1
|
Ou Q, Cormican S, Power R, Hontz S, Hanley SA, Islam MN, Shaw G, Deedigan LM, Horan E, Elliman SJ, Fazekas B, Krawczyk J, Negi N, Griffin MD. Initial or continuous coculture with umbilical cord-derived mesenchymal stromal cells facilitates in vitro expansion of human regulatory T-cell subpopulations. Stem Cells Transl Med 2025; 14:szaf012. [PMID: 40515654 PMCID: PMC12166524 DOI: 10.1093/stcltm/szaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/19/2025] [Indexed: 06/16/2025] Open
Abstract
Clinical trials have demonstrated the safety and potential efficacy of ex vivo expanded regulatory T cells (Tregs) for immune-mediated diseases. Nonetheless, achieving consistent and timely Treg yield and purity remains challenging. We aimed to evaluate the potential to enhance culture expansion of primary human total Treg (CD4+/CD25+/CD127lo) and Treg subpopulations through coculture with human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs). In 14- to 21-day anti-CD3/anti-CD28-, interleukin-2-, and rapamycin-containing cultures, fluorescence-activated cell sorting (FACS)-purified total Treg underwent 4-fold greater expansion following hUC-MSC coculture. Potency to suppress T effector cell (Teff) proliferation was equivalent for hUC-MSC-cocultured and control Tregs and correlated with the expression of HLA-DR, CD39, and inducible costimulator (ICOS). The impact of hUC-MSC coculture on ex vivo expansion of 3 FACS-purified Treg subpopulations [CD45RA+ (Subtype I), CD45RA-HLA-DR+ (Subtype II), and CD45RA-HLA-DR- (Subtype III)] was then investigated. Both initial and continuous hUC-MSC coculture yielded significantly higher fold expansion of each Treg subpopulation compared to control. However, the magnitude of enhancement was substantially greater for non-naive (Subtypes II and III) than for naive (Subtype I) Treg. Coculture with hUC-MSC increased HLA-DR expression of all 3 expanded Treg subpopulations while maintaining comparable Teff suppressive potency. For non-naive Treg (Subtypes II and III), both initial and continuous hUC-MSC coculture also increased the final %Foxp3+ and %Helios+. Thus, coculture with clinical-grade hUC-MSC substantially enhances the ex vivo yield, preserves the suppressive potency, and modulates HLA-DR expression of FACS-purified Treg subpopulations with greatest effect on non-naive (CD45RA-) Treg. The findings have potential to facilitate identification, functional characterization, and manufacturing of Treg subpopulations with distinct therapeutic benefits.
Collapse
Affiliation(s)
- Qifeng Ou
- Regenerative Medicine Institute (REMEDI) at CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H19 TK33, Ireland
| | - Sarah Cormican
- Regenerative Medicine Institute (REMEDI) at CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H19 TK33, Ireland
| | - Rachael Power
- Regenerative Medicine Institute (REMEDI) at CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H19 TK33, Ireland
| | - Sarah Hontz
- Regenerative Medicine Institute (REMEDI) at CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H19 TK33, Ireland
| | - Shirley A Hanley
- Flow Cytometry Core Facility, Biomedical Sciences, University of Galway, Galway H19 TK33, Ireland
| | - Md Nahidul Islam
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway H19 TK33, Ireland
- Department of Applied Science, Technological University of the Shannon, Limerick V94 EC5T, Ireland
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI) at CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H19 TK33, Ireland
| | | | - Emma Horan
- Orbsen Therapeutics Ltd., Dangan, Galway H91 A3EF, Ireland
| | | | - Barbara Fazekas
- Regenerative Medicine Institute (REMEDI) at CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H19 TK33, Ireland
- Biology and Biopharmaceutical Science, Department of Science, South East Technological University, Waterford X91 CF21, Ireland
| | - Janusz Krawczyk
- Regenerative Medicine Institute (REMEDI) at CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H19 TK33, Ireland
- Haematology Department, University Hospital Galway, Saolta University Healthcare Group, Galway H91 YR71, Ireland
| | - Neema Negi
- Regenerative Medicine Institute (REMEDI) at CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H19 TK33, Ireland
- Department of Chemical Toxicology, Division of Climate and Environment Health, Norwegian Institute of Public Health (Folkehelseinstituttet), 0456 Oslo, Norway
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H19 TK33, Ireland
| |
Collapse
|
2
|
Warren AJ, Liu L, O'Toole DP, Laffey JG, Masterson CH. The impact of the inflammatory pulmonary microenvironment on the behavior and function of mesenchymal stromal cells. Expert Rev Respir Med 2025:1-12. [PMID: 40223328 DOI: 10.1080/17476348.2025.2491715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION Acute respiratory distress syndrome is characterized by the dysregulation and activation of several inflammatory pathways which lead to widespread inflammation in the lungs. Presently, direct therapy is unavailable and the use of mesenchymal stromal cells as a direct therapy has been proposed, as early-phase studies have shown promise. AREAS COVERED MSCs exert various therapeutic effects on the inflammatory microenvironment, such as anti-microbial effects, restoration of the alveolar-capillary barrier, and exuding various anti-inflammatory effects. However, to exert these effects MSCs need to be submitted to specific external stimuli which can affect their immunomodulation, survival, migration and metabolic state. This review references several articles found through targeted searches in PubMed [Accessed between November 2024 and March 2025], for key terms such as 'mesenchymal stromal cells', 'inflammatory microenvironment', anti-inflammatory', 'metabolism', and 'immunomodulation'. EXPERT OPINION The advancement of MSCs therapy in the treatment of ARDS has not progressed as effectively as one might have anticipated. Several clinical findings have established patient subgroups based on inflammatory cytokine profiles and severity of ARDS. This variation in patients may influence the clinical efficacy of MSCs and instead of concluding that MSCs therapy is not worth pursuing, more research is needed to develop an appropriate therapy.
Collapse
Affiliation(s)
- Abigail Jm Warren
- Anaesthesia, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Lanzhi Liu
- Physiology, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Daniel P O'Toole
- Physiology, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| | - Claire H Masterson
- Physiology, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Sanz-Nogués C, Keane AJ, Creane M, Hynes SO, Chen X, Lyons CJ, Horan E, Elliman SJ, Goljanek-Whysall K, O’Brien T. Mesenchymal stromal cell transplantation ameliorates fibrosis and microRNA dysregulation in skeletal muscle ischemia. Stem Cells 2024; 42:976-991. [PMID: 39283740 PMCID: PMC11541228 DOI: 10.1093/stmcls/sxae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/23/2024] [Indexed: 11/08/2024]
Abstract
Peripheral arterial disease (PAD) is associated with lower-extremity muscle wasting. Hallmark features of PAD-associated skeletal muscle pathology include loss of skeletal muscle mass, reduced strength and physical performance, increased inflammation, fibrosis, and adipocyte infiltration. At the molecular level, skeletal muscle ischemia has also been associated with gene and microRNA (miRNA) dysregulation. Mesenchymal stromal cells (MSCs) have been shown to enhance muscle regeneration and improve muscle function in various skeletal muscle injuries. This study aimed to evaluate the effects of intramuscularly delivered human umbilical cord-derived MSCs (hUC-MSCs) on skeletal muscle ischemia. Herein, we report an hUC-MSC-mediated amelioration of ischemia-induced skeletal muscle atrophy and function via enhancement of myofiber regeneration, reduction of tissue inflammation, adipocyte accumulation, and tissue fibrosis. These changes were observed in the absence of cell-mediated enhancement of blood flow recovery as measured by laser Doppler imaging. Furthermore, reduced tissue fibrosis in the hUC-MSC-treated group was associated with upregulation of miR-1, miR-133a, and miR-29b and downregulation of targeted pro-fibrotic genes such as Col1a1 and Fn1. Our results support the use of hUC-MSCs as a novel approach to reduce fibrosis and promote skeletal muscle regeneration after ischemic injury in patients with PAD.
Collapse
Affiliation(s)
- Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Alan J Keane
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Michael Creane
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Sean O Hynes
- Discipline of Pathology, University of Galway, Galway, Ireland
- Division of Anatomic Pathology, University Hospital Galway, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Emma Horan
- Orbsen Therapeutics Ltd., Galway, Ireland
| | | | - Katarzyna Goljanek-Whysall
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Timothy O’Brien
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Yu W, Lv Y, Xuan R, Han P, Xu H, Ma X. Human placental mesenchymal stem cells transplantation repairs the alveolar epithelial barrier to alleviate lipopolysaccharides-induced acute lung injury. Biochem Pharmacol 2024; 229:116547. [PMID: 39306309 DOI: 10.1016/j.bcp.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are accompanied by high mortality rates and few effective treatments. Transplantation of human placental mesenchymal stem cells (hPMSCs) may attenuate ALI and the mechanism is still unclear. Our study aimed to elucidate the potential protective effect and therapeutic mechanism of hPMSCs against lipopolysaccharide (LPS)-induced ALI, An ALI model was induced by tracheal instillation of LPS into wild-type (WT) and angiotensin-converting enzyme 2 (ACE2) knockout (KO) male mice, followed by injection of hPMSCs by tail vein. Treatment with hPMSCs improved pulmonary histopathological injury, reduced pulmonary injury scores, decreased leukocyte count and protein levels in bronchoalveolar lavage fluid(BALF), protected the damaged alveolar epithelial barrier, and reversed LPS-induced upregulation of pro-inflammatory factors Interleukin-6 (IL-6) and Tumor necrosis factor-α(TNF-α) and downregulation of anti-inflammatory factor Interleukin-6(IL-10) in BALF. Moreover, administration of hPMSCs inhibited Angiotensin (Ang)II activation and promoted the expression levels of ACE2 and Ang (1-7) in ALI mice. Pathological damage, inflammation levels, and disruption of alveolar epithelial barrier in ALI mice were elevated after the deletion of ACE2 gene, and the Renin angiotensin system (RAS) imbalance was exacerbated. The therapeutic effect of hPMSCs was significantly reduced in ACE2 KO mice. Our findings suggest that ACE2 plays a key role in hPMSCs repairing the alveolar epithelial barrier to protect against ALI, laying a new foundation for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Wenqin Yu
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Yuzhen Lv
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Ruirui Xuan
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Peipei Han
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Haihuan Xu
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Xiaowei Ma
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China.
| |
Collapse
|
5
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
6
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
7
|
Meng M, Zhang WW, Chen SF, Wang DR, Zhou CH. Therapeutic utility of human umbilical cord-derived mesenchymal stem cells-based approaches in pulmonary diseases: Recent advancements and prospects. World J Stem Cells 2024; 16:70-88. [PMID: 38455096 PMCID: PMC10915951 DOI: 10.4252/wjsc.v16.i2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide. For diverse disease conditions, the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) isolated from the human UC have the capacity for self-renewal and multilineage differentiation. Moreover, in recent years, these cells have been demonstrated to have unique advantages in the treatment of lung diseases. We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases, including coronavirus disease 2019, acute respiratory distress syndrome, bronchopulmonary dysplasia, chronic obstructive pulmonary disease, and pulmonary fibrosis. In this review, we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application. Moreover, the underlying molecular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth. In brief, this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.
Collapse
Affiliation(s)
- Min Meng
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Shuang-Feng Chen
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Da-Rui Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Chang-Hui Zhou
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China.
| |
Collapse
|
8
|
Song J, Ma Q, Li Y, Wang X, Chen S, Liang B, Lin X, Chen J, Xu S, Shi S, Zhang J, Diao L, Zeng Y, Xu J. CD317 + MSCs expanded with chemically defined media have enhanced immunological anti-inflammatory activities. Stem Cell Res Ther 2024; 15:2. [PMID: 38169422 PMCID: PMC10763464 DOI: 10.1186/s13287-023-03618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Although both preclinical and clinical studies have shown the great application potential of MSCs (mesenchymal stem/stromal cells) in treating many kinds of diseases, therapeutic inconsistency resulting from cell heterogeneity is the major stumbling block to their clinical applications. Cell population diversity and batch variation in the cell expansion medium are two major inducers of MSC heterogeneity. METHODS Cell population diversity was investigated through single-cell RNA sequencing analysis of human MSCs derived from the umbilical cord and expanded with fully chemically defined medium in the current study. Then, the MSC subpopulation with enhanced anti-inflammatory effects was studied in vitro and in vivo. RESULTS Our data showed that MSCs contain different populations with different functions, including subpopulations with enhanced functions of exosome secretion, extracellular matrix modification and responses to stimuli (regeneration and immune response). Among them, CD317+ MSCs have improved differentiation capabilities and enhanced immune suppression activities. Underlying mechanism studies showed that higher levels of TSG6 confer enhanced anti-inflammatory functions of CD317+ MSCs. CONCLUSIONS Thus, CD317+ MSCs might be a promising candidate for treating immunological disorder-related diseases.
Collapse
Affiliation(s)
- Jun Song
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
| | - Qi Ma
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Yumeng Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Xianqi Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Xiaoqi Lin
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jieting Chen
- Department of Obstetrics, People's Hospital of Baoan, Shenzhen, 518000, People's Republic of China
| | - Shiru Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Shaoquan Shi
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Jingting Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
10
|
Gorman EA, Rynne J, Gardiner HJ, Rostron AJ, Bannard-Smith J, Bentley AM, Brealey D, Campbell C, Curley G, Clarke M, Dushianthan A, Hopkins P, Jackson C, Kefela K, Krasnodembskaya A, Laffey JG, McDowell C, McFarland M, McFerran J, McGuigan P, Perkins GD, Silversides J, Smythe J, Thompson J, Tunnicliffe WS, Welters IDM, Amado-Rodríguez L, Albaiceta G, Williams B, Shankar-Hari M, McAuley DF, O'Kane CM. Repair of Acute Respiratory Distress Syndrome in COVID-19 by Stromal Cells (REALIST-COVID Trial): A Multicenter, Randomized, Controlled Clinical Trial. Am J Respir Crit Care Med 2023; 208:256-269. [PMID: 37154608 DOI: 10.1164/rccm.202302-0297oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Rationale: Mesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS). Objectives: We investigated the safety and efficacy of ORBCEL-C (CD362 [cluster of differentiation 362]-enriched, umbilical cord-derived MSCs) in COVID-19-related ARDS. Methods: In this multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial (NCT03042143), patients with moderate to severe COVID-19-related ARDS were randomized to receive ORBCEL-C (400 million cells) or placebo (Plasma-Lyte 148). The primary safety and efficacy outcomes were the incidence of serious adverse events and oxygenation index at Day 7, respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2:FiO2 ratio, and Sequential Organ Failure Assessment score. Clinical outcomes relating to duration of ventilation, lengths of ICU and hospital stays, and mortality were collected. Long-term follow-up included diagnosis of interstitial lung disease at 1 year and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at Days 0, 4, and 7. Measurements and Main Results: Sixty participants were recruited (final analysis: n = 30 received ORBCEL-C, n = 29 received placebo; 1 participant in the placebo group withdrew consent). Six serious adverse events occurred in the ORBCEL-C group and three in the placebo group (risk ratio, 2.9 [95% confidence interval, 0.6-13.2]; P = 0.25). Day 7 mean (SD) oxygenation index did not differ (ORBCEL-C, 98.3 [57.2] cm H2O/kPa; placebo, 96.6 [67.3] cm H2O/kPa). There were no differences in secondary surrogate outcomes or in mortality at Day 28, Day 90, 1 year, or 2 years. There was no difference in the prevalence of interstitial lung disease at 1 year or significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome. Conclusion: ORBCEL-C MSCs were safe in subjects with moderate to severe COVID-19-related ARDS but did not improve surrogates of pulmonary organ dysfunction.
Collapse
Affiliation(s)
- Ellen A Gorman
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jennifer Rynne
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah J Gardiner
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Anthony J Rostron
- Sunderland Royal Hospital, South Tyneside and Sunderland National Health Service Foundation Trust, Sunderland, United Kingdom
- Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Andrew M Bentley
- Acute Intensive Care Unit, Wythenshawe Hospital, Manchester, United Kingdom
| | - David Brealey
- University College Hospital London, London, United Kingdom
| | | | - Gerard Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mike Clarke
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Ahilanadan Dushianthan
- University Hospital Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Phillip Hopkins
- King's Trauma Centre, King's College Hospital, London, United Kingdom
| | - Colette Jackson
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Kallirroi Kefela
- Department of Critical Care, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John G Laffey
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Cliona McDowell
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Margaret McFarland
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Jamie McFerran
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Peter McGuigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Gavin D Perkins
- Critical Care Unit, University Hospitals Birmingham, Birmingham, United Kingdom
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jonathan Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Jon Smythe
- National Health Service Blood and Transplant, Oxford, United Kingdom
| | - Jacqui Thompson
- National Health Service Blood and Transplant, Birmingham, United Kingdom
| | | | - Ingeborg D M Welters
- Intensive Care Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- Institute of Life Course Medical Sciences, University of Liverpool, Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Laura Amado-Rodríguez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Guillermo Albaiceta
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; and
| | - Barry Williams
- Independent Patient and Public Representative, Sherborne, United Kingdom
| | - Manu Shankar-Hari
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Russo E, Corrao S, Di Gaudio F, Alberti G, Caprnda M, Kubatka P, Kruzliak P, Miceli V, Conaldi PG, Borlongan CV, La Rocca G. Facing the Challenges in the COVID-19 Pandemic Era: From Standard Treatments to the Umbilical Cord-Derived Mesenchymal Stromal Cells as a New Therapeutic Strategy. Cells 2023; 12:1664. [PMID: 37371134 PMCID: PMC10297457 DOI: 10.3390/cells12121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which counts more than 650 million cases and more than 6.6 million of deaths worldwide, affects the respiratory system with typical symptoms such as fever, cough, sore throat, acute respiratory distress syndrome (ARDS), and fatigue. Other nonpulmonary manifestations are related with abnormal inflammatory response, the "cytokine storm", that could lead to a multiorgan disease and to death. Evolution of effective vaccines against SARS-CoV-2 provided multiple options to prevent the infection, but the treatment of the severe forms remains difficult to manage. The cytokine storm is usually counteracted with standard medical care and anti-inflammatory drugs, but researchers moved forward their studies on new strategies based on cell therapy approaches. The perinatal tissues, such as placental membranes, amniotic fluid, and umbilical cord derivatives, are enriched in mesenchymal stromal cells (MSCs) that exert a well-known anti-inflammatory role, immune response modulation, and tissue repair. In this review, we focused on umbilical-cord-derived MSCs (UC-MSCs) used in in vitro and in vivo studies in order to evaluate the weakening of the severe symptoms, and on recent clinical trials from different databases, supporting the favorable potential of UC-MSCs as therapeutic strategy.
Collapse
Affiliation(s)
- Eleonora Russo
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Simona Corrao
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | | | - Giusi Alberti
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University, University Hospital Bratislava, 81499 Bratislava, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03649 Martin, Slovakia;
| | - Peter Kruzliak
- Research and Development Services, Pradlacka 18, 61300 Brno, Czech Republic;
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Cesario Venturina Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Giampiero La Rocca
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| |
Collapse
|
12
|
Gonzalez H, McCarthy S, Masterson C, Byrnes D, Sallent I, Horan E, Elliman SJ, Vella G, Mello AP, Silva JD, Krasnodembskaya AD, MacLoughlin R, Laffey JG, O'Toole D. Nebulised mesenchymal stem cell derived extracellular vesicles ameliorate E. coli induced pneumonia in a rodent model. Stem Cell Res Ther 2023; 14:151. [PMID: 37280647 DOI: 10.1186/s13287-023-03385-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) derived extracellular vesicles (EVs) have been proposed as an alternative to cell therapy, creating new possible delivery modalities such as nebulisation. We wished to investigate the therapeutic potential of directly nebulised MSC-EVs in the mitigation of Escherichia coli-induced pneumonia. METHODS EV size, surface markers and miRNA content were assessed pre- and post-nebulisation. BEAS2B and A459 lung cells were exposed to lipopolysaccharide (LPS) and treated with nebulised bone marrow (BM) or umbilical cord (UC) MSC-EVs. Viability assays (MTT) and inflammatory cytokine assays were performed. THP-1 monocytes were stimulated with LPS and nebulised BM- or UC-EVs and phagocytosis activity was measured. For in vivo experiments, mice received LPS intratracheally (IT) followed by BM- or UC-EVs intravenously (IV) and injury markers assessed at 24 h. Rats were instilled with E. coli bacteria IT and BM- or UC-EVs delivered IV or by direct nebulisation. At 48 h, lung damage was assessed by physiological parameters, histology and inflammatory marker presence. RESULTS MSC-EVs retained their immunomodulatory and wound healing capacity after nebulisation in vitro. EV integrity and content were also preserved. Therapy with IV or nebulised MSC-EVs reduced the severity of LPS-induced lung injury and E. coli-induced pneumonia by reducing bacterial load and oedema, increasing blood oxygenation and improving lung histological scores. MSC-EV treated animals also showed lower levels of inflammatory cytokines and inflammatory-related markers. CONCLUSIONS MSC-EVs given IV attenuated LPS-induced lung injury, and nebulisation of MSC-EVs did not affect their capacity to attenuate lung injury caused by E. coli pneumonia, as evidenced by reduction in bacterial load and improved lung physiology.
Collapse
Affiliation(s)
- Hector Gonzalez
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Sean McCarthy
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Claire Masterson
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Declan Byrnes
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Ignacio Sallent
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Emma Horan
- Orbsen Therapeutics, IDA Business Park, Dangan, Galway, Ireland
| | | | - Gabriele Vella
- Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele P Mello
- Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Johnatas D Silva
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - John G Laffey
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland
| | - Daniel O'Toole
- REMEDI at CÚRAM Centre for Medical Device Research, University of Galway, Galway, Ireland.
| |
Collapse
|
13
|
Lopes-Pacheco M, Rocco PRM. Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Front Pharmacol 2023; 14:1067422. [PMID: 37007034 PMCID: PMC10062457 DOI: 10.3389/fphar.2023.1067422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Respiratory diseases remain a major health concern worldwide because they subject patients to considerable financial and psychosocial burdens and result in a high rate of morbidity and mortality. Although significant progress has been made in understanding the underlying pathologic mechanisms of severe respiratory diseases, most therapies are supportive, aiming to mitigate symptoms and slow down their progressive course but cannot improve lung function or reverse tissue remodeling. Mesenchymal stromal cells (MSCs) are at the forefront of the regenerative medicine field due to their unique biomedical potential in promoting immunomodulation, anti-inflammatory, anti-apoptotic and antimicrobial activities, and tissue repair in various experimental models. However, despite several years of preclinical research on MSCs, therapeutic outcomes have fallen far short in early-stage clinical trials for respiratory diseases. This limited efficacy has been associated with several factors, such as reduced MSC homing, survival, and infusion in the late course of lung disease. Accordingly, genetic engineering and preconditioning methods have emerged as functional enhancement strategies to potentiate the therapeutic actions of MSCs and thus achieve better clinical outcomes. This narrative review describes various strategies that have been investigated in the experimental setting to functionally potentiate the therapeutic properties of MSCs for respiratory diseases. These include changes in culture conditions, exposure of MSCs to inflammatory environments, pharmacological agents or other substances, and genetic manipulation for enhanced and sustained expression of genes of interest. Future directions and challenges in efficiently translating MSC research into clinical practice are discussed.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| |
Collapse
|
14
|
Dave C, Mei SHJ, McRae A, Hum C, Sullivan KJ, Champagne J, Ramsay T, McIntyre L. Comparison of freshly cultured versus cryopreserved mesenchymal stem cells in animal models of inflammation: A pre-clinical systematic review. eLife 2022; 11:75053. [PMID: 35838024 PMCID: PMC9286731 DOI: 10.7554/elife.75053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/05/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are multipotent cells that demonstrate therapeutic potential for the treatment of acute and chronic inflammatory-mediated conditions. Although controversial, some studies suggest that MSCs may lose their functionality with cryopreservation which could render them non-efficacious. Hence, we conducted a systematic review of comparative pre-clinical models of inflammation to determine if there are differences in in vivo measures of pre-clinical efficacy (primary outcomes) and in vitro potency (secondary outcomes) between freshly cultured and cryopreserved MSCs. Methods: A systematic search on OvidMEDLINE, EMBASE, BIOSIS, and Web of Science (until January 13, 2022) was conducted. The primary outcome included measures of in vivo pre-clinical efficacy; secondary outcomes included measures of in vitro MSC potency. Risk of bias was assessed by the SYRCLE ‘Risk of Bias’ assessment tool for pre-clinical studies. Results: Eighteen studies were included. A total of 257 in vivo pre-clinical efficacy experiments represented 101 distinct outcome measures. Of these outcomes, 2.3% (6/257) were significantly different at the 0.05 level or less; 2 favoured freshly cultured and 4 favoured cryopreserved MSCs. A total of 68 in vitro experiments represented 32 different potency measures; 13% (9/68) of the experiments were significantly different at the 0.05 level or less, with seven experiments favouring freshly cultured MSC and two favouring cryopreserved MSCs. Conclusions: The majority of preclinical primary in vivo efficacy and secondary in vitro potency outcomes were not significantly different (p<0.05) between freshly cultured and cryopreserved MSCs. Our systematic summary of the current evidence base may provide MSC basic and clinical research scientists additional rationale for considering a cryopreserved MSC product in their pre-clinical studies and clinical trials as well as help identify research gaps and guide future related research. Funding: Ontario Institute for Regenerative Medicine
Collapse
Affiliation(s)
- Chintan Dave
- Division of Critical Care Medicine, Department of Medicine, Western University, London, Canada
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Andrea McRae
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Christine Hum
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,University of Ottawa, Ottawa, Canada
| | - Katrina J Sullivan
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Josee Champagne
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Tim Ramsay
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Lauralyn McIntyre
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,Division of Critical Care, Department of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
15
|
Fazekas B, Alagesan S, Watson L, Ng O, Conroy CM, Català C, Andres MV, Negi N, Gerlach JQ, Hynes SO, Lozano F, Elliman SJ, Griffin MD. Comparison of Single and Repeated Dosing of Anti-Inflammatory Human Umbilical Cord Mesenchymal Stromal Cells in a Mouse Model of Polymicrobial Sepsis. Stem Cell Rev Rep 2022; 18:1444-1460. [PMID: 35013938 PMCID: PMC8747454 DOI: 10.1007/s12015-021-10323-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs) ameliorate pre-clinical sepsis and sepsis-associated acute kidney injury (SA-AKI) but clinical trials of single-dose MSCs have not indicated robust efficacy. This study investigated immunomodulatory effects of a novel MSC product (CD362-selected human umbilical cord-derived MSCs [hUC-MSCs]) in mouse endotoxemia and polymicrobial sepsis models. Initially, mice received intra-peritoneal (i.p.) lipopolysaccharide (LPS) followed by single i.p. doses of hUC-MSCs or vehicle. Next, mice underwent cecal ligation and puncture (CLP) followed by intravenous (i.v.) doses of hUC-MSCs at 4 h or 4 and 28 h. Analyses included serum/plasma assays of biochemical indices, inflammatory mediators and the AKI biomarker NGAL; multi-color flow cytometry of peritoneal macrophages (LPS) and intra-renal immune cell subpopulations (CLP) and histology/immunohistochemistry of kidney (CLP). At 72 h post-LPS injections, hUC-MSCs reduced serum inflammatory mediators and peritoneal macrophage M1/M2 ratio. Repeated, but not single, hUC-MSC doses administered at 48 h post-CLP resulted in lower serum concentrations of inflammatory mediators, lower plasma NGAL and reversal of sepsis-associated depletion of intra-renal T cell and myeloid cell subpopulations. Hierarchical clustering analysis of all 48-h serum/plasma analytes demonstrated partial co-clustering of repeated-dose hUC-MSC CLP animals with a Sham group but did not reveal a distinct signature of response to therapy. It was concluded that repeated doses of CD362-selected hUC-MSCs are required to modulate systemic and local immune/inflammatory events in polymicrobial sepsis and SA-AKI. Inter-individual variability and lack of effect of single dose MSC administration in the CLP model are consistent with observations to date from early-phase clinical trials.
Collapse
Affiliation(s)
- Barbara Fazekas
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Olivia Ng
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Orbsen Therapeutics Ltd., Galway, Ireland
| | - Callum M Conroy
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Orbsen Therapeutics Ltd., Galway, Ireland
| | - Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Neema Negi
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Sean O Hynes
- Discipline of Pathology, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Histopathology, Galway University Hospitals, Galway, Ireland
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Department de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | - Matthew D Griffin
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland.
- Department of Nephrology, Saolta University Health Care Group, Galway University Hospitals, Galway, Ireland.
- National University of Ireland Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland.
| |
Collapse
|
16
|
Wang L, Deng Z, Sun Y, Zhao Y, Li Y, Yang M, Yuan R, Liu Y, Qian Z, Zhou F, Kang H. The Study on the Regulation of Th Cells by Mesenchymal Stem Cells Through the JAK-STAT Signaling Pathway to Protect Naturally Aged Sepsis Model Rats. Front Immunol 2022; 13:820685. [PMID: 35197984 PMCID: PMC8858840 DOI: 10.3389/fimmu.2022.820685] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Sepsis is the leading cause of death among patients, especially elderly patients, in intensive care units worldwide. In this study, we established a sepsis model using naturally aged rats and injected 5×106 umbilical cord-derived MSCs via the tail vein. Each group of rats was analyzed for survival, examined for biochemical parameters, stained for organ histology, and analyzed for the Th cell subpopulation ratio and inflammatory cytokine levels by flow cytometry. Western blotting was performed to detect the activity of the JAK-STAT signaling pathway. We designed the vitro experiments to confirm the regulatory role of MSCs, and verified the possible mechanism using JAK/STAT inhibitors. It was revealed from the experiments that the 72 h survival rate of sepsis rats treated with MSCs was significantly increased, organ damage and inflammatory infiltration were reduced, the levels of organ damage indicators were decreased, the ratios of Th1/Th2 and Th17/Treg in peripheral blood and spleen were significantly decreased, the levels of pro-inflammatory cytokines such as IL-6 were decreased, the levels of anti-inflammatory cytokines such as IL-10 were increased, and the levels of STAT1 and STAT3 phosphorylation were reduced. These results were validated in in vitro experiments. Therefore, this study confirms that MSCs can control the inflammatory response induced by sepsis by regulating Th cells and inflammatory factors, and that this leads to the reduction of tissue damage, protection of organ functions and ultimately the improvement of survival in aged sepsis model rats. Inhibition of the JAK-STAT signaling pathway was surmised that it may be an important mechanism for their action.
Collapse
Affiliation(s)
- Lu Wang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yan Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Yan Zhao
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Mengmeng Yang
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Rui Yuan
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuyan Liu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhirong Qian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Feihu Zhou
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongjun Kang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Hongjun Kang,
| |
Collapse
|
17
|
Adverse Mechanical Ventilation and Pneumococcal Pneumonia Induce Immune and Mitochondrial Dysfunctions Mitigated by Mesenchymal Stem Cells in Rabbits. Anesthesiology 2021; 136:293-313. [PMID: 34965287 DOI: 10.1097/aln.0000000000004083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mechanical ventilation for pneumonia may contribute to lung injury due to factors that include mitochondrial dysfunction, and mesenchymal stem cells may attenuate injury. This study hypothesized that mechanical ventilation induces immune and mitochondrial dysfunction, with or without pneumococcal pneumonia, that could be mitigated by mesenchymal stem cells alone or combined with antibiotics. METHODS Male rabbits underwent protective mechanical ventilation (8 ml/kg tidal volume, 5 cm H2O end-expiratory pressure) or adverse mechanical ventilation (20 ml/kg tidal-volume, zero end-expiratory pressure) or were allowed to breathe spontaneously. The same settings were then repeated during pneumococcal pneumonia. Finally, infected animals during adverse mechanical ventilation received human umbilical cord-derived mesenchymal stem cells (3 × 106/kg, intravenous) and/or ceftaroline (20 mg/kg, intramuscular) or sodium chloride, 4 h after pneumococcal challenge. Twenty-four-hour survival (primary outcome), lung injury, bacterial burden, immune and mitochondrial dysfunction, and lung transcriptomes (secondary outcomes) were assessed. RESULTS High-pressure adverse mechanical ventilation reduced the survival of infected animals (0%; 0 of 7) compared with spontaneous breathing (100%; 7 of 7) and protective mechanical ventilation (86%; 6 of 7; both P < 0.001), with higher lung pathology scores (median [interquartile ranges], 5.5 [4.5 to 7.0] vs. 12.6 [12.0 to 14.0]; P = 0.046), interleukin-8 lung concentrations (106 [54 to 316] vs. 804 [753 to 868] pg/g of lung; P = 0.012), and alveolar mitochondrial DNA release (0.33 [0.28 to 0.36] vs. 0.98 [0.76 to 1.21] ng/μl; P < 0.001) compared with infected spontaneously breathing animals. Survival (0%; 0 of 7; control group) was improved by mesenchymal stem cells (57%; 4 of 7; P = 0.001) or ceftaroline alone (57%; 4 of 7; P < 0.001) and improved even more with a combination treatment (86%; 6 of 7; P < 0.001). Mesenchymal stem cells reduced lung pathology score (8.5 [7.0 to 10.5] vs. 12.6 [12.0 to 14.0]; P = 0.043) and alveolar mitochondrial DNA release (0.39 (0.34 to 0.65) vs. 0.98 (0.76 to 1.21) ng/μl; P = 0.025). Mesenchymal stem cells combined with ceftaroline reduced interleukin-8 lung concentrations (665 [595 to 795] vs. 804 [753 to 868] pg/g of lung; P = 0.007) compared to ceftaroline alone. CONCLUSIONS In this preclinical study, mesenchymal stem cells improved the outcome of rabbits with pneumonia and high-pressure mechanical ventilation by correcting immune and mitochondrial dysfunction and when combined with the antibiotic ceftaroline was synergistic in mitigating lung inflammation. EDITOR’S PERSPECTIVE
Collapse
|
18
|
Horie S, Gonzalez H, Brady J, Devaney J, Scully M, O’Toole D, Laffey JG. Fresh and Cryopreserved Human Umbilical-Cord-Derived Mesenchymal Stromal Cells Attenuate Injury and Enhance Resolution and Repair following Ventilation-Induced Lung Injury. Int J Mol Sci 2021; 22:ijms222312842. [PMID: 34884645 PMCID: PMC8657992 DOI: 10.3390/ijms222312842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Ventilator-induced lung injury (VILI) frequently worsens acute respiratory distress syndrome (ARDS) severity. Human mesenchymal stem/stromal cells (MSCs) offer considerable therapeutic promise, but the key impediments of clinical translation stem from limitations due to cell source and availability, and concerns regarding the loss of efficacy following cryopreservation. These experiments compared the efficacy of umbilical-cord-derived MSCs (UC-MSCs), a readily available and homogenous tissue source, to the previously more widely utilised bone-marrow-derived MSCs (BM-MSCs). We assessed their capacity to limit inflammation, resolve injury and enhance repair in relevant lung mechanical stretch models, and the impact of cryopreservation on therapeutic efficacy. Methods: In series 1, confluent alveolar epithelial layers were subjected to cyclic mechanical stretch (22% equibiaxial strain) and wound injury, and the potential of the secretome from BM- and UC-derived MSCs to attenuate epithelial inflammation and cell death, and enhance wound repair was determined. In series 2, anesthetized rats underwent VILI, and later received, in a randomised manner, 1 × 107 MSCs/kg intravenously, that were: (i) fresh BM-MSCs, (ii) fresh UC-MSCs or (iii) cryopreserved UC-MSCs. Control animals received a vehicle (PBS). The extent of the resolution of inflammation and injury, and repair was measured at 24 h. Results: Conditioned medium from BM-MSCs and UC-MSCs comparably decreased stretch-induced pulmonary epithelial inflammation and cell death. BM-MSCs and UC-MSCs comparably enhanced wound resolution. In animals subjected to VILI, both fresh BM-MSCs and UC-MSCs enhanced injury resolution and repair, while cryopreserved UC-MSCs comparably retained their efficacy. Conclusions: Cryopreserved UC-MSCs can reduce stretch-induced inflammation and cell death, enhance wound resolution, and enhance injury resolution and repair following VILI. Cryopreserved UC-MSCs represent a more abundant, cost-efficient, less variable and equally efficacious source of therapeutic MSC product.
Collapse
Affiliation(s)
- Shahd Horie
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - Hector Gonzalez
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - Jack Brady
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - James Devaney
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - Michael Scully
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Medicine, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland
| | - Daniel O’Toole
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
- Correspondence: (D.O.); (J.G.L.)
| | - John G. Laffey
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
- Medicine, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland
- Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group, H91 YR71 Galway, Ireland
- Correspondence: (D.O.); (J.G.L.)
| |
Collapse
|
19
|
Gorman E, Shankar-Hari M, Hopkins P, Tunnicliffe WS, Perkins GD, Silversides J, McGuigan P, Krasnodembskaya A, Jackson C, Boyle R, McFerran J, McDowell C, Campbell C, McFarland M, Smythe J, Thompson J, Williams B, Curley G, Laffey JG, Clarke M, McAuley DF, O'Kane CM. Repair of acute respiratory distress syndrome by stromal cell administration (REALIST) trial: A phase 1 trial. EClinicalMedicine 2021; 41:101167. [PMID: 34746723 PMCID: PMC8551601 DOI: 10.1016/j.eclinm.2021.101167] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) may be of benefit in acute respiratory distress syndrome (ARDS) due to immunomodulatory, reparative, and antimicrobial actions. ORBCEL-C is a population of CD362 enriched umbilical cord-derived MSCs. The REALIST phase 1 trial investigated the safety and feasibility of ORBCEL-C in patients with moderate to severe ARDS. METHODS REALIST phase 1 was an open label, dose escalation trial in which cohorts of mechanically ventilated patients with moderate to severe ARDS received increasing doses (100, 200 or 400 × 106 cells) of a single intravenous infusion of ORBCEL-C in a 3 + 3 design. The primary safety outcome was the incidence of serious adverse events. Dose limiting toxicity was defined as a serious adverse reaction within seven days. Trial registration clinicaltrials.gov NCT03042143. FINDINGS Nine patients were recruited between the 7th January 2019 and 14th January 2020. Study drug administration was well tolerated and no dose limiting toxicity was reported in any of the three cohorts. Eight adverse events were reported for four patients. Pyrexia within 24 h of study drug administration was reported in two patients as pre-specified adverse events. A further two adverse events (non-sustained ventricular tachycardia and deranged liver enzymes), were reported as adverse reactions. Four serious adverse events were reported (colonic perforation, gastric perforation, bradycardia and myocarditis) but none were deemed related to administration of ORBCEL-C. At day 28 no patients had died in cohort one (100 × 106), three patients had died in cohort two (200 × 106) and one patient had died in cohort three (400 × 106). Overall day 28 mortality was 44% (n = 4/9). INTERPRETATION A single intravenous infusion of ORBCEL-C was well tolerated in patients with moderate to severe ARDS. No dose limiting toxicity was reported up to 400 × 106 cells.
Collapse
Affiliation(s)
- Ellen Gorman
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Manu Shankar-Hari
- Guy's and St Thomas’ NHS Foundation Trust, Westminister Bridge Road, London SE1 7EH, United Kingdom
- School of Immunology and Microbial Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Phil Hopkins
- Kings Trauma Centre, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - William S. Tunnicliffe
- Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, United Kingdom
| | - Gavin D. Perkins
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
- University Hospitals Birmingham, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, United Kingdom
| | - Jonathan Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast BT12 6BA, United Kingdom
| | - Peter McGuigan
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast BT12 6BA, United Kingdom
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Colette Jackson
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Roisin Boyle
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Jamie McFerran
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Cliona McDowell
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Christina Campbell
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Margaret McFarland
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast BT12 6BA, United Kingdom
| | - Jon Smythe
- NHS Blood and Transplant, Headley Way, Oxford OX3 9BU, United Kingdom
| | - Jacqui Thompson
- NHS Blood and Transplant Service, Vincent Drive, Edgbaston, Birmingham B15 2SG, United Kingdom
| | - Barry Williams
- Independent Patient and Public Representative, United Kingdom
| | - Gerard Curley
- Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - John G. Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Mike Clarke
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
- Northern Ireland Methodology Hub, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Cecilia M. O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- Corresponding author.
| |
Collapse
|
20
|
Han J, Shi Y, Willis G, Imani J, Kwon MY, Li G, Ayaub E, Ghanta S, Ng J, Hwang N, Tsoyi K, El-Chemaly S, Kourembanas S, Mitsialis SA, Rosas IO, Liu X, Perrella MA. Mesenchymal stromal cell-derived syndecan-2 regulates the immune response during sepsis to foster bacterial clearance and resolution of inflammation. FEBS J 2021; 289:417-435. [PMID: 34355516 PMCID: PMC8766882 DOI: 10.1111/febs.16154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is a life-threatening process related to a dysregulated host response to an underlying infection, which results in organ dysfunction and poor outcomes. Therapeutic strategies using mesenchymal stromal cells (MSCs) are under investigation for sepsis, with efforts to improve cellular utility. Syndecan (SDC) proteins are transmembrane proteoglycans involved with cellular signaling events including tissue repair and modulating inflammation. Bone marrow-derived human MSCs express syndecan-2 (SDC2) at a level higher than other SDC family members; thus, we explored SDC2 in MSC function. Administration of human MSCs silenced for SDC2 in experimental sepsis resulted in decreased bacterial clearance, and increased tissue injury and mortality compared with wild-type MSCs. These findings were associated with a loss of resolution of inflammation in the peritoneal cavity, and higher levels of proinflammatory mediators in organs. MSCs silenced for SDC2 had a decreased ability to promote phagocytosis of apoptotic neutrophils by macrophages in the peritoneum, and also a diminished capability to convert macrophages from a proinflammatory to a proresolution phenotype via cellular or paracrine actions. Extracellular vesicles are a paracrine effector of MSCs that may contribute to resolution of inflammation, and their production was dramatically reduced in SDC2-silenced human MSCs. Collectively, these data demonstrate the importance of SDC2 for cellular and paracrine function of human MSCs during sepsis.
Collapse
Affiliation(s)
- Junwen Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Gareth Willis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Jewel Imani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Min-Young Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gu Li
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ehab Ayaub
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Konstantin Tsoyi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Marrazzo P, Pizzuti V, Zia S, Sargenti A, Gazzola D, Roda B, Bonsi L, Alviano F. Microfluidic Tools for Enhanced Characterization of Therapeutic Stem Cells and Prediction of Their Potential Antimicrobial Secretome. Antibiotics (Basel) 2021; 10:750. [PMID: 34206190 PMCID: PMC8300685 DOI: 10.3390/antibiotics10070750] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Silvia Zia
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
| | | | - Daniele Gazzola
- Cell Dynamics i.S.r.l., 40129 Bologna, Italy; (A.S.); (D.G.)
| | - Barbara Roda
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| |
Collapse
|
22
|
Dabrowska S, Andrzejewska A, Janowski M, Lukomska B. Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Outlook for Inflammatory and Degenerative Diseases. Front Immunol 2021; 11:591065. [PMID: 33613514 PMCID: PMC7893976 DOI: 10.3389/fimmu.2020.591065] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic, multipotent stem cells derived from mesoderm, which can be easily isolated from many sources such as bone marrow, umbilical cord or adipose tissue. MSCs provide support for hematopoietic stem cells and have an ability to differentiate into multiple cell lines. Moreover, they have proangiogenic, protective and immunomodulatory properties. MSCs have the capacity to modulate both innate and adaptive immune responses, which accompany many diseases, by inhibiting pro-inflammatory reactions and stimulating anti-inflammatory activity. Recent findings revealed that the positive effect of MSCs is at least partly associated with the production of extracellular vesicles (EVs). EVs are small membrane structures, containing proteins, lipids and nuclei acids, which take part in intra-cellular communication. Many studies indicate that EVs contain protective and pro-regenerative properties and can modulate an immune response that is activated in various diseases such as CNS diseases, myocardial infarction, liver injury, lung diseases, ulcerative colitis or kidney injury. Thus, EVs have similar functions as their cells of origin and since they do not carry the risk of cell transplantation, such as tumor formation or small vessel blockage, they can be considered a potential therapeutic tool for cell-free therapy.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland.,University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| |
Collapse
|
23
|
Papait A, Cargnoni A, Sheleg M, Silini AR, Kunis G, Ofir R, Parolini O. Perinatal Cells: A Promising COVID-19 Therapy? Front Bioeng Biotechnol 2021; 8:619980. [PMID: 33520970 PMCID: PMC7841388 DOI: 10.3389/fbioe.2020.619980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has become a priority in the health systems of all nations worldwide. In fact, there are currently no specific drugs or preventive treatments such as vaccines. The numerous therapies available today aim to counteract the symptoms caused by the viral infection that in some subjects can evolve causing acute respiratory distress syndromes (ARDS) with consequent admission to intensive care unit. The exacerbated response of the immune system, through cytokine storm, causes extensive damage to the lung tissue, with the formation of edema, fibrotic tissues and susceptibility to opportunistic infections. The inflammatory picture is also aggravated by disseminated intravascular coagulation which worsens the damage not only to the respiratory system, but also to other organs. In this context, perinatal cells represent a valid strategy thanks to their strong immunomodulatory potential, their safety profile, the ability to reduce fibrosis and stimulate reparative processes. Furthermore, perinatal cells exert antibacterial and antiviral actions. This review therefore provides an overview of the characteristics of perinatal cells with a particular focus on the beneficial effects that they could have in patients with COVID-19, and more specifically for their potential use in the treatment of ARDS and sepsis.
Collapse
Affiliation(s)
- Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | | | | | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
24
|
Emerging cellular and pharmacologic therapies for acute respiratory distress syndrome. Curr Opin Crit Care 2020; 27:20-28. [PMID: 33278121 DOI: 10.1097/mcc.0000000000000784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Advances in our understanding of the pathophysiology and biology of ARDS has identified a number of promising cellular and pharmacological therapies. These emerging therapeutics can modulate the immune response, reduce epithelial injury, target endothelial and vascular dysfunction, have anticoagulant effects, and enhance ARDS resolution. RECENT FINDINGS Mesenchymal stromal cell therapy shows promise in earlier phase clinical testing, whereas a number of issues regarding clinical translation, such as donor and effect variability, are currently being optimized to enable larger scale clinical trials. Furthermore, a number of promising mesenchymal stromal cell therapy clinical studies for COVID-19-induced ARDS are underway. Recent studies provide support for several emerging ARDS pharmacotherapies, including steroids, statins, vitamins, anticoagulants, interferons, and carbon monoxide. The history of unsuccessful clinical trials of potential therapies highlights the challenges to successful translation for this heterogeneous clinical syndrome. Given this, attention has focused on the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific therapies, i.e. 'precision medicines'. SUMMARY Mesenchymal stromal cells, steroids, statins, vitamins, anticoagulants, interferons and carbon monoxide have therapeutic promise for ARDS. Identifying ARDS sub-populations most likely to benefit from targeted therapies may facilitate future advances.
Collapse
|
25
|
Gorman E, Millar J, McAuley D, O'Kane C. Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Rev Respir Med 2020; 15:301-324. [PMID: 33172313 DOI: 10.1080/17476348.2021.1848555] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Mesenchymal stromal (stem) cell (MSC) therapies are emerging as a promising therapeutic intervention in patients with Acute Respiratory Distress Syndrome (ARDS) and sepsis due to their reparative, immunomodulatory, and antimicrobial properties.Areas covered: This review provides an overview of Mesenchymal stromal cells (MSCs) and their mechanisms of effect in ARDS and sepsis. The preclinical and clinical evidence to support MSC therapy in ARDS and sepsis is discussed. The potential for MSC therapy in COVID-19 ARDS is discussed with insights from respiratory viral models and early clinical reports of MSC therapy in COVID-19. Strategies to optimize the therapeutic potential of MSCs in ARDS and sepsis are considered including preconditioning, altered gene expression, and alternative cell-free MSC-derived products, such as extracellular vesicles and conditioned medium.Expert opinion: MSC products present considerable therapeutic promise for ARDS and sepsis. Preclinical investigations report significant benefits and early phase clinical studies have not highlighted safety concerns. Optimization of MSC function in preclinical models of ARDS and sepsis has enhanced their beneficial effects. MSC-derived products, as cell-free alternatives, may provide further advantages in this field. These strategies present opportunity for the clinical development of MSCs and MSC-derived products with enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Ellen Gorman
- School of Medicine Dentistry and Biomedical Science, Queen's University Belfast, UK
| | - Jonathan Millar
- Division of Functional Genetics and Development, Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Danny McAuley
- School of Medicine Dentistry and Biomedical Science, Queen's University Belfast, UK
| | - Cecilia O'Kane
- School of Medicine Dentistry and Biomedical Science, Queen's University Belfast, UK
| |
Collapse
|
26
|
Umbilical Cord-Derived CD362 + Mesenchymal Stromal Cells Attenuate Polymicrobial Sepsis Induced by Caecal Ligation and Puncture. Int J Mol Sci 2020; 21:ijms21218270. [PMID: 33158246 PMCID: PMC7672591 DOI: 10.3390/ijms21218270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have a multimodal, immunomodulatory mechanism of action and are now in clinical trials for single organ and systemic sepsis. However, a number of practicalities around source, homogeneity and therapeutic window remain to be determined. Here, we utilised conditioned medium from CD362+-sorted umbilical cord-human MSCs (UC-hMSCs) for a series of in vitro anti-inflammatory assays and the cryopreserved MSCs themselves in a severe (Series 1) or moderate (Series 2+3) caecal ligation and puncture (CLP) rodent model. Surviving animals were assessed at 48 h post injury induction. MSCs improved human lung, colonic and kidney epithelial cell survival following cytokine activation. In severe systemic sepsis, MSCs administered at 30 min enhanced survival (Series 1), and reduced organ bacterial load. In moderate systemic sepsis (Series 2), MSCs were ineffective when delivered immediately or 24 h later. Of importance, MSCs delivered 4 h post induction of moderate sepsis (Series 3) were effective, improving serum lactate, enhancing bacterial clearance from tissues, reducing pro-inflammatory cytokine concentrations and increasing antimicrobial peptides in serum. While demonstrating benefit and immunomodulation in systemic sepsis, therapeutic efficacy may be limited to a specific point of disease onset, and repeat dosing, MSC enhancement or other contingencies may be necessary.
Collapse
|
27
|
Byrnes D, Masterson CH, Artigas A, Laffey JG. Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Semin Respir Crit Care Med 2020; 42:20-39. [PMID: 32767301 DOI: 10.1055/s-0040-1713422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis and acute respiratory distress syndrome (ARDS) constitute devastating conditions with high morbidity and mortality. Sepsis results from abnormal host immune response, with evidence for both pro- and anti-inflammatory activation present from the earliest phases. The "proinflammatory" response predominates initially causing host injury, with later-phase sepsis characterized by immune cell hypofunction and opportunistic superinfection. ARDS is characterized by inflammation and disruption of the alveolar-capillary membrane leading to injury and lung dysfunction. Sepsis is the most common cause of ARDS. Approximately 20% of deaths worldwide in 2017 were due to sepsis, while ARDS occurs in over 10% of all intensive care unit patients and results in a mortality of 30 to 45%. Given the fact that sepsis and ARDS share some-but not all-underlying pathophysiologic injury mechanisms, the lack of specific therapies, and their frequent coexistence in the critically ill, it makes sense to consider therapies for both conditions together. In this article, we will focus on the therapeutic potential of mesenchymal stem/stromal cells (MSCs). MSCs are available from several tissues, including bone marrow, umbilical cord, and adipose tissue. Allogeneic administration is feasible, an important advantage for acute conditions like sepsis or ARDS. They possess diverse mechanisms of action of relevance to sepsis and ARDS, including direct and indirect antibacterial actions, potent effects on the innate and adaptive response, and pro-reparative effects. MSCs can be preactivated thereby potentiating their effects, while the use of their extracellular vesicles can avoid whole cell administration. While early-phase clinical trials suggest safety, considerable challenges exist in moving forward to phase III efficacy studies, and to implementation as a therapy should they prove effective.
Collapse
Affiliation(s)
- Declan Byrnes
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Claire H Masterson
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Antonio Artigas
- Critical Care Center, Corporació Sanitaria Parc Tauli, CIBER Enfermedades Respiratorias, Autonomous University of Barcelona, Sabadell, Spain
| | - John G Laffey
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Department of Anaesthesia, SAOLTA University Health Group, Galway University Hospitals, Galway, Ireland
| |
Collapse
|