1
|
Van Campenhout R, Vinken M. Hepatic cell junctions: Pulling a double-duty. Liver Int 2024; 44:2873-2889. [PMID: 39115254 DOI: 10.1111/liv.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in the structural and functional organization of multicellular tissues, including in liver. Specifically, hepatic cell junctions mediate intercellular adhesion and communication between liver cells. The establishment of the hepatic cell junction network is a prerequisite for normal liver functioning. Hepatic cell junctions indeed support liver-specific features and control essential aspects of the hepatic life cycle. This review paper summarizes the role of cell junctions and their components in relation to liver physiology, thereby also discussing their involvement in hepatic dysfunctionality, including liver disease and toxicity.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Xu Y, Wang Y, Qi R, Li K, Wang X, Li X, Shi B. Role of connexin 32 in the directional differentiation of induced pluripotent stem cells into hepatocytes. Int J Med Sci 2024; 21:508-518. [PMID: 38250613 PMCID: PMC10797672 DOI: 10.7150/ijms.83973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore the role of connexin 32 (Cx32) in the directional differentiation of induced pluripotent stem cells (iPSCs) into hepatocytes. Urine-derived epithelial cells were collected from the fresh urine of a healthy donor and transducted with reprogramming plasmid mixture to generate iPSCs. The iPSCs were then directionally differentiated into hepatocytes. During the differentiation, the upregulated and downregulated groups were treated with vitamin K2 (VK2) and 2-aminoethoxyboronate diphenylester (2-APB) to increase and inhibit Cx32 expression, respectively. The control group was not treated with the regulatory factor. Expression of Cx32 and hepatocyte-specific markers, including AFP, hepatocyte nuclear factor 4α (HNF-4α), albumin (ALB) and cytokeratin 18 (CK18) were detected. It indicated that Cx32 expression was not observed in iPSCs, but gradually increased during the process of hepatic differentiation from iPSCs. Upregulation of Cx32 expression by VK2 treatment promoted hepatocyte maturation and enhanced the expression of the aforementioned hepatic specific markers, whereas downregulation of Cx32 expression by 2-APB treatment had the opposite effects. In conclusion, urine-derived iPSCs could be directionally differentiated into hepatocytes. Up-regulation of Cx32 improves the efficiency and maturity of differentiation of iPSCs into hepatocytes, and Cx32 may be a promoting factor during the process of hepatic differentiation from iPSCs.
Collapse
Affiliation(s)
- Yan Xu
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yufeng Wang
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Ran Qi
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Kun Li
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiuyan Wang
- Department of Ultrasonography, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xinbo Li
- Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Baomin Shi
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of General Surgery, Xinhua Hospital, School of medicine, Shanghai Jiaotong University, 200025, China
| |
Collapse
|
3
|
The Multifaceted Role of Connexins in Tumor Microenvironment Initiation and Maintenance. BIOLOGY 2023; 12:biology12020204. [PMID: 36829482 PMCID: PMC9953436 DOI: 10.3390/biology12020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Today's research on the processes of carcinogenesis and the vital activity of tumor tissues implies more attention be paid to constituents of the tumor microenvironment and their interactions. These interactions between cells in the tumor microenvironment can be mediated via different types of protein junctions. Connexins are one of the major contributors to intercellular communication. They form the gap junctions responsible for the transfer of ions, metabolites, peptides, miRNA, etc., between neighboring tumor cells as well as between tumor and stromal cells. Connexin hemichannels mediate purinergic signaling and bidirectional molecular transport with the extracellular environment. Additionally, connexins have been reported to localize in tumor-derived exosomes and facilitate the release of their cargo. A large body of evidence implies that the role of connexins in cancer is multifaceted. The pro- or anti-tumorigenic properties of connexins are determined by their abundance, localization, and functionality as well as their channel assembly and non-channel functions. In this review, we have summarized the data on the contribution of connexins to the formation of the tumor microenvironment and to cancer initiation and progression.
Collapse
|
4
|
Connexin 43 Gene Ablation Does Not Alter Human Pluripotent Stem Cell Germ Lineage Specification. Biomolecules 2021; 12:biom12010015. [PMID: 35053163 PMCID: PMC8773696 DOI: 10.3390/biom12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/23/2023] Open
Abstract
During embryonic germ layer development, cells communicate with each other and their environment to ensure proper lineage specification and tissue development. Connexin (Cx) proteins facilitate direct cell–cell communication through gap junction channels. While previous reports suggest that gap junctional intercellular communication may contribute to germ layer formation, there have been limited comprehensive expression analyses or genetic ablation studies on Cxs during human pluripotent stem cell (PSC) germ lineage specification. We screened the mRNA profile and protein expression patterns of select human Cx isoforms in undifferentiated human induced pluripotent stem cells (iPSCs), and after directed differentiation into the three embryonic germ lineages: ectoderm, definitive endoderm, and mesoderm. Transcript analyses by qPCR revealed upregulation of Cx45 and Cx62 in iPSC-derived ectoderm; Cx45 in mesoderm; and Cx30.3, Cx31, Cx32, Cx36, Cx37, and Cx40 in endoderm relative to control human iPSCs. Generated Cx43 (GJA1) CRISPR-Cas9 knockout iPSCs successfully differentiated into cells of all three germ layers, suggesting that Cx43 is dispensable during directed iPSC lineage specification. Furthermore, qPCR screening of select Cx transcripts in our GJA1-/- iPSCs showed no significant Cx upregulation in response to the loss of Cx43 protein. Future studies will reveal possible compensation by additional Cxs, suggesting targets for future CRISPR-Cas9 ablation studies in human iPSC lineage specification.
Collapse
|
5
|
Connexin Expression Is Altered in Liver Development of Yotari ( dab1 -/-) Mice. Int J Mol Sci 2021; 22:ijms221910712. [PMID: 34639052 PMCID: PMC8509723 DOI: 10.3390/ijms221910712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Disabled-1 (Dab1) protein is an intracellular adaptor of reelin signaling required for prenatal neuronal migration, as well as postnatal neurotransmission, memory formation and synaptic plasticity. Yotari, an autosomal recessive mutant of the mouse Dab1 gene is recognizable by its premature death, unstable gait and tremor. Previous findings are mostly based on neuronal abnormalities caused by Dab1 deficiency, but the role of the reelin signaling pathway in nonneuronal tissues and organs has not been studied until recently. Hepatocytes, the most abundant cells in the liver, communicate via gap junctions (GJ) are composed of connexins. Cell communication disruption in yotari mice was examined by analyzing the expression of connexins (Cxs): Cx26, Cx32, Cx37, Cx40, Cx43 and Cx45 during liver development at 13.5 and 15.5 gestation days (E13.5 and E15.5). Analyses were performed using immunohistochemistry and fluorescent microscopy, followed by quantification of area percentage covered by positive signal. Data are expressed as a mean ± SD and analyzed by one-way ANOVA. All Cxs examined displayed a significant decrease in yotari compared to wild type (wt) individuals at E13.5. Looking at E15.5 we have similar results with exception of Cx37 showing negligible expression in wt. Channels formation triggered by pathological stimuli, as well as propensity to apoptosis, was studied by measuring the expression of Pannexin1 (Panx1) and Apoptosis-inducing factor (AIF) through developmental stages mentioned above. An increase in Panx1 expression of E15.5 yotari mice, as well as a strong jump of AIF in both phases suggesting that yotari mice are more prone to apoptosis. Our results emphasize the importance of gap junction intercellular communication (GJIC) during liver development and their possible involvement in liver pathology and diagnostics where they can serve as potential biomarkers and drug targets.
Collapse
|
6
|
Zeng W, Fu L, Xu H. MicroRNA-206 relieves irradiation-induced neuroinflammation by regulating connexin 43. Exp Ther Med 2021; 22:1186. [PMID: 34475976 PMCID: PMC8406811 DOI: 10.3892/etm.2021.10620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023] Open
Abstract
Radiation therapy has been widely used for the treatment of various types of cancer; however, it may cause neuroinflammation during the pathological process of the disease. Astrocytes, the most abundant cell type in the central nervous system, have been confirmed to play vital roles in various diseases. Connexin (Cx)43, the main Cx type in astrocytes, which has been identified as a direct target gene of microRNA (miR)-206, was found to be involved in diseases pathologies in regions with astrocytes. The aim of the present study was to investigate the mechanism through which γ-radiation may cause astrocyte neuroinflammation and determine the specific mechanism underlying the effects of miR-206 in irradiation-induced HA-1800 cells. A dual-luciferase reporter system was used to predict and verify the target binding site between Cx43 and miR-206. HA-1800 cell viability and apoptosis were determined using a MTT assay and flow cytometry, respectively. In addition, the HA-1800 cells were induced by γ-radiation, then the protein and mRNA expression levels of Cx43, miR-206 and cleaved-caspase-3 were determined using western blot and reverse transcription-quantitative PCR analyses, respectively. ELISA was also performed to evaluate the concentrations of different inflammatory cytokines (TNF-α, IL-β, IL-6 and IFN-γ). The dual-luciferase reporter system indicated that Cx43 was a direct target of miR-206. miR-206 mimics increased the expression level of miR-206 in the astrocytes. Irradiation suppressed cell proliferation, increased apoptotic cells and enhanced cleaved-caspase-3 expression and inflammatory cytokines secretion in astrocytes. Furthermore, miR-206 was found to be downregulated and its expression was inversely associated with that of Cx43 in γ-radiation-induced astrocytes. Overexpression of miR-206 enhanced miR-206 and suppressed Cx43 expression, while Cx43 was upregulated in HA-1800 cells transfected with miR-206 mimic + Cx43-plasmid. However, the expression level of miR-206 was not significantly different in the Cx43-plasmid transfected group. In addition, it was found that miR-206 mimics relieved irradiation-induced neuroinflammation, which was confirmed by increased cell viability, and reduced cell apoptosis and cleaved caspase-3 protein expression, as well as decreased inflammatory cytokine secretion. Furthermore, all the effects of miR-206 mimics on γ-radiation-induced astrocytes were reversed by Cx43-plasmid. In summary, the results of the present study indicated that miR-206 may relieve irradiation-induced neural damage by regulating Cx43, which may provide a novel research direction and a potential therapeutic target for the clinical treatment of inflammation-associated neuronal injury following irradiation.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Radiology, Affiliated Hospital of Jianghan University, The Sixth Hospital of Wuhan City, Wuhan, Hubei 430019, P.R. China
| | - Li Fu
- Department of Radiology, Affiliated Hospital of Jianghan University, The Sixth Hospital of Wuhan City, Wuhan, Hubei 430019, P.R. China
| | - Hongfang Xu
- Department of Radiology, Affiliated Hospital of Jianghan University, The Sixth Hospital of Wuhan City, Wuhan, Hubei 430019, P.R. China
| |
Collapse
|
7
|
Won DH, Hwang DB, Shin YS, Kim SY, Kim C, Hong IS, Kang BC, Che JH, Yun JW. Cellular signaling crosstalk between Wnt signaling and gap junctions inbenzo[a]pyrene toxicity. Cell Biol Toxicol 2021; 39:165-182. [PMID: 34283317 DOI: 10.1007/s10565-021-09630-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
Gap junctional intercellular communication (GJIC) is considered a key biological mechanism to maintain homeostasis in cell differentiation and growth. In addition, as another major signaling pathway associated with cell proliferation and differentiation, Wnt/β-catenin signaling appears to trigger several cellular responses against injury. The purpose of the present study was to investigate the effects of a known toxic agent, benzo[a]pyrene (BaP), on the regulation and interaction between GJIC and Wnt/β-catenin signaling. BaP treatment resulted in GJIC inhibition and decreases the major GJIC protein connexin 43 (Cx43) in WB-F344 rat liver epithelial cells. We also found BaP-mediated downregulation of Wnt/β-catenin signaling related to the PI3K-Akt pathway. To identify the relationship between GJIC and Wnt/β-catenin signaling, we treated WB-F344 cells with the Wnt agonist CHIR99021 and found that it inhibited GJIC while causing a significant reduction in Cx43 expression at both the mRNA and protein levels, through the repression of promoter activity. This Wnt agonist-mediated GJIC inhibition was confirmed using a small interfering RNA directed against the Wnt antagonist Dact2, indicating that Wnt/β-catenin signaling negatively regulates GJIC. Despite the inverse correlation between Wnt/β-catenin signaling and Cx43 promoter activation as indicated by downregulation of β-catenin nuclear translocation and upregulation of Cx43 promoter activation involving HNF3β, BaP treatment decreased the Cx43 protein expression, which was associated with protein degradation, possibly through protein kinase C activation. In conclusion, our results revealed the mechanism of BaP-induced inhibition of GJIC and Wnt/β-catenin signaling. More importantly, linking Wnt/β-catenin signaling to Cx protein expression will have profound implications in understanding the relationships among different major signaling pathways associated with cell proliferation and differentiation in toxicity.
Collapse
Affiliation(s)
- Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Yoo-Sub Shin
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Shin-Young Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, South Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea. .,Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
8
|
Katturajan R, Evan Prince S. A role of connexin 43 on the drug-induced liver, kidney, and gastrointestinal tract toxicity with associated signaling pathways. Life Sci 2021; 280:119629. [PMID: 34004253 DOI: 10.1016/j.lfs.2021.119629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022]
Abstract
Drug-induced organ toxicity/injury, especially in the liver, kidney, and gastrointestinal tract, is a systematic disorder that causes oxidative stress formation and inflammation resulting in cell death and organ failure. Current therapies target reactive oxygen species (ROS) scavenging and inhibit inflammatory factors in organ injury to restore the functions and temporary relief. Organ cell function and tissue homeostasis are maintained through gap junction intercellular communication, regulating connexin hemichannels. Mis-regulation of such connexin, especially connexin (Cx) 43, affects a comprehensive process, including cell differentiation, inflammation, and cell death. Aim to describe knowledge about the importance of connexin role and insights therapeutic targeting. Cx43 misregulation has been implicated in recent decades in various diseases. Moreover, in recent years there is increasing evidence that Cx43 is involved in the toxicity process, including hepatic, renal, and gastrointestinal disorders. Cx43 has the potential to initiate the immune system to cause cell death, which has been activated in the acceleration of apoptosis, necroptosis, and autophagy signaling pathway. So far, therapies targeting Cx43 have been under inspection and are subjected to clinical trial phases. This review elucidates the role of Cx43 in drug-induced vital organ injury, and recent reports compromise its function in the major signaling pathways.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| |
Collapse
|
9
|
Adak A, Unal YC, Yucel S, Vural Z, Turan FB, Yalcin-Ozuysal O, Ozcivici E, Mese G. Connexin 32 induces pro-tumorigenic features in MCF10A normal breast cells and MDA-MB-231 metastatic breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118851. [PMID: 32918981 DOI: 10.1016/j.bbamcr.2020.118851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Connexins (Cx), the basic subunit of gap junctions, play important roles in cell homeostasis, and their abnormal expression and function are associated with human hereditary diseases and cancers. In tumorigenesis, connexins were observed to have both anti-tumorigenic and pro-tumorigenic roles in a context- and stage-dependent manner. Initially, Cx26 and Cx43 were thought to be the only connexins involved in normal breast homeostasis and breast cancer. Later on, association of Cx32 expression with lymph node metastasis of breast cancer and subsequent demonstration of its expression in normal breast tissue suggested that Cx32 contributes to breast tissue homeostasis. Here, we aimed to determine the effects of Cx32 on normal breast cells, MCF10A, and on breast cancer cells, MDA-MB-231. Cx32 overexpression had profound effects on MCF10A cells, decreasing cell proliferation by increasing the doubling time of MCF10A. Furthermore, MCF10A cells acquired mesenchymal-like appearance upon Cx32 expression and had increased migration capacity and expression of both E-cadherin and vimentin. In contrast, Cx32 overexpression altered the EMT markers of MDA-MB-231 by increasing the expression of mesenchymal markers, such as slug and vimentin, and decreasing E-cadherin expression without affecting their proliferation and morphology. Our results indicate, for the first time in the literature, that Cx32 has tumor-promoting roles in MCF10A and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Asli Adak
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Yagmur Ceren Unal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Simge Yucel
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Zehra Vural
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Fatma Basak Turan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey.
| |
Collapse
|
10
|
Kharkovskaya EЕ, Osipov GV, Mukhina IV. Ventricular fibrillation induced by 2-aminoethoxydiphenyl borate under conditions of hypoxia/reoxygenation. Minerva Cardioangiol 2020; 68:619-628. [DOI: 10.23736/s0026-4725.20.05376-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Vanova T, Raska J, Babica P, Sovadinova I, Kunova Bosakova M, Dvorak P, Blaha L, Rotrekl V. Freshwater Cyanotoxin Cylindrospermopsin Has Detrimental Stage-specific Effects on Hepatic Differentiation From Human Embryonic Stem Cells. Toxicol Sci 2018; 168:241-251. [DOI: 10.1093/toxsci/kfy293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Jan Raska
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | | | | | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine
- International Clinical Research Center (ICRC), St. Anne’s University Hospital, 62500 Brno, Czech Republic
| |
Collapse
|