1
|
Xie P, Takeuchi T, Cheung S, Rosenwaks Z, Palermo GD. Male gamete copies to characterize genome inheritance and generate progenies. Sci Rep 2025; 15:15600. [PMID: 40320458 PMCID: PMC12050308 DOI: 10.1038/s41598-025-99188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Male factor infertility accounts for approximately 30% of infertility cases. When spermatozoa are extremely scarce, replicating the male gamete to fertilize a large cohort of oocytes is ideal. Additionally, patients with inherited disorders currently rely on pre-implantation genetic testing (PGT) to select healthy embryos, which raises ethical concerns owing to the generation of multiple embryos to select one healthy conceptus. Therefore, it would be beneficial to decode the genetics of a single sperm cell before conceptus generation. In this study, we demonstrated the feasibility of replicating the sperm genome via androgenesis and selecting the desired gamete before fertilization to preserve a specific paternal genotype, as confirmed by phenotypic observations and genetic testing in a murine model. We achieved satisfactory pre-implantation development rates with replicated male gametes and generated healthy offspring. Specifically, using 8-cell stage androgenetic embryos, a single spermatozoon can yield up to three conceptuses carrying an identical paternal haplotype.
Collapse
Affiliation(s)
- Philip Xie
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, Y72010021, USA
| | - Takumi Takeuchi
- Reproduction Clinic Tokyo, Shiodome City Center 3F, 1-5-2 Higashi-shimbashi, Minato-ku, Tokyo, Japan
| | - Stephanie Cheung
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, Y72010021, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, Y72010021, USA
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, Y72010021, USA.
| |
Collapse
|
2
|
Wang HS, Ma XR, Guo YH. Development and application of haploid embryonic stem cells. Stem Cell Res Ther 2024; 15:116. [PMID: 38654389 PMCID: PMC11040874 DOI: 10.1186/s13287-024-03727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Haploid cells are a kind of cells with only one set of chromosomes. Compared with traditional diploid cells, haploid cells have unique advantages in gene screening and drug-targeted therapy, due to their phenotype being equal to the genotype. Embryonic stem cells are a kind of cells with strong differentiation potential that can differentiate into various types of cells under specific conditions in vitro. Therefore, haploid embryonic stem cells have the characteristics of both haploid cells and embryonic stem cells, which makes them have significant advantages in many aspects, such as reproductive developmental mechanism research, genetic screening, and drug-targeted therapy. Consequently, establishing haploid embryonic stem cell lines is of great significance. This paper reviews the progress of haploid embryonic stem cell research and briefly discusses the applications of haploid embryonic stem cells.
Collapse
Affiliation(s)
- Hai-Song Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| | - Xin-Rui Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China
| | - Yi-Hong Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| |
Collapse
|
3
|
McKenna JK, Wu Y, Sonkusre P, Chari R, Lebensohn AM. The ubiquitin ligase HUWE1 enhances WNT signaling by antagonizing destruction complex-mediated β-catenin degradation and through a mechanism independent of β-catenin stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578552. [PMID: 38410441 PMCID: PMC10896346 DOI: 10.1101/2024.02.02.578552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
WNT/β-catenin signaling is mediated by the transcriptional coactivator β-catenin (CTNNB1). CTNNB1 abundance is regulated by phosphorylation and proteasomal degradation promoted by a destruction complex composed of the scaffold proteins APC and AXIN1 or AXIN2, and the kinases CSNK1A1 and GSK3A or GSK3B. Loss of CSNK1A1 increases CTNNB1 abundance, resulting in hyperactive WNT signaling. Previously, we demonstrated that the HECT domain ubiquitin ligase HUWE1 is necessary for hyperactive WNT signaling in HAP1 haploid human cells lacking CSNK1A1. Here, we investigate the mechanism underlying this requirement. In the absence of CSNK1A1, GSK3A/GSK3B still phosphorylated a fraction of CTNNB1, promoting its degradation. HUWE1 loss enhanced GSK3A/GSK3B-dependent CTNNB1 phosphorylation, further reducing CTNNB1 abundance. However, the reduction in CTNNB1 caused by HUWE1 loss was disproportionately smaller than the reduction in WNT target gene transcription. To test if the reduction in WNT signaling resulted from reduced CTNNB1 abundance alone, we engineered the endogenous CTNNB1 locus in HAP1 cells to encode a CTNNB1 variant insensitive to destruction complex-mediated phosphorylation and degradation. HUWE1 loss in these cells reduced WNT signaling with no change in CTNNB1 abundance. Genetic interaction and overexpression analyses revealed that the effects of HUWE1 on WNT signaling were not only mediated by GSK3A/GSK3B, but also by APC and AXIN1. Regulation of WNT signaling by HUWE1 required its ubiquitin ligase activity. These results suggest that in cells lacking CSNK1A1, a destruction complex containing APC, AXIN1 and GSK3A/GSK3B downregulates WNT signaling by phosphorylating and targeting CTNNB1 for degradation. HUWE1 enhances WNT signaling by antagonizing this activity. Therefore, HUWE1 enhances WNT/CTNNB1 signaling through two mechanisms, one that regulates CTNNB1 abundance and another that is independent of CTNNB1 stability. Coordinated regulation of CTNNB1 abundance and an independent signaling step by HUWE1 would be an efficient way to control WNT signaling output, enabling sensitive and robust activation of the pathway.
Collapse
Affiliation(s)
- Joseph K. McKenna
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yalan Wu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Praveen Sonkusre
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, Maryland, United States of America
| | - Andres M. Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Neurauter CG, Pannone M, Sousa MMLD, Wang W, Kuśnierczyk A, Luna L, Sætrom P, Scheffler K, Bjørås M. Enhanced glutathione levels confer resistance to apoptotic and ferroptotic programmed cell death in NEIL DNA glycosylase deficient HAP1 cells. Free Radic Biol Med 2024; 213:470-487. [PMID: 38301978 DOI: 10.1016/j.freeradbiomed.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
The NTHL1 and NEIL1-3 DNA glycosylases are major enzymes in the removal of oxidative DNA base lesions, via the base excision repair (BER) pathway. It is expected that lack of these DNA glycosylases activities would render cells vulnerable to oxidative stress, promoting cell death. Intriguingly, we found that single, double, triple, and quadruple DNA glycosylase knockout HAP1 cells are, however, more resistant to oxidative stress caused by genotoxic agents than wild type cells. Furthermore, glutathione depletion in NEIL deficient cells further enhances resistance to cell death induced via apoptosis and ferroptosis. Finally, we observed higher basal level of glutathione and differential expression of NRF2-regulated genes associated with glutathione homeostasis in the NEIL triple KO cells. We propose that lack of NEIL DNA glycosylases causes aberrant transcription and subsequent errors in protein synthesis. This leads to increased endoplasmic reticulum stress and proteotoxic stress. To counteract the elevated intracellular stress, an adaptive response mediated by increased glutathione basal levels, rises in these cells. This study reveals an unforeseen role of NEIL glycosylases in regulation of resistance to oxidative stress, suggesting that modulation of NEIL glycosylase activities is a potential approach to improve the efficacy of e.g. anti-inflammatory therapies.
Collapse
Affiliation(s)
- Christine Gran Neurauter
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway.
| | - Marco Pannone
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Mirta Mittelstedt Leal de Sousa
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Anna Kuśnierczyk
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway.
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Katja Scheffler
- Department of Neurology, St.Olavs University Hospital, Trondheim, 7006, Norway; Department of Neuromedicine and Movement Science (INB), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, 0424, Norway; Centre for Embryology and Healthy Development, University of Oslo, Oslo, 0373, Norway; Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| |
Collapse
|
5
|
Minow MAA, Marand AP, Schmitz RJ. Leveraging Single-Cell Populations to Uncover the Genetic Basis of Complex Traits. Annu Rev Genet 2023; 57:297-319. [PMID: 37562412 PMCID: PMC10775913 DOI: 10.1146/annurev-genet-022123-110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The ease and throughput of single-cell genomics have steadily improved, and its current trajectory suggests that surveying single-cell populations will become routine. We discuss the merger of quantitative genetics with single-cell genomics and emphasize how this synergizes with advantages intrinsic to plants. Single-cell population genomics provides increased detection resolution when mapping variants that control molecular traits, including gene expression or chromatin accessibility. Additionally, single-cell population genomics reveals the cell types in which variants act and, when combined with organism-level phenotype measurements, unveils which cellular contexts impact higher-order traits. Emerging technologies, notably multiomics, can facilitate the measurement of both genetic changes and genomic traits in single cells, enabling single-cell genetic experiments. The implementation of single-cell genetics will advance the investigation of the genetic architecture of complex molecular traits and provide new experimental paradigms to study eukaryotic genetics.
Collapse
Affiliation(s)
- Mark A A Minow
- Department of Genetics, University of Georgia, Athens, Georgia, USA;
| | | | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
6
|
Llargués-Sistac G, Bonjoch L, Castellvi-Bel S. HAP1, a new revolutionary cell model for gene editing using CRISPR-Cas9. Front Cell Dev Biol 2023; 11:1111488. [PMID: 36936678 PMCID: PMC10020200 DOI: 10.3389/fcell.2023.1111488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The use of next-generation sequencing (NGS) technologies has been instrumental in the characterization of the mutational landscape of complex human diseases like cancer. But despite the enormous rise in the identification of disease candidate genetic variants, their functionality is yet to be fully elucidated in order to have a clear implication in patient care. Haploid human cell models have become the tool of choice for functional gene studies, since they only contain one copy of the genome and can therefore show the unmasked phenotype of genetic variants. Over the past few years, the human near-haploid cell line HAP1 has widely been consolidated as one of the favorite cell line models for functional genetic studies. Its rapid turnover coupled with the fact that only one allele needs to be modified in order to express the subsequent desired phenotype has made this human cell line a valuable tool for gene editing by CRISPR-Cas9 technologies. This review examines the recent uses of the HAP1 cell line model in functional genetic studies and high-throughput genetic screens using the CRISPR-Cas9 system. It covers its use in an attempt to develop new and relevant disease models to further elucidate gene function, and create new ways to understand the genetic basis of human diseases. We will cover the advantages and potential of the use of CRISPR-Cas9 technology on HAP1 to easily and efficiently study the functional interpretation of gene function and human single-nucleotide genetic variants of unknown significance identified through NGS technologies, and its implications for changes in clinical practice and patient care.
Collapse
Affiliation(s)
- Gemma Llargués-Sistac
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Barcelona, Spain
| | | | - Sergi Castellvi-Bel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Barcelona, Spain
| |
Collapse
|
7
|
Xu M, Zhao Y, Zhang W, Geng M, Liu Q, Gao Q, Shuai L. Genome-scale screening in a rat haploid system identifies Thop1 as a modulator of pluripotency exit. Cell Prolif 2022; 55:e13209. [PMID: 35274380 PMCID: PMC9055895 DOI: 10.1111/cpr.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES The rats are crucial animal models for the basic medical researches. Rat embryonic stem cells (ESCs), which are widely studied, can self-renew and exhibit pluripotency in long-term culture, but the mechanism underlying how they exit pluripotency remains obscure. To investigate the key modulators on pluripotency exiting in rat ESCs, we perform genome-wide screening using a unique rat haploid system. MATERIALS AND METHODS Rat haploid ESCs (haESCs) enable advances in the discovery of unknown functional genes owing to their homozygous and pluripotent characteristics. REX1 is a sensitive marker for the naïve pluripotency that is often utilized to monitor pluripotency exit, thus rat haESCs carrying a Rex1-GFP reporter are used for genetic screening. Genome-wide mutations are introduced into the genomes of rat Rex1-GFP haESCs via piggyBac transposon, and differentiation-retarded mutants are obtained after random differentiation selection. The exact mutations are elucidated by high-throughput sequencing and bioinformatic analysis. The role of candidate mutation is validated in rat ESCs by knockout and overexpression experiments, and the phosphorylation of ERK1/2 (p-ERK1/2) is determined by western blotting. RESULTS High-throughput sequencing analysis reveals numerous insertions related to various pathways affecting random differentiation. Thereafter, deletion of Thop1 (one candidate gene in the screened list) arrests the differentiation of rat ESCs by inhibiting the p-ERK1/2, whereas overexpression of Thop1 promotes rat ESCs to exit from pluripotency. CONCLUSIONS Our findings provide an ideal tool to study functional genomics in rats: a homozygous haploid system carrying a pluripotency reporter that facilitates robust discovery of the mechanisms involved in the self-renewal or pluripotency of rat ESCs.
Collapse
Affiliation(s)
- Mei Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Health Center for Women and Children, Chongqing, China
| | - Mengyang Geng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Central Hospital of Gynecology Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Edwards MM, Zuccaro MV, Sagi I, Ding Q, Vershkov D, Benvenisty N, Egli D, Koren A. Delayed DNA replication in haploid human embryonic stem cells. Genome Res 2021; 31:2155-2169. [PMID: 34810218 PMCID: PMC8647822 DOI: 10.1101/gr.275953.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Haploid human embryonic stem cells (ESCs) provide a powerful genetic system but diploidize at high rates. We hypothesized that diploidization results from aberrant DNA replication. To test this, we profiled DNA replication timing in isogenic haploid and diploid ESCs. The greatest difference was the earlier replication of the X Chromosome in haploids, consistent with the lack of X-Chromosome inactivation. We also identified 21 autosomal regions that had delayed replication in haploids, extending beyond the normal S phase and into G2/M. Haploid-delays comprised a unique set of quiescent genomic regions that are also underreplicated in polyploid placental cells. The same delays were observed in female ESCs with two active X Chromosomes, suggesting that increased X-Chromosome dosage may cause delayed autosomal replication. We propose that incomplete replication at the onset of mitosis could prevent cell division and result in re-entry into the cell cycle and whole genome duplication.
Collapse
Affiliation(s)
- Matthew M Edwards
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Michael V Zuccaro
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, New York 10032, USA
- Columbia University Stem Cell Initiative, New York, New York 10032, USA
| | - Ido Sagi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Qiliang Ding
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Dan Vershkov
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, New York 10032, USA
- Columbia University Stem Cell Initiative, New York, New York 10032, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
9
|
NBS1 I171V variant underlies individual differences in chromosomal radiosensitivity within human populations. Sci Rep 2021; 11:19661. [PMID: 34608183 PMCID: PMC8490386 DOI: 10.1038/s41598-021-98673-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/13/2021] [Indexed: 02/02/2023] Open
Abstract
Genetic information is protected against a variety of genotoxins including ionizing radiation (IR) through the DNA double-strand break (DSB) repair machinery. Genome-wide association studies and clinical sequencing of cancer patients have suggested that a number of variants in the DNA DSB repair genes might underlie individual differences in chromosomal radiosensitivity within human populations. However, the number of established variants that directly affect radiosensitivity is still limited. In this study, we performed whole-exome sequencing of 29 Japanese ovarian cancer patients and detected the NBS1 I171V variant, which is estimated to exist at a rate of approximately 0.15% in healthy human populations, in one patient. To clarify whether this variant indeed contributes to chromosomal radiosensitivity, we generated NBS1 I171V variant homozygous knock-in HCT116 cells and mice using the CRISPR/Cas9 system. Radiation-induced micronucleus formation and chromosomal aberration frequency were significantly increased in both HCT116 cells and mouse embryonic fibroblasts (MEFs) with knock-in of the NBS1 I171V variant compared with the levels in wild-type cells. These results suggested that the NBS1 I171V variant might be a genetic factor underlying individual differences in chromosomal radiosensitivity.
Collapse
|
10
|
Bayarsaikhan D, Bayarsaikhan G, Lee B. Recent advances in stem cells and gene editing: Drug discovery and therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:231-269. [PMID: 34127195 DOI: 10.1016/bs.pmbts.2021.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recently introduced genome editing technology has had a remarkable impact on genetic medicine. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas nucleases are the three major platforms used for priming of stem cells or correction of mutated genes. Among these nucleases, CRISPR/Cas is the most easily applicable. Various CRISPR/Cas variants such as base editors, prime editors, mad7 nucleases, RESCUE, REPAIR, digenome sequencing, and SHERLOCK are being developed and considered as a promising tool for gene therapy and drug discovery. These advances in the CRISPR/Cas platform have enabled the correction of gene mutations from DNA to RNA level and validation of the safety of genome editing performance at a very precise level by allowing the detection of one base-pair mismatch. These promising alternatives of the CRISPR/Cas system can benefit millions of patients with intractable diseases. Although the therapeutic effects of stem cells have been confirmed in a wide range of disease models, their safety still remains an issue. Hence, scientists are concentrating on generating functionally improved stem cells by using programmable nucleases such as CRISPR. Therefore, in this chapter, we have summarized the applicable options of the CRISPR/Cas platforms by weighing their advantages and limitations in drug discovery and gene therapy.
Collapse
Affiliation(s)
- Delger Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea
| | - Govigerel Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea
| | - Bonghee Lee
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea.
| |
Collapse
|
11
|
Gao Q, Zhang W, Zhao Y, Tian Y, Wang Y, Zhang J, Geng M, Xu M, Yao C, Wang H, Li L, Liu Y, Shuai L. High-throughput screening in postimplantation haploid epiblast stem cells reveals Hs3st3b1 as a modulator for reprogramming. Stem Cells Transl Med 2021; 10:743-755. [PMID: 33511777 PMCID: PMC8046116 DOI: 10.1002/sctm.20-0468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/12/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Epiblast stem cells (EpiSCs) derived from postimplantation epiblast are pluripotent stem cells, epigenetically distinct from embryonic stem cells (ESCs), which are widely used in reprogramming studies. Recent achieved haploid cell lines in mammalian species open a new era for high-throughput genetic screening, due to their homozygous phenotypes. Here, we report the generation of mouse haploid EpiSCs (haEpiSCs) from postimplantation chimeric embryos at embryonic day 6.5 (E6.5). These cells maintain one set of chromosomes, express EpiSC-specific genes, and have potentials to differentiate into three germ layers. We also develop a massive mutagenesis protocol with haEpiSCs, and subsequently perform reprogramming selection using this genome-wide mutation library. Multiple modules related to various pathways are implicated. The validation experiments prove that knockout of Hst3st3b1 (one of the candidates) can promote reprogramming of EpiSCs to the ground state efficiently. Our results open the feasibility of utilizing haEpiSCs to elucidate fundamental biological processes including cell fate alternations.
Collapse
Affiliation(s)
- Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yaru Tian
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yuna Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Jinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Mengyang Geng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Mei Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Chunmeng Yao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Haoyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yan Liu
- Department of Obstetrics, Tianjin First Central Hospital, Nankai University, Tianjin, People's Republic of China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China.,Nankai Animal Resource Center, Nankai University, Tianjin, People's Republic of China.,Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, People's Republic of China
| |
Collapse
|
12
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
13
|
Beigl TB, Kjosås I, Seljeseth E, Glomnes N, Aksnes H. Efficient and crucial quality control of HAP1 cell ploidy status. Biol Open 2020; 9:9/11/bio057174. [PMID: 33184093 PMCID: PMC7673356 DOI: 10.1242/bio.057174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The near-haploid human cell line HAP1 recently became a popular subject for CRISPR/Cas9 editing, since only one allele requires modification. Through the gene-editing service at Horizon Discovery, there are at present more than 7500 edited cell lines available and the number continuously increases. The haploid nature of HAP1 is unstable as cultures become diploid with time. Here, we demonstrated some fundamental differences between haploid and diploid HAP1 cells, hence underlining the need for taking control over ploidy status in HAP1 cultures prior to phenotyping. Consequently, we optimized a procedure to determine the ploidy of HAP1 by flow cytometry in order to obtain diploid cultures and avoid ploidy status as an interfering variable in experiments. Furthermore, in order to facilitate this quality control, we validated a size-based cell sorting procedure to obtain the diploid culture more rapidly. Hence, we provide here two streamlined protocols for quality controlling the ploidy of HAP1 cells and document their validity and necessity. This article has an associated First Person interview with the co-first authors of the paper. Summary: Sharing an effective procedure to quality control the near-haploid HAP1 cells for standardized comparison to CRISPR/Cas9 modified versions and demonstrating the need for controlling the spontaneous diploidization of HAP1 cultures.
Collapse
Affiliation(s)
- Tobias B Beigl
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.,Institute of cell biology and immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Ine Kjosås
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Emilie Seljeseth
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.,Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
14
|
Zhang S, Yan L, Cui C, Wang Z, Wu J, Zhao M, Dong B, Guan X, Tian X, Hao C. Identification of TYMS as a promoting factor of retroperitoneal liposarcoma progression: Bioinformatics analysis and biological evidence. Oncol Rep 2020; 44:565-576. [PMID: 32627015 PMCID: PMC7336505 DOI: 10.3892/or.2020.7635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Retroperitoneal liposarcoma (RLPS) is one of the most common types of retroperitoneal sarcomas, and has a high recurrence rate. There is an urgent need to further explore its pathogenesis and develop more effective treatment strategies. The aim of the present study was to identify potential driver genes of RLPS through bioinformatics analysis and molecular biology to elucidate potential targets that are suitable for further analysis for the treatment of RLPS. Differentially expressed genes (DEGs) between liposarcoma and normal fatty (NF) tissues were identified based on microarray data through bioinformatics analysis, and thymidylate synthase (TYMS) was selected from the DEGs, based on high content screening (HCS). TYMS expression was evaluated in RLPS tumor tissues and cell lines. A total of 21 RLPS tissues and 10 NF frozen tissues were used for reverse transcription-quantitative PCR, and 47 RLPS formalin-fixed specimens were used for immunohistochemical analysis. The effect of TYMS downregulation on cell proliferation, apoptosis, cell cycle progression, and cell migration and invasion were evaluated using lentivirus-mediated short hairpin RNA. The underlying mechanisms of TYMS in RLPS were examined by protein microarray and verified by western blotting. A total of 855 DEGs were identified. TYMS knockdown had the most notable effect on the proliferative capacity of RLPS cells according to the HCS results. TYMS mRNA expression levels were higher in RLPS tissues compared with NF tissues (P<0.001). TYMS expression was higher in high-grade RLPS tissues compared with low-grade RLPS tissues (P=0.003). The patients with positive TYMS expression had a worse overall survival (OS) and disease-free survival (DFS) compared with the patients with negative TYMS expression (OS, P=0.024; DFS, P=0.030). The knockdown of TYMS reduced proliferation, promoted apoptosis, facilitated cell cycle progression from G1 to S phase, and reduced cell migration and invasion of RLPS cells. Protein microarray analysis and western blotting showed that the Janus Kinase/Signal transducers and activators of transcription pathway was downregulated following TYMS knockdown. In conclusion, TYMS expression is upregulated in RLPS tissues, and downregulation of TYMS reduces RLPS progression.
Collapse
Affiliation(s)
- Sha Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Can Cui
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Jianhui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
15
|
Zhang W, Tian Y, Gao Q, Li X, Li Y, Zhang J, Yao C, Wang Y, Wang H, Zhao Y, Zhang Q, Li L, Yu Y, Fan Y, Shuai L. Inhibition of Apoptosis Reduces Diploidization of Haploid Mouse Embryonic Stem Cells during Differentiation. Stem Cell Reports 2020; 15:185-197. [PMID: 32502463 PMCID: PMC7363743 DOI: 10.1016/j.stemcr.2020.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/19/2023] Open
Abstract
Phenotypes of haploid embryonic stem cells (haESCs) are dominant for recessive traits in mice. However, one major obstacle to their use is self-diploidization in daily culture. Although haESCs maintain haploidy well by deleting p53, whether they can sustain haploidy in differentiated status and the mechanism behind it remain unknown. To address this, we induced p53-deficient haESCs into multiple differentiated lineages maintain haploid status in vitro. Haploid cells also remained in chimeric embryos and teratomas arising from p53-null haESCs. Transcriptome analysis revealed that apoptosis genes were downregulated in p53-null haESCs compared with that in wild-type haESCs. Finally, we knocked out p73, another apoptosis-related gene, and observed stabilization of haploidy in haESCs. These results indicated that the main mechanism of diploidization was apoptosis-related gene-triggered cell death in haploid cell cultures. Thus, we can derive haploid somatic cells by manipulating the apoptosis gene, facilitating genetic screens of lineage-specific development. haEpiLCs and haNSCLCs differentiated from p53-null haESCs in vitro p53-null haESCs contributed to chimeric embryos and teratoma Downregulation of apoptosis genes resulted in haploidy stabilization Deletion of p73 was also of benefit for haploidy sustenance
Collapse
Affiliation(s)
- Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yaru Tian
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Reproductive Medical Center, Department of Gynecology and Obstetrics, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Xu Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yanni Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Chunmeng Yao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yuna Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Haoyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yang Yu
- Reproductive Medical Center, Department of Gynecology and Obstetrics, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China.
| |
Collapse
|
16
|
An open science rare diseases research initiative: the University of North Carolina Catalyst. FUTURE DRUG DISCOVERY 2019. [DOI: 10.4155/fdd-2019-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
17
|
Cui T, Li Z, Zhou Q, Li W. Current advances in haploid stem cells. Protein Cell 2019; 11:23-33. [PMID: 31004328 PMCID: PMC6949308 DOI: 10.1007/s13238-019-0625-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
Diploidy is the typical genomic mode in all mammals. Haploid stem cells are artificial cell lines experimentally derived in vitro in the form of different types of stem cells, which combine the characteristics of haploidy with a broad developmental potential and open the possibility to uncover biological mysteries at a genomic scale. To date, a multitude of haploid stem cell types from mouse, rat, monkey and humans have been derived, as more are in development. They have been applied in high-throughput genetic screens and mammalian assisted reproduction. Here, we review the generation, unique properties and broad applications of these remarkable cells.
Collapse
Affiliation(s)
- Tongtong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhikun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Panepucci RA, de Souza Lima IM. Arrayed functional genetic screenings in pluripotency reprogramming and differentiation. Stem Cell Res Ther 2019; 10:24. [PMID: 30635073 PMCID: PMC6330485 DOI: 10.1186/s13287-018-1124-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Thoroughly understanding the molecular mechanisms responsible for the biological properties of pluripotent stem cells, as well as for the processes involved in reprograming, differentiation, and transition between Naïve and Primed pluripotent states, is of great interest in basic and applied research. Although pluripotent cells have been extensively characterized in terms of their transcriptome and miRNome, a comprehensive understanding of how these gene products specifically impact their biology, depends on gain- or loss-of-function experimental approaches capable to systematically interrogate their function. We review all studies carried up to date that used arrayed screening approaches to explore the function of these genetic elements on those biological contexts, using focused or genome-wide genetic libraries. We further discuss the limitations and advantages of approaches based on assays with population-level primary readouts, derived from single-parameter plate readers, or cell-level primary readouts, obtained using multiparametric flow cytometry or quantitative fluorescence microscopy (i.e., high-content screening). Finally, we discuss technical limitation and future perspectives, highlighting how the integration of screening data may lead to major advances in the field of stem cell research and therapy.
Collapse
Affiliation(s)
- Rodrigo Alexandre Panepucci
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP CEP: 14051-140 Brazil
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP Brazil
| | - Ildercílio Mota de Souza Lima
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP CEP: 14051-140 Brazil
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP Brazil
| |
Collapse
|
19
|
Derivation of Haploid Trophoblast Stem Cells via Conversion In Vitro. iScience 2019; 11:508-518. [PMID: 30635215 PMCID: PMC6354440 DOI: 10.1016/j.isci.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/11/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022] Open
Abstract
Owing to their single genome, haploid cells are powerful to uncover unknown genes by performing genetic screening in mammals. However, no haploid cell line from an extraembryonic lineage has been achieved yet, which limits the application of haploid cells in placental genetic screening. Here, we show that overexpression of Cdx2 can convert haploid embryonic stem cells to trophoblast stem cells (TSCs). p53 deletion reduces diploidization during the conversion and guarantees the generation of haploid-induced TSCs (haiTSCs). haiTSCs not only share the same molecular characterization with trophoderm-derived TSCs but also possess multipotency to placental lineages in various procedures. In addition, haiTSCs can maintain haploidy in the long term, assisted by periodic sorting and with reliance on FGF4 and heparin. Finally, we perform piggyBac-mediated high-throughput mutation in haiTSCs and use them in trophoblast lineage genetic screening. Deep sequencing analysis and validation experiments prove that Htra1 is a blocker for spongiotrophoblast specification. A haploid cell line of extraembryonic lineages with self-renewal ability haiTSCs have multipotency to functional trophoblast lineages both in vitro and in vivo High-throughput screening of spongiotrophoblast specification-related genes in haiTSCs Htra1 is a blocker for spongiotrophoblast-specific differentiation
Collapse
|
20
|
Wang H, Zhang W, Yu J, Wu C, Gao Q, Li X, Li Y, Zhang J, Tian Y, Tan T, Ji W, Li L, Yu Y, Shuai L. Genetic screening and multipotency in rhesus monkey haploid neural progenitor cells. Development 2018; 145:dev.160531. [PMID: 29784672 DOI: 10.1242/dev.160531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
Haploid embryonic stem cells (haESCs) have been extensively applied in forward and reverse genetic screening. However, a mammalian haploid somatic cell line is difficult to achieve because of spontaneous diploidization in differentiation. As a non-human primate species, monkeys are widely used in basic and pre-clinical research in which haploid cells are restricted to ESCs. Here, we report that rhesus monkey haESCs in an optimized culture medium show naïve-state pluripotency and stable haploidy. This model facilitated the derivation of haploid neural progenitor cells (haNPCs), which maintained haploidy and differentiation potential into neurons and glia for a long period in vitro High-throughput trapping mutations can be efficiently introduced into haNPCs via piggyBac transposons. This system proves useful when identifying gene targets of neural toxicants via a proof-of-concept experiment. Using CRISPR/Cas9 editing, we confirmed that B4GALT6, from the candidate gene list, is a resistance gene of A803467 (a tetrodotoxin-like toxicant). This model is the first non-human primate haploid somatic cell line with proliferative ability, multipotency and an intact genome, thus providing a cellular resource for recessive genetic and potential drug screening.
Collapse
Affiliation(s)
- Haisong Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jian Yu
- Swiss Federal Institute of Technology Zurich, Department of Biology, Institute of Molecular Health Sciences, Chair of RNAi and Genome Integrity, Zurich 8093, Switzerland
| | - Congyu Wu
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China.,Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing 100191, China
| | - Xu Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yanni Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yaru Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yang Yu
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing 100191, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| |
Collapse
|