOI: 10.1093/ibd/izy016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) has been linked with several inflammation-associated intestinal diseases, including ulcerative colitis (UC). The largest pool of 5-HT in the body is in enterochromaffin (EC) cells located throughout the intestinal tract. EC cells are mechanosensitive and detect noxious stimuli, inducing secretion of 5-HT, which plays an important role in enteric reflexes and immunomodulation. In this study, we evaluated intestinal 5-HT levels in the Winnie mouse model of spontaneous chronic colitis, which closely replicates UC. METHODS Real-time electrochemical recordings of 5-HT oxidation currents were obtained from ex vivo preparations of jejunum, ileum, proximal, and distal colon from Winnie (5-25 weeks old) and age matched C57BL/6 mice. EC cells were examined by immunohistochemistry, and the gene expression of tryptophan hydroxylase 1 (5-HT synthesis) and the serotonin reuptake transporter (SERT) were determined by quantitative Real-Time Polymerase Chain Reaction (RT-qPCR). RESULTS Compression-evoked and basal 5-HT concentrations were elevated in the distal and proximal colon of Winnie mice. EC cell hyperplasia and downregulation of SERT on the transcriptional level were identified as mechanisms underlying increased levels of 5-HT. Increase in mucosal 5-HT release was observed at the onset of disease at 7-14 weeks, confirmed by disease activity scores. Furthermore, increases in 5-HT levels and progression of disease activity correlated linearly with age, but not sex. CONCLUSIONS Our findings in the Winnie mouse model of spontaneous chronic colitis demonstrate for the first time that the onset and progression of chronic UC-like intestinal inflammation is associated with increased 5-HT levels in the colonic mucosa.
Collapse
Affiliation(s)
- Rhian Stavely
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| | - Sarah Fraser
- Centre for Chronic Disease; College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Shilpa Sharma
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Hudson Institute of Medical Research; Monash Health Translation Precinct, Melbourne, Victoria, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease; College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Paul Bertrand
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| |
Collapse
|
17
|
Robinson AM, Rahman AA, Miller S, Stavely R, Sakkal S, Nurgali K. The neuroprotective effects of human bone marrow mesenchymal stem cells are dose-dependent in TNBS colitis. Stem Cell Res Ther 2017; 8:87. [PMID: 28420434 PMCID: PMC5395912 DOI: 10.1186/s13287-017-0540-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 02/08/2023] Open
Abstract
Background The incidence of inflammatory bowel diseases (IBD) is increasing worldwide with patients experiencing severe impacts on their quality of life. It is well accepted that intestinal inflammation associates with extensive damage to the enteric nervous system (ENS), which intrinsically innervates the gastrointestinal tract and regulates all gut functions. Hence, treatments targeting the enteric neurons are plausible for alleviating IBD and associated complications. Mesenchymal stem cells (MSCs) are gaining wide recognition as a potential therapy for many diseases due to their immunomodulatory and neuroprotective qualities. However, there is a large discrepancy regarding appropriate cell doses used in both clinical trials and experimental models of disease. We have previously demonstrated that human bone marrow MSCs exhibit neuroprotective and anti-inflammatory effects in a guinea-pig model of 2,4,6-trinitrobenzene-sulfonate (TNBS)-induced colitis; but an investigation into whether this response is dose-dependent has not been conducted. Methods Hartley guinea-pigs were administered TNBS or sham treatment intra-rectally. Animals in the MSC treatment groups received either 1 × 105, 1 × 106 or 3 × 106 MSCs by enema 3 hours after induction of colitis. Colon tissues were collected 72 hours after TNBS administration to assess the effects of MSC treatments on the level of inflammation and damage to the ENS by immunohistochemical and histological analyses. Results MSCs administered at a low dose, 1 × 105 cells, had little or no effect on the level of immune cell infiltrate and damage to the colonic innervation was similar to the TNBS group. Treatment with 1 × 106 MSCs decreased the quantity of immune infiltrate and damage to nerve processes in the colonic wall, prevented myenteric neuronal loss and changes in neuronal subpopulations. Treatment with 3 × 106 MSCs had similar effects to 1 × 106 MSC treatments. Conclusions The neuroprotective effect of MSCs in TNBS colitis is dose-dependent. Increasing doses higher than 1 × 106 MSCs demonstrates no further therapeutic benefit than 1 × 106 MSCs in preventing enteric neuropathy associated with intestinal inflammation. Furthermore, we have established an optimal dose of MSCs for future studies investigating intestinal inflammation, the enteric neurons and stem cell therapy in this model.
Collapse
Affiliation(s)
- Ainsley M Robinson
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Sarah Miller
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Rhian Stavely
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Dothel G, Raschi E, Rimondini R, De Ponti F. Mesenchymal stromal cell-based therapy: Regulatory and translational aspects in gastroenterology. World J Gastroenterol 2016; 22:9057-9068. [PMID: 27895395 PMCID: PMC5107589 DOI: 10.3748/wjg.v22.i41.9057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
The past decade has witnessed an outstanding scientific production focused towards the possible clinical applications of mesenchymal stromal cells (MSCs) in autoimmune and chronic inflammatory diseases. This raised the need of novel standards to adequately address quality, efficacy and safety issues of this advanced therapy. The development of a streamlined regulation is currently hampered by the complexity of analyzing dynamic biological entities rather than chemicals. Although numerous pieces of evidence show efficacy in reducing intestinal inflammation, some inconsistencies between the mechanisms of action of rodent vs human MSCs suggest caution before assigning translational value to preclinical studies. Preliminary evidence from clinical trials showed efficacy of MSCs in the treatment of fistulizing Crohn's disease (CD), and preparations of heterologous MSCs for CD treatment are currently tested in ongoing clinical trials. However, safety issues, especially in long-term treatment, still require solid clinical data. In this regard, standardized guidelines for appropriate dosing and methods of infusion could enhance the likelihood to predict more accurately the number of responders and the duration of remission periods. In addition, elucidating MSC mechanisms of action could lead to novel and more reliable formulations such as those derived from the MSCs themselves (e.g., supernatants).
Collapse
|