1
|
Wang Q, Liang N, Liu C, Li J, Bai Y, Lei S, Huang Q, Sun L, Tang L, Zeng C, Tang Y, He X, Yang T, Wang G. BEX1 supports the stemness of hepatoblastoma by facilitating Warburg effect in a PPARγ/PDK1 dependent manner. Br J Cancer 2023; 129:1477-1489. [PMID: 37715024 PMCID: PMC10628275 DOI: 10.1038/s41416-023-02418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Hepatoblastoma (HB) is a highly aggressive paediatric malignancy that exhibits a high presence of cancer stem cells (CSCs), which related to tumour recurrence and chemotherapy resistance. Brain expressed X-linked protein 1 (BEX1) plays a pivotal role in ciliogenesis, axon regeneration and differentiation of neural stem cells. However, the role of BEX1 in metabolic and stemness programs in HB remains unclear. METHODS BEX1 expression in human and mouse HB was analyzed using gene expression profile data from NCBI GEO and immunohistochemical validation. Seahorse extracellular flux analyzer, ultra-high-performance liquid-chromatography mass spectrometry (LC-MS), flow cytometry, qRT-PCR, Western Blot, sphere formation assay, and diluted xenograft tumour formation assay were used to analyze metabolic and stemness features. RESULTS Our results indicated that overexpression of BEX1 significantly enhanced the Warburg effect in HB cells. Furthermore, glycolysis inhibition largely attenuated the effects of BEX1 on HB cell growth and self-renewal, suggesting that BEX1 promotes stemness maintenance of HB cells by regulating the Warburg effect. Mechanistically, BEX1 enhances Warburg effect through the downregulation of peroxisome proliferator-activated receptor-gamma (PPARγ). Furthermore, pyruvate dehydrogenase kinase isozyme 1 (PDK1) is required for PPARγ-induced inhibition of Warburg effect in HB. In addition, BEX1 supports the stemness of HB by enhancing Warburg effect in a PPARγ/PDK1 dependent manner. CONCLUSIONS HB patients with high BEX1 and PDK1 expression had a poor prognosis. BEX1 promotes the stemness maintenance of HB cells via modulating the Warburg effect, which depends on PPARγ/PDK1 axis. Pioglitazone could be used to target BEX1-mediated stemness properties in HB by upregulating PPARγ.
Collapse
Affiliation(s)
- Qian Wang
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali, 671000, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310006, China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
- Department of Stomatology, Shaanxi Province People's Hospital, Xi'an, 710068, China
| | - Yaxing Bai
- Department of Dermatology, XiJing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shuanghong Lei
- Anorectal Department, The First People's Hospital of Longnan, Longnan, 742500, China
| | - Qian Huang
- Department of Obstetrics and Gynecology, The 75th Group Army Hospital, Dali, Yunnan, 671000, China
| | - Ligang Sun
- Department of General Surgery, The 75th Group Army Hospital, Dali, 671000, China
| | - Liangke Tang
- Department of General Surgery, Hospital of Integrated Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Chao Zeng
- Department of Neurology, The 74th Group Army Hospital, Guangzhou, 510318, China
| | - Yuqun Tang
- Minimally Invasive tumour Comprehensive Therapy Center, Second People's Hospital of Guangdong Province, Guangzhou, 510310, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
| | - Tao Yang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China.
| | - Gang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
- Department of General Surgery, Affiliated Jiangmen Hospital, Southern Medical University, Jiangmen, 529000, China.
| |
Collapse
|
2
|
Yan ZJ, Chen L, Wang HY. To be or not to be: The double-edged sword roles of liver progenitor cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188870. [PMID: 36842766 DOI: 10.1016/j.bbcan.2023.188870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/28/2023]
Abstract
Given the liver's remarkable and unique regenerative capacity, researchers have long focused on liver progenitor cells (LPCs) and liver cancer stem cells (LCSCs). LPCs can differentiate into both hepatocytes and cholangiocytes. However, the mechanism underlying cell conversion and its distinct contribution to liver homeostasis and tumorigenesis remain unclear. In this review, we discuss the complicated conversions involving LPCs and LCSCs. As the critical intermediate state in malignant transformation, LPCs play double-edged sword roles. LPCs are not only involved in hepatic wound-healing responses by supplementing liver cells and bile duct cells in the damaged liver but may transform into LCSCs under dysregulation of key signaling pathways, resulting in refractory malignant liver tumors. Because LPC lineages are temporally and spatially dynamic, we discuss crucial LPC subgroups and summarize regulatory factors correlating with the trajectories of LPCs and LCSCs in the liver tumor microenvironment. This review elaborates on the double-edged sword roles of LPCs to help understand the liver's regenerative potential and tumor heterogeneity. Understanding the sources and transformations of LPCs is essential in determining how to exploit their regenerative capacity in the future.
Collapse
Affiliation(s)
- Zi-Jun Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| |
Collapse
|
3
|
DNMT1-mediated methylation of BEX1 regulates stemness and tumorigenicity in liver cancer. J Hepatol 2021; 75:1142-1153. [PMID: 34217777 DOI: 10.1016/j.jhep.2021.06.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Hepatoblastoma (HB) and hepatocellular carcinoma (HCC) both exhibit notable cancer stem cell (CSC) features. Moreover, the development of both diseases is closely associated with the presence of CSCs. We investigated the role of brain-expressed X-linked protein 1 (BEX1) in regulating the CSC properties of HB and a subtype of HCC with high CSC features (CSC-HCC). METHODS Stemness scores were analyzed in 5 murine HCC models. A subpopulation of BEX1-positive cells and BEX1-negative cells were sorted from HCC cell lines, and subjected to transcriptome analysis. The expression and function of BEX1 was examined via western blotting, sphere formation assays, and xenograft tumor models. RESULTS We identified BEX1 as a novel CSC marker that was required for the self-renewal of liver CSCs. Furthermore, zebularine, a potent DNMT1 inhibitor, can induce the reactivation of BEX1 by removing epigenetic inhibition. Notably, BEX1 was highly expressed in patients with HB and CSC-HCC, but not in patients with non-CSC HCC. Moreover, DNMT1-mediated methylation of the BEX1 promoter resulted in differential BEX1 expression patterns in patients with HB, CSC-HCC, and non-CSC-HCC. Mechanistically, BEX1 interacted with RUNX3 to block its inhibition of β-catenin transcription, which led to the activation of Wnt/β-catenin signaling, and stemness maintenance in both HB and CSC-HCC. In contrast, downregulated BEX1 expression released RUNX3 and inhibited the activation of Wnt/β-catenin signaling in non-CSC-HCC. CONCLUSION BEX1, under the regulation of DNMT1, is necessary for the self-renewal and maintenance of liver CSCs through activation of Wnt/β-catenin signaling, rendering BEX1 a potentially valuable therapeutic target in both HB and CSC-HCC. LAY SUMMARY Cancer stem cells (CSCs) contribute to a high rate of cancer recurrence, as well as resistance to conventional therapies. However, the regulatory mechanisms underlying their self-renewal remains elusive. Herein, we have reported that BEX1 plays a key role in regulating CSC properties in different types of liver cancer. Targeting BEX1-mediated Wnt/β-catenin signaling may help to address the high rate of recurrence, and heterogeneity of liver cancer.
Collapse
|
4
|
Yang Y, Tetti M, Vohra T, Adolf C, Seissler J, Hristov M, Belavgeni A, Bidlingmaier M, Linkermann A, Mulatero P, Beuschlein F, Reincke M, Williams TA. BEX1 Is Differentially Expressed in Aldosterone-Producing Adenomas and Protects Human Adrenocortical Cells From Ferroptosis. Hypertension 2021; 77:1647-1658. [PMID: 33745298 DOI: 10.1161/hypertensionaha.120.16774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yuhong Yang
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., T.V., C.A., M.B., F.B., M.R., T.A.W.)
| | - Martina Tetti
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (M.T., P.M., T.A.W.)
| | - Twinkle Vohra
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., T.V., C.A., M.B., F.B., M.R., T.A.W.)
| | - Christian Adolf
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., T.V., C.A., M.B., F.B., M.R., T.A.W.)
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum, Klinikum der Universität München, LMU München, Germany (J.S.)
| | - Michael Hristov
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten (IPEK), Klinikum der Universität München, Germany (M.H.)
| | - Alexia Belavgeni
- Division of Nephrology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany (A.B., A.L.)
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., T.V., C.A., M.B., F.B., M.R., T.A.W.)
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany (A.B., A.L.)
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (M.T., P.M., T.A.W.)
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., T.V., C.A., M.B., F.B., M.R., T.A.W.).,Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Switzerland (F.B.)
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., T.V., C.A., M.B., F.B., M.R., T.A.W.)
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (Y.Y., T.V., C.A., M.B., F.B., M.R., T.A.W.).,Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (M.T., P.M., T.A.W.)
| |
Collapse
|
5
|
Navas-Pérez E, Vicente-García C, Mirra S, Burguera D, Fernàndez-Castillo N, Ferrán JL, López-Mayorga M, Alaiz-Noya M, Suárez-Pereira I, Antón-Galindo E, Ulloa F, Herrera-Úbeda C, Cuscó P, Falcón-Moya R, Rodríguez-Moreno A, D'Aniello S, Cormand B, Marfany G, Soriano E, Carrión ÁM, Carvajal JJ, Garcia-Fernàndez J. Characterization of an eutherian gene cluster generated after transposon domestication identifies Bex3 as relevant for advanced neurological functions. Genome Biol 2020; 21:267. [PMID: 33100228 PMCID: PMC7586669 DOI: 10.1186/s13059-020-02172-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND One of the most unusual sources of phylogenetically restricted genes is the molecular domestication of transposable elements into a host genome as functional genes. Although these kinds of events are sometimes at the core of key macroevolutionary changes, their origin and organismal function are generally poorly understood. RESULTS Here, we identify several previously unreported transposable element domestication events in the human and mouse genomes. Among them, we find a remarkable molecular domestication that gave rise to a multigenic family in placental mammals, the Bex/Tceal gene cluster. These genes, which act as hub proteins within diverse signaling pathways, have been associated with neurological features of human patients carrying genomic microdeletions in chromosome X. The Bex/Tceal genes display neural-enriched patterns and are differentially expressed in human neurological disorders, such as autism and schizophrenia. Two different murine alleles of the cluster member Bex3 display morphological and physiopathological brain modifications, such as reduced interneuron number and hippocampal electrophysiological imbalance, alterations that translate into distinct behavioral phenotypes. CONCLUSIONS We provide an in-depth understanding of the emergence of a gene cluster that originated by transposon domestication and gene duplication at the origin of placental mammals, an evolutionary process that transformed a non-functional transposon sequence into novel components of the eutherian genome. These genes were integrated into existing signaling pathways involved in the development, maintenance, and function of the CNS in eutherians. At least one of its members, Bex3, is relevant for higher brain functions in placental mammals and may be involved in human neurological disorders.
Collapse
Affiliation(s)
- Enrique Navas-Pérez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Serena Mirra
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Demian Burguera
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Noèlia Fernàndez-Castillo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - José Luis Ferrán
- Department of Human Anatomy, School of Medicine, University of Murcia and IMIB-Arrixaca Institute, 30120, Murcia, Spain
| | - Macarena López-Mayorga
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Marta Alaiz-Noya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain.,Present Address: Instituto de Neurociencias de Alicante (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Alicante, Spain
| | - Irene Suárez-Pereira
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain.,Present Address: Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Neuropsychopharmacology and psychobiology research group, UCA, INiBICA, Cádiz, Spain
| | - Ester Antón-Galindo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Pol Cuscó
- Genome Architecture, Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Rafael Falcón-Moya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Ángel M Carrión
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Jaime J Carvajal
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain.
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
Czepukojc B, Abuhaliema A, Barghash A, Tierling S, Naß N, Simon Y, Körbel C, Cadenas C, van Hul N, Sachinidis A, Hengstler JG, Helms V, Laschke MW, Walter J, Haybaeck J, Leclercq I, Kiemer AK, Kessler SM. IGF2 mRNA Binding Protein 2 Transgenic Mice Are More Prone to Develop a Ductular Reaction and to Progress Toward Cirrhosis. Front Med (Lausanne) 2019; 6:179. [PMID: 31555647 PMCID: PMC6737005 DOI: 10.3389/fmed.2019.00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
The insulin-like growth factor 2 (IGF2) mRNA binding proteins (IMPs/IGF2BPs) IMP1 and 3 are regarded as oncofetal proteins, whereas the hepatic IMP2 expression in adults is controversially discussed. The splice variant IMP2-2/p62 promotes steatohepatitis and hepatocellular carcinoma. Aim of this study was to clarify whether IMP2 is expressed in the adult liver and influences progression toward cirrhosis. IMP2 was expressed at higher levels in embryonic compared to adult tissues as quantified in embryonic, newborn, and adult C57BL/6J mouse livers and suggested by analysis of publicly available human data. In an IMP2-2 transgenic mouse model microarray and qPCR analyses revealed increased expression of liver progenitor cell (LPC) markers Bex1, Prom1, Spp1, and Cdh1 indicating a de-differentiated liver cell phenotype. Induction of these LPC markers was confirmed in human cirrhotic tissue datasets. The LPC marker SPP1 has been described to play a major role in fibrogenesis. Thus, DNA methylation was investigated in order to decipher the regulatory mechanism of Spp1 induction. In IMP2-2 transgenic mouse livers single CpG sites were differentially methylated, as quantified by amplicon sequencing, whereas human HCC samples of a human publicly available dataset showed promoter hypomethylation. In order to study the impact of IMP2 on fibrogenesis in the context of steatohepatitis wild-type or IMP2-2 transgenic mice were fed either a methionine-choline deficient (MCD) or a control diet for 2-12 weeks. MCD-fed IMP2-2 transgenic mice showed a higher incidence of ductular reaction (DR), accompanied by hepatic stellate cell activation, extracellular matrix (ECM) deposition, and induction of the LPC markers Spp1, Cdh1, and Afp suggesting the occurrence of de-differentiated cells in transgenic livers. In human cirrhotic samples IMP2 overexpression correlated with LPC marker and ECM component expression. Progression of liver disease was induced by combined MCD and diethylnitrosamine (DEN) treatment. Combined MCD-DEN treatment resulted in shorter survival of IMP2-2 transgenic compared to wild-type mice. Only IMP2-2 transgenic livers progressed to cirrhosis, which was accompanied by strong DR. In conclusion, IMP2 is an oncofetal protein in the liver that promotes DR characterized by de-differentiated cells toward steatohepatitis-associated cirrhosis development with poor survival.
Collapse
Affiliation(s)
- Beate Czepukojc
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Ali Abuhaliema
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Ahmad Barghash
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.,Department of Computer Science, German Jordanian University, Amman, Jordan
| | - Sascha Tierling
- Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Norbert Naß
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yvette Simon
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Christina Körbel
- Institute of Clinical-Experimental Surgery, Saarland University Hospital, Homburg, Germany
| | - Cristina Cadenas
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Dortmund, Germany
| | - Noemi van Hul
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Agapios Sachinidis
- Center for Molecular Medicine Cologne (CMMC), Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Jan G Hengstler
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Dortmund, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Matthias W Laschke
- Institute of Clinical-Experimental Surgery, Saarland University Hospital, Homburg, Germany
| | - Jörn Walter
- Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Pathology, Medical University of Graz, Graz, Austria.,Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany.,Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Bai L, Liu B, Ji C, Zhao S, Liu S, Wang R, Wang W, Yao P, Li X, Fu X, Yu H, Liu M, Han F, Guan N, Liu H, Liu D, Tao Y, Wang Z, Yan S, Florant G, Butcher MT, Zhang J, Zheng H, Fan J, Enqi Liu. Hypoxic and Cold Adaptation Insights from the Himalayan Marmot Genome. iScience 2019; 11:519-530. [PMID: 30581096 PMCID: PMC6354217 DOI: 10.1016/j.isci.2018.11.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
The Himalayan marmot (Marmota himalayana) is a hibernating mammal that inhabits the high-elevation regions of the Himalayan mountains. Here we present a draft genome of the Himalayan marmot, with a total assembly length of 2.47 Gb. Phylogenetic analyses showed that the Himalayan marmot diverged from the Mongolian marmot approximately 1.98 million years ago. Transcriptional changes during hibernation included genes responsible for fatty acid metabolism in liver and genes involved in complement and coagulation cascades and stem cell pluripotency pathways in brain. Two selective sweep genes, Slc25a14 and ψAamp, showed apparent genotyping differences between low- and high-altitude populations. As a processed pseudogene, ψAamp may be biologically active to influence the stability of Aamp through competitive microRNA binding. These findings shed light on the molecular and genetic basis underlying adaptation to extreme environments in the Himalayan marmot.
Collapse
Affiliation(s)
- Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, Shaanxi 710061, China; Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Baoning Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, Shaanxi 710061, China; Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Changmian Ji
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, Shaanxi 710061, China; Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Siyu Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, Shaanxi 710061, China; Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, Shaanxi 710061, China; Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Pu Yao
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Xiaojun Fu
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Fengming Han
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Ning Guan
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Hui Liu
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Dongyuan Liu
- Biomarker Technologies Corporation, Beijing 101200, China
| | - Yuanqing Tao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai 811602, China
| | - Zhongdong Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai 811602, China
| | - Shunsheng Yan
- Centers for Disease Control and Prevention, Urumqi, Xinjiang 830054, China
| | - Greg Florant
- Department of Biology, Colorado State University, Ft. Collins, CO 80523, USA
| | - Michael T Butcher
- Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101200, China.
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, Shaanxi 710061, China; Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
8
|
Huang J, Zhao X, Wang J, Cheng Y, Wu Q, Wang B, Zhao F, Meng L, Zhang Y, Jin M, Xu H. Distinct roles of Dlk1 isoforms in bi-potential differentiation of hepatic stem cells. Stem Cell Res Ther 2019; 10:31. [PMID: 30646961 PMCID: PMC6334473 DOI: 10.1186/s13287-019-1131-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Fully understanding the developmental process of hepatic stem cells (HSCs) and the mechanisms of their committed differentiation is essential for optimizing the generation of functional hepatocytes for cell therapy in liver disease. Delta-like 1 homolog (Dlk1), primarily the membrane-bound form (Dlk1M), is generally used as a surface marker for fetal hepatic stem cell isolation, while its soluble form (Dlk1S) and the functional roles of different Dlk1 isoforms in HSC differentiation remain to be investigated. METHODS Hepatic spheroid-derived cells (HSDCs) were isolated from E12.5 mouse livers to obtain Dlk1+ and Dlk1-subpopulations. Colony formation, BrdU staining, and CCK8 assays were used to evaluate the cell proliferation capacity, and hepatic/cholangiocytic differentiation and osteogenesis/adipogenesis were used to assess the multipotency of the two subpopulations. Transformation of Dlk1+ cells into Dlk1- cells was detected by FACS, and the expression of Dlk1 isoforms were measured by western blot. The distinct roles and regulatory mechanisms of Dlk1 isoforms in HSC differentiation were investigated by overexpressing Dlk1M. RESULTS HSDCs were capable of differentiating into liver and mesenchymal lineages, comprising Dlk1+ and Dlk1- subpopulations. Dlk1+ cells expressed both Dlk1M and Dlk1S and lost expression of Dlk1M during passaging, thus transforming into Dlk1- cells, which still contained Dlk1S. Dlk1- cells maintained a self-renewal ability similar to that of Dlk1+ cells, but their capacity to differentiate into cholangiocytes was obviously enhanced. Forced expression of Dlk1M in Dlk1- cells restored their ability to differentiate into hepatocytes, with an attenuated ability to differentiate into cholangiocytes, suggesting a functional role of Dlk1 in regulating HSC differentiation in addition to acting as a biomarker. Further experiments illustrated that the regulation of committed HSC differentiation by Dlk1 was mediated by the AKT and MAPK signaling pathways. In addition, bFGF was found to serve as an important inducement for the loss of Dlk1M from Dlk1+ cells, and autophagy might be involved. CONCLUSIONS Overall, our study uncovered the differential expression and regulatory roles of Dlk1 isoforms in the commitment of HSC differentiation and suggested that Dlk1 functions as a key regulator that instructs cell differentiation rather than only as a marker of HSCs. Thus, our findings expand the current understanding of the differential regulation of bi-potential HSC differentiation and provide a fine-tuning target for cell therapy in liver disease.
Collapse
Affiliation(s)
- Jiefang Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaonan Zhao
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China
| | - Yiji Cheng
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiong Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bei Wang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lijun Meng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China
| | - Yanyun Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China. .,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Min Jin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China. .,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
9
|
Manco R, Leclercq IA, Clerbaux LA. Liver Regeneration: Different Sub-Populations of Parenchymal Cells at Play Choreographed by an Injury-Specific Microenvironment. Int J Mol Sci 2018; 19:E4115. [PMID: 30567401 PMCID: PMC6321497 DOI: 10.3390/ijms19124115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration is crucial for the maintenance of liver functional mass during homeostasis and diseases. In a disease context-dependent manner, liver regeneration is contributed to by hepatocytes or progenitor cells. As long as they are replicatively competent, hepatocytes are the main cell type responsible for supporting liver size homeostasisand regeneration. The concept that all hepatocytes within the lobule have the same proliferative capacity but are differentially recruited according to the localization of the wound, or whether a yet to be defined sub-population of hepatocytes supports regeneration is still debated. In a chronically or severely injured liver, hepatocytes may enter a state of replicative senescence. In such conditions, small biliary cells activate and expand, a process called ductular reaction (DR). Work in the last few decades has demonstrated that DR cells can differentiate into hepatocytes and thereby contribute to parenchymal reconstitution. In this study we will review the molecular mechanisms supporting these two processes to determine potential targets that would be amenable for therapeutic manipulation to enhance liver regeneration.
Collapse
Affiliation(s)
- Rita Manco
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|