1
|
Su W, Nie Y, Zheng S, Yao Y. Recent Research on Chondrocyte Dedifferentiation and Insights for Regenerative Medicine. Biotechnol Bioeng 2025; 122:749-760. [PMID: 39716991 DOI: 10.1002/bit.28915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Chondrocytes maintain the balance of the extracellular matrix by synthesizing glycoproteins, collagen, proteoglycans and hyaluronic acid. Chondrocyte dedifferentiation refers to a process in which chondrocytes lose their mature differentiated phenotype and transform into a fibroblast-like morphology with fewer differentiated stages and inferior function under external stimulation. The important mechanism of homeostasis loss in osteoarthritis (OA) is a change in the chondrocyte phenotype. The dedifferentiation markers of chondrocytes are upregulated in OA, and the pathogenic factors related to OA have also been shown to enhance chondrocyte dedifferentiation. In this review, we compile recent studies on chondrocyte dedifferentiation, with an emphasis on potential markers and the underlying mechanisms of dedifferentiation, as well as the current research progress in inhibiting dedifferentiation or achieving redifferentiation. A deep understanding of chondrocyte dedifferentiation would not only support the pathogenesis of OA theoretically but also provide insightful ideas for regenerative medicine to manipulate the functional phenotype of cells.
Collapse
Affiliation(s)
- Weixian Su
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou Medical University, Guangzhou, China
| | - Yupeng Nie
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou Medical University, Guangzhou, China
| | - Shicong Zheng
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongchang Yao
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Zou S, Xu G, Zheng Z, Chen T, Huang Y. Repair of Osteochondral Defect with Acellular Cartilage Matrix and Thermosensitive Hydrogel Scaffold. Tissue Eng Part A 2024. [PMID: 39636733 DOI: 10.1089/ten.tea.2024.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
In the present study, acellular cartilage matrix (ACM) was modified with poly-l-lysine/hyaluronic acid (PLL/HA) multilayers via detergent-enzyme chemical digestion and layer-by-layer self-assembly technology. This modified ACM was then loaded with Transforming Growth Factor Beta 3 (TGF-β3) and incorporated into a thermosensitive hydrogel (TH) to create a HA/PLL-ACM/TH composite scaffold with sustained-release function. This study aimed to evaluate the efficacy of this novel composite scaffold in promoting chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and facilitating osteochondral defect repair. In vitro, isolated, and cultured rat BMSCs were inoculated in equal amounts into TH, ACM/TH, and HA/PLL-ACM/TH groups, with or without TGF-β3 supplementation, for 21 days. Western blot (WB) analysis and immunofluorescence staining were employed to assess the expression levels of collagen II, aggrecan, and SOX-9. In vivo, osteochondral defect was created in the Sprague-Dawley rat trochlea using microdrilling. TH, ACM/TH, and HA/PLL-ACM/TH scaffolds, with or without TGF-β3, were implanted into the defect. After 6 weeks, the repairs were evaluated macroscopically, using Micro computed tomography (micro-CT), histological analysis, and immunohistochemistry. The results demonstrated that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 significantly upregulated the expression of collagen II, aggrecan, and SOX-9 compared with the control and other experimental groups. Furthermore, at 6 weeks postsurgery, the HA/PLL-ACM/TH group loaded with TGF-β3 exhibited superior tissue formation on the joint surface, as confirmed by micro-CT and histological evidence, indicating improved osteochondral repair. These findings suggest that the HA/PLL-ACM/TH scaffold loaded with TGF-β3 holds promise as a therapeutic strategy for osteochondral defect and offers a novel approach for utilizing acellular cartilage microfilaments.
Collapse
Affiliation(s)
- Shengtao Zou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guochao Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Zheng
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tianming Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yixing Huang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Demmer W, Schinacher J, Wiggenhauser PS, Giunta RE. Use of Acellular Matrices as Scaffolds in Cartilage Regeneration: A Systematic Review. Adv Wound Care (New Rochelle) 2024; 13:625-638. [PMID: 38775424 DOI: 10.1089/wound.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Significance: Cartilage regeneration remains a significant challenge in the field of regenerative medicine. Acellular matrix (AM)-based cartilage tissue regeneration offers an innovative approach to repairing cartilage defects by providing a scaffold for new tissue growth. Its significance lies in its potential to restore joint function, mitigate pain, and improve the quality of life for patients suffering from cartilage-related injuries and conditions. Recent Advances: Recent advances in AM-based cartilage regeneration have focused on enhancing scaffold properties for improved cell adhesion, proliferation, and differentiation. Moreover, several scaffold techniques such as combining acellular dermal matrix (ADM) and acellular cartilage matrix (ACM) with cartilage tissue, as well as biphasic scaffolding, enjoy rising research activity. Incorporating bioactive factors and advanced manufacturing techniques holds promise for producing more biomimetic scaffolds, advancing efficient cartilage repair and regeneration. Critical Issues: Obstacles in AM-based cartilage regeneration include achieving proper integration with the surrounding tissue and ensuring long-term durability of the regenerated cartilage. Furthermore, issues such as high costs and limited availability of suitable cells for scaffold seeding must be considered. The heterogeneity and limited regenerative capabilities of cartilage need to be addressed for successful clinical translation. Future Directions: Research should focus on exploring advanced biomaterials and developing new techniques, regarding easily reproducible scaffolds, ideally constructed from clinically validated and readily available commercial products. Findings underline the potential of AM-based approaches, especially the rising exploration of tissue-derived ADM and ACM. In future, the primary objective should not only be the regeneration of small cartilage defects but rather focus on fully regenerating a joint or larger cartilage defect.
Collapse
|
4
|
Tian G, Yin H, Zheng J, Yu R, Ding Z, Yan Z, Tang Y, Wu J, Ning C, Yuan X, Liao C, Sui X, Zhao Z, Liu S, Guo W, Guo Q. Promotion of osteochondral repair through immune microenvironment regulation and activation of endogenous chondrogenesis via the release of apoptotic vesicles from donor MSCs. Bioact Mater 2024; 41:455-470. [PMID: 39188379 PMCID: PMC11347043 DOI: 10.1016/j.bioactmat.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Utilizing transplanted human umbilical cord mesenchymal stem cells (HUMSCs) for cartilage defects yielded advanced tissue regeneration, but the underlying mechanism remain elucidated. Early after HUMSCs delivery to the defects, we observed substantial apoptosis. The released apoptotic vesicles (apoVs) of HUMSCs promoted cartilage regeneration by alleviating the chondro-immune microenvironment. ApoVs triggered M2 polarization in macrophages while simultaneously facilitating the chondrogenic differentiation of endogenous MSCs. Mechanistically, in macrophages, miR-100-5p delivered by apoVs activated the MAPK/ERK signaling pathway to promote M2 polarization. In MSCs, let-7i-5p delivered by apoVs promoted chondrogenic differentiation by targeting the eEF2K/p38 MAPK axis. Consequently, a cell-free cartilage regeneration strategy using apoVs combined with a decellularized cartilage extracellular matrix (DCM) scaffold effectively promoted the regeneration of osteochondral defects. Overall, new mechanisms of cartilage regeneration by transplanted MSCs were unconcealed in this study. Moreover, we provided a novel experimental basis for cell-free tissue engineering-based cartilage regeneration utilizing apoVs.
Collapse
Affiliation(s)
- Guangzhao Tian
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Han Yin
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinxuan Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Rongcheng Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Zhengang Ding
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zineng Yan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yiqi Tang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jiang Wu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chao Ning
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xun Yuan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chenxi Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiang Sui
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhe Zhao
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Shuyun Liu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510080, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| |
Collapse
|
5
|
Meng H, Liu X, Liu R, Zheng Y, Hou A, Liu S, He W, Wang Y, Wang A, Guo Q, Peng J. Decellularized laser micro-patterned osteochondral implants exhibit zonal recellularization and self-fixing for osteochondral regeneration in a goat model. J Orthop Translat 2024; 46:18-32. [PMID: 38774916 PMCID: PMC11106784 DOI: 10.1016/j.jot.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/24/2024] Open
Abstract
Background Osteochondral regeneration has long been recognized as a complex and challenging project in the field of tissue engineering. In particular, reconstructing the osteochondral interface is crucial for determining the effectiveness of the repair. Although several artificial layered or gradient scaffolds have been developed recently to simulate the natural interface, the functions of this unique structure have still not been fully replicated. In this paper, we utilized laser micro-patterning technology (LMPT) to modify the natural osteochondral "plugs" for use as grafts and aimed to directly apply the functional interface unit to repair osteochondral defects in a goat model. Methods For in vitro evaluations, the optimal combination of LMPT parameters was confirmed through mechanical testing, finite element analysis, and comparing decellularization efficiency. The structural and biological properties of the laser micro-patterned osteochondral implants (LMP-OI) were verified by measuring the permeability of the interface and assessing the recellularization processes. In the goat model for osteochondral regeneration, a conical frustum-shaped defect was specifically created in the weight-bearing area of femoral condyles using a customized trephine with a variable diameter. This unreported defect shape enabled the implant to properly self-fix as expected. Results The micro-patterning with the suitable pore density and morphology increased the permeability of the LMP-OIs, accelerated decellularization, maintained mechanical stability, and provided two relative independent microenvironments for subsequent recellularization. The LMP-OIs with goat's autologous bone marrow stromal cells in the cartilage layer have securely integrated into the osteochondral defects. At 6 and 12 months after implantation, both imaging and histological assessments showed a significant improvement in the healing of the cartilage and subchondral bone. Conclusion With the natural interface unit and zonal recellularization, the LMP-OI is an ideal scaffold to repair osteochondral defects especially in large animals. The translational potential of this article These findings suggest that such a modified xenogeneic osteochondral implant could potentially be explored in clinical translation for treatment of osteochondral injuries. Furthermore, trimming a conical frustum shape to the defect region, especially for large-sized defects, may be an effective way to achieve self-fixing for the implant.
Collapse
Affiliation(s)
- Haoye Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
- Institute of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuejian Liu
- Institute of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ronghui Liu
- Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Angyang Hou
- Institute of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Wei He
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yu Wang
- Institute of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Aiyuan Wang
- Institute of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Quanyi Guo
- Institute of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Jiang Peng
- Institute of Orthopaedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| |
Collapse
|
6
|
Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 2023; 168:372-387. [PMID: 37481194 DOI: 10.1016/j.actbio.2023.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Osteoarthritis (OA) is a widespread clinical disease characterized by cartilage degeneration in middle-aged and elderly people. Currently, there is no effective treatment for OA apart from total joint replacement in advanced stages. Mesenchymal stem cells (MSCs) are a type of adult stem cell with diverse differentiation capabilities and immunomodulatory potentials. MSCs are known to effectively regulate the cartilage microenvironment, promote cartilage regeneration, and alleviate OA symptoms. As a result, they are promising sources of cells for OA therapy. Recent studies have revealed the presence of resident MSCs in synovial fluid, synovial membrane, and articular cartilage, which can be collected as knee joint-derived MSCs (KJD-MSC). Several preclinical and clinical studies have demonstrated that KJD-MSCs have great potential for OA treatment, whether applied alone, in combination with biomaterials, or as exocrine MSCs. In this article, we will review the characteristics of MSCs in the joints, including their cytological characteristics, such as proliferation, cartilage differentiation, and immunomodulatory abilities, as well as the biological function of MSC exosomes. We will also discuss the use of tissue engineering in OA treatment and introduce the concept of a new generation of stem cell-based tissue engineering therapy, including the use of engineering, gene therapy, and gene editing techniques to create KJD-MSCs or KJD-MSC derivative exosomes with improved functionality and targeted delivery. These advances aim to maximize the efficiency of cartilage tissue engineering and provide new strategies to overcome the bottleneck of OA therapy. STATEMENT OF SIGNIFICANCE: This research will provide new insights into the medicinal benefit of Joint resident Mesenchymal Stem Cells (MSCs), specifically on its cartilage tissue engineering ability. Through this review, the community will further realize promoting joint resident mesenchymal stem cells, especially cartilage progenitor/MSC-like progenitor cells (CPSC), as a preventive measure against osteoarthritis and cartilage injury. People and medical institutions may also consider cartilage derived MSC as an alternative approach against cartilage degeneration. Moreover, the discussion presented in this study will convey valuable information for future research that will explore the medicinal benefits of cartilage derived MSC.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
7
|
Gao F, Mao X, Wu X. Mesenchymal stem cells in osteoarthritis: The need for translation into clinical therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:199-225. [PMID: 37678972 DOI: 10.1016/bs.pmbts.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Widely used for cell-based therapy in various medical fields, mesenchymal stem cells (MSCs) show capacity for anti-inflammatory effects, anti-apoptotic activity, immunomodulation, and tissue repair and regeneration. As such, they can potentially be used to treat osteoarthritis (OA). However, MSCs from different sources have distinct advantages and disadvantages, and various animal models and clinical trials using different sources of MSCs are being conducted in OA regenerative medicine. It is now widely believed that the primary tissue regeneration impact of MSCs is via paracrine effects, rather than direct differentiation and replacement. Cytokines and molecules produced by MSCs, including extracellular vesicles with mRNAs, microRNAs, and bioactive substances, play a significant role in OA repair. This chapter outlines the properties of MSCs and recent animal models and clinical trials involving MSCs-based OA therapy, as well as how the paracrine effect of MSCs acts in OA cartilage repair. Additionally, it discusses challenges and controversies in MSCs-based OA therapy. Despite its limits and unanticipated hazards, MSCs have the potential to be translated into therapeutic therapy for future OA treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoxin Wu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Liu TP, Ha P, Xiao CY, Kim SY, Jensen AR, Easley J, Yao Q, Zhang X. Updates on mesenchymal stem cell therapies for articular cartilage regeneration in large animal models. Front Cell Dev Biol 2022; 10:982199. [PMID: 36147737 PMCID: PMC9485723 DOI: 10.3389/fcell.2022.982199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
There is an unmet need for novel and efficacious therapeutics for regenerating injured articular cartilage in progressive osteoarthritis (OA) and/or trauma. Mesenchymal stem cells (MSCs) are particularly promising for their chondrogenic differentiation, local healing environment modulation, and tissue- and organism-specific activity; however, despite early in vivo success, MSCs require further investigation in highly-translatable models prior to disseminated clinical usage. Large animal models, such as canine, porcine, ruminant, and equine models, are particularly valuable for studying allogenic and xenogenic human MSCs in a human-like osteochondral microenvironment, and thus play a critical role in identifying promising approaches for subsequent clinical investigation. In this mini-review, we focus on [1] considerations for MSC-harnessing studies in each large animal model, [2] source tissues and organisms of MSCs for large animal studies, and [3] tissue engineering strategies for optimizing MSC-based cartilage regeneration in large animal models, with a focus on research published within the last 5 years. We also highlight the dearth of standard assessments and protocols regarding several crucial aspects of MSC-harnessing cartilage regeneration in large animal models, and call for further research to maximize the translatability of future MSC findings.
Collapse
Affiliation(s)
- Timothy P. Liu
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pin Ha
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Crystal Y. Xiao
- Samueli School of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sang Yub Kim
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andrew R. Jensen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeremiah Easley
- Preclinical Surgical Research Laboratory, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Qingqiang Yao, ; Xinli Zhang,
| | - Xinli Zhang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Qingqiang Yao, ; Xinli Zhang,
| |
Collapse
|
9
|
Zhang Q, Hu Y, Long X, Hu L, Wu Y, Wu J, Shi X, Xie R, Bi Y, Yu F, Li P, Yang Y. Preparation and Application of Decellularized ECM-Based Biological Scaffolds for Articular Cartilage Repair: A Review. Front Bioeng Biotechnol 2022; 10:908082. [PMID: 35845417 PMCID: PMC9280718 DOI: 10.3389/fbioe.2022.908082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cartilage regeneration is dependent on cellular-extracellular matrix (ECM) interactions. Natural ECM plays a role in mechanical and chemical cell signaling and promotes stem cell recruitment, differentiation and tissue regeneration in the absence of biological additives, including growth factors and peptides. To date, traditional tissue engineering methods by using natural and synthetic materials have not been able to replicate the physiological structure (biochemical composition and biomechanical properties) of natural cartilage. Techniques facilitating the repair and/or regeneration of articular cartilage pose a significant challenge for orthopedic surgeons. Whereas, little progress has been made in this field. In recent years, with advances in medicine, biochemistry and materials science, to meet the regenerative requirements of the heterogeneous and layered structure of native articular cartilage (AC) tissue, a series of tissue engineering scaffolds based on ECM materials have been developed. These scaffolds mimic the versatility of the native ECM in function, composition and dynamic properties and some of which are designed to improve cartilage regeneration. This review systematically investigates the following: the characteristics of cartilage ECM, repair mechanisms, decellularization method, source of ECM, and various ECM-based cartilage repair methods. In addition, the future development of ECM-based biomaterials is hypothesized.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Yixin Hu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Xuan Long
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lingling Hu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Yu Wu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Ji Wu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Xiaobing Shi
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Runqi Xie
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Yu Bi
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Fangyuan Yu
- Senior Department of Orthopedics, Forth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Fangyuan Yu, ; Pinxue Li, ; Yu Yang,
| | - Pinxue Li
- School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Fangyuan Yu, ; Pinxue Li, ; Yu Yang,
| | - Yu Yang
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
- *Correspondence: Fangyuan Yu, ; Pinxue Li, ; Yu Yang,
| |
Collapse
|
10
|
Ao Y, Tang W, Tan H, Li J, Wang F, Yang L. Hydrogel composed of type II collagen, chondroitin sulfate and hyaluronic acid for cartilage tissue engineering. Biomed Mater Eng 2022; 33:515-523. [PMID: 35754257 DOI: 10.3233/bme-221404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cartilage tissue engineering is a promising way to repair cartilage defects. Different materials have been applied in the preparation of cartilage hydrogels, but all with various disadvantages. OBJECTIVE The aim of this study was to prepare cartilage hydrogel using type II collagen, chondroitin sulfate and hyaluronic acid, to explore their gelation effect and compressive strength, and to analyze the feasibility of their application in cartilage tissue engineering. METHODS Type II collagen (Col II), hyaluronic acid (HA) and chondroitin sulfate (CS) were mixed in a certain proportion to prepare gel scaffolds; changes in chemical groups were detected by Fourier transform infrared. After the hydrogel was prepared, its compressive strength was measured. Umbilical cord stem cells were co-cultured with hydrogel scaffolds to observe its cytocompatibility and analyze whether stem cells had cellular activity during co-culture; histological staining was applied to observe the hydrogel loaded with stem cells. RESULTS Cartilage hydrogels were successfully prepared with good compressive strength, and Fourier transform infrared analysis showed that Schiff base reaction occurred during the preparation process and tight chemical cross-linking was formed. The results of umbilical cord stem cell co-culture showed that the hydrogel had good cytocompatibility and the stem cells had good activity in the hydrogel. CONCLUSIONS Cartilage hydrogels with stable structures were successfully prepared and had good compressive strength. Hydrogel scaffold could provide a suitable living environment for umbilical cord stem cells, so that they maintain normal cell morphology and activity, and has a good application potential in cartilage tissue engineering.
Collapse
Affiliation(s)
- Yunong Ao
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenbao Tang
- Department of Orthopedics, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Hongbo Tan
- Department of Orthopedics, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Jun Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fuyou Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
11
|
Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications. Stem Cells Int 2022; 2022:2454168. [PMID: 35035489 PMCID: PMC8758292 DOI: 10.1155/2022/2454168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Chondropathies are increasing worldwide, but effective treatments are currently lacking. Mesenchymal stromal cell (MSCs) transplantation represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA) and rheumatoid arthritis (RA). Umbilical cord- (UC-) MSCs gained increasing interest due to their multilineage differentiation potential, immunomodulatory, and anti-inflammatory properties as well as higher proliferation rates, abundant supply along with no risks for the donor compared to adult MSCs. In addition, UC-MSCs are physiologically adapted to survive in an ischemic and nutrient-poor environment as well as to produce an extracellular matrix (ECM) similar to that of the cartilage. All these characteristics make UC-MSCs a pivotal source for a stem cell-based treatment of chondropathies. In this review, the regenerative potential of UC-MSCs for the treatment of cartilage diseases will be discussed focusing on in vitro, in vivo, and clinical studies.
Collapse
|
12
|
Chen K, Chen H, Gao H, Zhou W, Zheng S, Chen Y, Zhang S, Yao Y. Effect of passage number of genetically modified TGF-β3 expressing primary chondrocytes on the chondrogenesis of ATDC5 cells in a 3D coculture system. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac489e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Due to the lack of blood vessels, nerves and lymphatics, articular cartilage is difficult to repair once damaged. Tissue engineering is considered to be a potential strategy for cartilage regeneration. Successful tissue engineering strategies depend on the effective combination of biomaterials, seed cells and biological factors. In our previous study, a genetically modified coculture system with chondrocytes and ATDC5 cells in an alginate hydrogel has exhibited a superior ability to enhance chondrogenesis. In this study, we further evaluated the influence of chondrocytes at various passages on chondrogenesis in the coculture system. The results demonstrated that transfection efficiency was hardly influenced by the passage of chondrocytes. The coculture system with passage 5 (P5) chondrocytes had a better effect on chondrogenesis of ATDC 5 cells, while chondrocytes in this coculture system presented higher levels of dedifferentiation than other groups with P1 or P3 chondrocytes. Therefore, P5 chondrocytes were shown to be more suitable for the coculture system, as they accumulated in sufficient cell numbers with more passages and had a higher level of dedifferentiation, which was prone to form a favorable niche for chondrogenesis of ATDC5 cells. This study may provide fresh insights for future cartilage tissue engineering strategies with a combination of a coculture system and advanced biomaterials.
Collapse
|
13
|
Muthu S, Kartheek RR, Jeyaraman N, Rajendran RL, Khanna M, Jeyaraman M, Packkyarathinam RP, Gangadaran P, Ahn BC. Is Culture Expansion Necessary in Autologous Mesenchymal Stromal Cell Therapy to Obtain Superior Results in the Management of Knee Osteoarthritis?-Meta-Analysis of Randomized Controlled Trials. Bioengineering (Basel) 2021; 8:220. [PMID: 34940373 PMCID: PMC8698637 DOI: 10.3390/bioengineering8120220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
Study Design: Meta-analysis. Objectives: We aimed to analyze the impact of cultured expansion of autologous mesenchymal stromal cells (MSCs) in the management of osteoarthritis of the knee from randomized controlled trials (RCTs) available in the literature. Materials and Methods: We conducted independent and duplicate electronic database searches including PubMed, Embase, Web of Science, and Cochrane Library until August 2021 for RCTs analyzing the efficacy and safety of culture-expanded compared to non-cultured autologous MSCs in the management of knee osteoarthritis. The Visual Analog Score (VAS) for pain, Western Ontario McMaster University's Osteoarthritis Index (WOMAC), Lysholm score, Knee Osteoarthritis Outcome Score (KOOS), and adverse events were the analyzed outcomes. Analysis was performed in R-platform using OpenMeta [Analyst] software. Results: Overall, 17 studies involving 767 patients were included for analysis. None of the studies made a direct comparison of the culture expanded and non-cultured MSCs, hence we pooled the results of all the included studies of non-cultured and cultured types of MSC sources and made a comparative analysis of the outcomes. At six months, culture expanded MSCs showed significantly better improvement (p < 0.001) in VAS outcome. Uncultured MSCs, on the other hand, demonstrated significant VAS improvement in the long term (12 months) in VAS (p < 0.001), WOMAC (p = 0.025), KOOS score (p = 0.016) where cultured-expanded MSCs failed to demonstrate a significant change. Culturing of MSCs did not significantly increase the complications noted (p = 0.485). On sub-group analysis, adipose-derived uncultured MSCs outperformed culture-expanded MSCs at both short term (six months) and long term (12 months) in functional outcome parameters such as WOMAC (p < 0.001, p = 0.025), Lysholm (p < 0.006), and KOOS (p < 0.003) scores, respectively, compared to their controls. Conclusions: We identified a void in literature evaluating the impact of culture expansion of MSCs for use in knee osteoarthritis. Our indirect analysis of literature showed that culture expansion of autologous MSCs is not a necessary factor to obtain superior results in the management of knee osteoarthritis. Moreover, while using uncultured autologous MSCs, we recommend MSCs of adipose origin to obtain superior functional outcomes. However, we urge future trials of sufficient quality to validate our findings to arrive at a consensus on the need for culture expansion of MSCs for use in cellular therapy of knee osteoarthritis.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India;
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
| | - Randhi Rama Kartheek
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
- Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow 226401, Uttar Pradesh, India
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
| | - Rathinavelpandian Perunchezhian Packkyarathinam
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
14
|
Xu X, Gao J, Liu S, Chen L, Chen M, Yu X, Ma N, Zhang J, Chen X, Zhong L, Yu L, Xu L, Guo Q, Ding J. Magnetic resonance imaging for non-invasive clinical evaluation of normal and regenerated cartilage. Regen Biomater 2021; 8:rbab038. [PMID: 34408910 PMCID: PMC8369076 DOI: 10.1093/rb/rbab038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
With the development of tissue engineering and regenerative medicine, it is much desired to establish bioimaging techniques to monitor the real-time regeneration efficacy in vivo in a non-invasive way. Herein, we tried magnetic resonance imaging (MRI) to evaluate knee cartilage regeneration after implanting a biomaterial scaffold seeded with chondrocytes, namely, matrix-induced autologous chondrocyte implantation (MACI). After summary of the T2 mapping and the T1-related delayed gadolinium-enhanced MRI imaging of cartilage (dGEMRIC) in vitro and in vivo in the literature, these two MRI techniques were tried clinically. In this study, 18 patients were followed up for 1 year. It was found that there was a significant difference between the regeneration site and the neighboring normal site (control), and the difference gradually diminished with regeneration time up to 1 year according to both the quantitative T1 and T2 MRI methods. We further established the correlation between the quantitative evaluation of MRI and the clinical Lysholm scores for the first time. Hence, the MRI technique was confirmed to be a feasible semi-quantitative yet non-invasive way to evaluate the in vivo regeneration of knee articular cartilage.
Collapse
Affiliation(s)
- Xian Xu
- Department of Radiology, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Liang Chen
- Institute for Medical Device Control, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Min Chen
- Department of Radiology, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Ning Ma
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jun Zhang
- Department of Radiology, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Lisen Zhong
- Department of Radiology, The Second Medical Center & National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Liming Xu
- Institute for Medical Device Control, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries of PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| |
Collapse
|
15
|
Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration. Stem Cells Int 2021; 2021:8830834. [PMID: 33824665 PMCID: PMC8007380 DOI: 10.1155/2021/8830834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
Collapse
|
16
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
17
|
Chen M, Li Y, Liu S, Feng Z, Wang H, Yang D, Guo W, Yuan Z, Gao S, Zhang Y, Zha K, Huang B, Wei F, Sang X, Tian Q, Yang X, sui X, Zhou Y, Zheng Y, Guo Q. Hierarchical macro-microporous WPU-ECM scaffolds combined with Microfracture Promote in Situ Articular Cartilage Regeneration in Rabbits. Bioact Mater 2020; 6:1932-1944. [PMID: 33426368 PMCID: PMC7772526 DOI: 10.1016/j.bioactmat.2020.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering provides a promising avenue for treating cartilage defects. However, great challenges remain in the development of structurally and functionally optimized scaffolds for cartilage repair and regeneration. In this study, decellularized cartilage extracellular matrix (ECM) and waterborne polyurethane (WPU) were employed to construct WPU and WPU-ECM scaffolds by water-based 3D printing using low-temperature deposition manufacturing (LDM) system, which combines rapid deposition manufacturing with phase separation techniques. The scaffolds successfully achieved hierarchical macro‐microporous structures. After adding ECM, WPU scaffolds were markedly optimized in terms of porosity, hydrophilia and bioactive components. Moreover, the optimized WPU-ECM scaffolds were found to be more suitable for cell distribution, adhesion, and proliferation than the WPU scaffolds. Most importantly, the WPU-ECM scaffold could facilitate the production of glycosaminoglycan (GAG) and collagen and the upregulation of cartilage-specific genes. These results indicated that the WPU-ECM scaffold with hierarchical macro‐microporous structures could recreate a favorable microenvironment for cell adhesion, proliferation, differentiation, and ECM production. In vivo studies further revealed that the hierarchical macro‐microporous WPU-ECM scaffold combined with the microfracture procedure successfully regenerated hyaline cartilage in a rabbit model. Six months after implantation, the repaired cartilage showed a similar histological structure and mechanical performance to that of normal cartilage. In conclusion, the hierarchical macro‐microporous WPU-ECM scaffold may be a promising candidate for cartilage tissue engineering applications in the future. Hierarchical macro‐microporous scaffolds could be fabricated by low-temperature deposition manufacturing. Waterborne polyurethane (WPU) scaffolds were optimized by adding decellularized cartilage extracellular matrix (ECM). The WPU-ECM scaffold provided a suitable microenvironment for cell attachment, proliferation, and differentiation in vitro. The paradigm of WPU-ECM scaffold and microfracture (MF) has great potential for clinical application in cartilage repair.
Collapse
Affiliation(s)
- Mingxue Chen
- Department of Orthopaedic Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - YangYang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Zhaoxuan Feng
- School of Material Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Hao Wang
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000, People's Republic of China
| | - Dejin Yang
- Department of Orthopaedic Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China
| | - Weimin Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Zhiguo Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Shuang Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Yu Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Kangkang Zha
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Bo Huang
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou, 646000, People's Republic of China
| | - Fu Wei
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Xinyu Sang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Qinyu Tian
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Xuan Yang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Xiang sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Yixin Zhou
- Department of Orthopaedic Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035, People's Republic of China
- Corresponding author.
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
- Corresponding author.
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
- Corresponding author.
| |
Collapse
|