1
|
Zhang Z, Sun Z, Jia R, Jiang D, Xu Z, Zhang Y, Wu YQ, Wang X. Protective effects of polydatin against bone and joint disorders: the in vitro and in vivo evidence so far. Nutr Res Rev 2024; 37:96-107. [PMID: 37088535 DOI: 10.1017/s0954422423000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Polydatin is an active polyphenol displaying multifaceted benefits. Recently, growing studies have noticed its potential therapeutic effects on bone and joint disorders (BJDs). Therefore, this article reviews recent in vivo and in vitro progress on the protective role of polydatin against BJDs. An insight into the underlying mechanisms is also presented. It was found that polydatin could promote osteogenesis in vitro, and symptom improvements have been disclosed with animal models of osteoporosis, osteosarcoma, osteoarthritis and rheumatic arthritis. These beneficial effects obtained in laboratory could be mainly attributed to the bone metabolism-regulating, anti-inflammatory, antioxidative, apoptosis-regulating and autophagy-regulating functions of polydatin. However, studies on human subjects with BJDs that can lead to early identification of the clinical efficacy and adverse effects of polydatin have not been reported yet. Accordingly, this review serves as a starting point for pursuing clinical trials. Additionally, future emphasis should also be devoted to the low bioavailability and prompt metabolism nature of polydatin. In summary, well-designed clinical trials of polydatin in patients with BJD are in demand, and its pharmacokinetic nature must be taken into account.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Department of Spine Surgery, Youyang Tujia and Miao Autonomous County People's Hospital, Chongqing, 409899, People's Republic of China
| | - Zhicheng Sun
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Runze Jia
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dingyu Jiang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Zhenchao Xu
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yilu Zhang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yun-Qi Wu
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Xiyang Wang
- Department of Orthopaedics, Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| |
Collapse
|
2
|
Huang XY, Zhou XX, Yang H, Xu T, Dao JW, Bian L, Wei DX. Directed osteogenic differentiation of human bone marrow mesenchymal stem cells via sustained release of BMP4 from PBVHx-based nanoparticles. Int J Biol Macromol 2024; 265:130649. [PMID: 38453121 DOI: 10.1016/j.ijbiomac.2024.130649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Bone Morphogenetic Protein 4 (BMP4) is crucial for bone and cartilage tissue regeneration, essential in medical tissue engineering, cosmetology, and aerospace. However, its cost and degradation susceptibility pose significant clinical challenges. To enhance its osteogenic activity while reducing dosage and administration frequency, we developed a novel long-acting BMP4 delivery system using poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PBVHx) nanoparticles with soybean lecithin-modified BMP4 (sBP-NPs). These nanoparticles promote directed osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through sustained BMP4 release. sBP-NPs exhibited uniform size (100-200 nm) and surface charges, with higher BMP4 entrapment efficiency (82.63 %) compared to controls. After an initial burst release within 24 h, sBP-NPs achieved 80 % cumulative BMP4 release within 20 days, maintaining levels better than control BP-NPs with unmodified BMP4. Co-incubation and nanoparticle uptake experiments confirmed excellent biocompatibility of sBP-NPs, promoting hBMSC differentiation towards osteogenic lineage with increased expression of type I collagen, calcium deposition, and ALP activity (> 20,000 U/g protein) compared to controls. Moreover, hBMSCs treated with sBP-NPs exhibited heightened expression of osteogenic genetic markers, surpassing control groups. Hence, this innovative strategy of sustained BMP4 release from sBP-NPs holds potential to revolutionize bone regeneration in minimally invasive surgery, medical cosmetology or space environments.
Collapse
Affiliation(s)
- Xiao-Yun Huang
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China; Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xiao-Xiang Zhou
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China
| | - Hui Yang
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China
| | - Tao Xu
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China
| | - Jin-Wei Dao
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong 643002, China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Dai-Xu Wei
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China; School of Clinical Medicine, Chengdu University, Chengdu, China; Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong 643002, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Duspara K, Sikora R, Petrovic A, Kuna Roguljic L, Matic A, Kralik K, Roguljic H, Kizivat T, Duspara M, Igrec D, Bojanic K, Smolic R, Vcev A, Wyszyńska M, Wu GY, Smolic M. Changes in Dickkopf-1, but Not Sclerostin, in Gingival Crevicular Fluid Are Associated with Peroral Statin Treatment in Patients with Periodontitis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:508. [PMID: 38541234 PMCID: PMC10972349 DOI: 10.3390/medicina60030508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2025]
Abstract
Background and Objectives: Periodontitis is marked by the destruction of alveolar bone. Sclerostin (SOST) and dickkopf-1 (DKK-1) act as inhibitors of the Wingless-type (Wnt) signaling pathway, a key regulator of bone metabolism. Recent studies have suggested that statins play a role in bone resorption and formation by influencing Wnt signaling. The aim of this study was to determine the levels of SOST and DKK-1 in periodontal patients with and without peroral statins treatment in their therapy. Materials and Methods: A total of 79 patients with diagnosed periodontitis were divided into two groups: 39 patients on statin therapy (SP group) and 40 patients without statin therapy as a control group (P group). The periodontal clinical examination probing (pocket) depth (PD) and gingival recession (GR) were measured, and approximal plaque was detected, while vertical and horizontal bone resorption was measured using a panoramic radiograph image. Clinical attachment loss (CAL) values were calculated using PD and GR values. Gingival crevicular fluid (GCF) was collected and used for measuring SOST and DKK-1 levels. A questionnaire was used to assess lifestyle habits and statin intake. Patients' medical records were used to obtain biochemical parameters. Results: There was no significant difference in sclerostin concentration between the SP and P group. DKK-1 values were significantly higher in the SP group compared to the control group (p = 0.04). Also, PD (p = 0.001) and GR (p = 0.03) were significantly higher in the SP group. The level of DKK-1 had a positive relationship with the PD, the greater the PD, the higher the level of DKK-1 (Rho = 0.350), while there was no significant association with other parameters. Conclusions: Peroral statins in periodontal patients are associated with GCF levels of DKK-1 but not with sclerostin levels.
Collapse
Affiliation(s)
- Kristina Duspara
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.D.); (R.S.); (A.P.); (L.K.R.); (A.M.); (D.I.); (K.B.); (R.S.); (A.V.)
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.K.); (H.R.); (T.K.)
- Public Health Scientific Institution Medical Center “Dr. Mustafa Sehovic”, 75000 Tuzla, Bosnia and Herzegovina;
| | - Renata Sikora
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.D.); (R.S.); (A.P.); (L.K.R.); (A.M.); (D.I.); (K.B.); (R.S.); (A.V.)
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.D.); (R.S.); (A.P.); (L.K.R.); (A.M.); (D.I.); (K.B.); (R.S.); (A.V.)
| | - Lucija Kuna Roguljic
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.D.); (R.S.); (A.P.); (L.K.R.); (A.M.); (D.I.); (K.B.); (R.S.); (A.V.)
| | - Anita Matic
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.D.); (R.S.); (A.P.); (L.K.R.); (A.M.); (D.I.); (K.B.); (R.S.); (A.V.)
| | - Kristina Kralik
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.K.); (H.R.); (T.K.)
| | - Hrvoje Roguljic
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.K.); (H.R.); (T.K.)
| | - Tomislav Kizivat
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.K.); (H.R.); (T.K.)
- University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Mirjana Duspara
- Public Health Scientific Institution Medical Center “Dr. Mustafa Sehovic”, 75000 Tuzla, Bosnia and Herzegovina;
| | - Dunja Igrec
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.D.); (R.S.); (A.P.); (L.K.R.); (A.M.); (D.I.); (K.B.); (R.S.); (A.V.)
| | - Kristina Bojanic
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.D.); (R.S.); (A.P.); (L.K.R.); (A.M.); (D.I.); (K.B.); (R.S.); (A.V.)
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.K.); (H.R.); (T.K.)
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.D.); (R.S.); (A.P.); (L.K.R.); (A.M.); (D.I.); (K.B.); (R.S.); (A.V.)
| | - Aleksandar Vcev
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.D.); (R.S.); (A.P.); (L.K.R.); (A.M.); (D.I.); (K.B.); (R.S.); (A.V.)
| | - Magdalena Wyszyńska
- Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Street, 40-055 Katowice, Poland;
| | - George Y. Wu
- University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.D.); (R.S.); (A.P.); (L.K.R.); (A.M.); (D.I.); (K.B.); (R.S.); (A.V.)
| |
Collapse
|
4
|
Liu ZW, Xi XL, Wu TR, Lu YY, Zhong PC, Hu YJ, Shen XL. Aikeqing, a kidney- and spleen-tonifying compound Chinese medicine granule, prevented ovariectomy-induced bone loss in rats via the suppression of osteoclastogenesis. Biomed Pharmacother 2023; 166:115339. [PMID: 37595429 DOI: 10.1016/j.biopha.2023.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Postmenopausal women are prone to osteoporosis due to increased osteoclast activation and bone resorption caused by oestrogen deficiency. In Traditional Chinese Medicine theory, medicines with spleen- and kidney-nourishing effects are commonly used in postmenopausal osteoporosis (PMOP) treatment. Aikeqing (AKQ) is a compound Chinese medicinal granule with spleen- and kidney-nourishing effects. Herein, we investigate the in vitro and in vivo anti-osteoporotic effects of AKQ, its underlying mechanisms and pharmacodynamic basis. In vitro antiosteoporotic effects of AKQ were assessed by its ability to promote osteoblastogenesis in MC3T3-E1 and/or inhibit RANKL-induced osteoclastogenesis in murine bone marrow monocytes (BMMs). The protective effect of AKQ on bone loss induced by oestrogen deficiency was evaluated in ovariectomized rats. The underlying mechanisms were studied in BMMs by detecting the effects of AKQ on the RANKL-induced expression of genes and proteins involved in the regulation of osteoclastogenesis. The main chemical constituents of AKQ in the granule were analyzed by UPLC-QTOF-MS. Our findings show that AKQ did not affect osteoblastogenesis, but it inhibited RANKL-induced osteoclastogenesis. In the ovariectomized rats, oral administration of AKQ (4 g/kg/d) for 90 d effectively prevented oestrogen deficiency-induced bone loss. Mechanistic studies in BMMs revealed that AKQ inhibited RNAKL-induced activation of NF-κB (p65) and MAPKs (p38 and JNK) via blocking the RANK-TRAF6 interaction, subsequently suppressing the translocation and expression of NFATc1 and c-Fos. UPLC-QTOF-MS analysis quantified the 123 main components of AKQ. Taken together, AKQ was demonstrated for the first time as a novel alternative therapy for osteoclast-associated bone diseases.
Collapse
Affiliation(s)
- Zhi-Wen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiu-Li Xi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tao-Rui Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuan-Yuan Lu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peng-Cheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying-Jie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Xiao-Ling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Liu Q, Wu Y, Li S, Yoon S, Zhang J, Wang X, Hu L, Su C, Zhang C, Wu Y. Ursolic acid alleviates steroid-induced avascular necrosis of the femoral head in mouse by inhibiting apoptosis and rescuing osteogenic differentiation. Toxicol Appl Pharmacol 2023; 475:116649. [PMID: 37536651 DOI: 10.1016/j.taap.2023.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Steroid-induced avascular necrosis of femoral head (SANFH) is a common disorder worldwide with high disability. Overdose of glucocorticoid (GC) is the most common non-traumatic cause of SANFH. Up until now, there are limited therapeutic strategies for curing SANFH, and the mechanisms underlying SANFH progression remain unclear. Nevertheless, Osteogenic dysfunction is considered to be one of the crucial pathobiological mechanisms in the development of SANFH, which involves mouse bone marrow mesenchymal stem cells (BMSCs) apoptosis and osteogenic differentiation disorder. Ursolic acid (UA), an important component of the Chinese medicine formula Yougui Yin, has a wide range of pharmacological properties such as anti-tumor, anti-inflammatory and bone remodeling. Due to the positive effect of Yougui Yin on bone remodeling, the purpose of this study was to investigate the effects of UA on dexamethasone (DEX)-induced SANFH in vitro and vivo. In vitro, we demonstrated that UA can promote mouse BMSCs proliferation and resist DEX-induced apoptosis by CCK8, Western blotting, TUNEL and so on. In addition, vitro experiments such as ALP and Alizarin red staining assay showed that UA had a beneficial effect on the osteogenic differentiation of mouse BMSCs. In vivo, the results of H&E staining, immunohistochemistry staining, Elisa and micro-CT analysis showed that UA had a bone repair-promoting effect in SANFH model. Moreover, the results of Western blot and TUNEL experiments showed that UA could delay the disease progression of SANFH in mice by inhibiting apoptosis. Overall, our study suggests that UA is a potential compound for the treatment of SANFH.
Collapse
Affiliation(s)
- Qian Liu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuyang Wu
- School of the 1st Clinical Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sisi Li
- Department of Otolaryngology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Somy Yoon
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jiaxin Zhang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyi Wang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luoshuang Hu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenying Su
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunwu Zhang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yungang Wu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
6
|
Yang H, Chen J, Li J. Isolation, culture, and delivery considerations for the use of mesenchymal stem cells in potential therapies for acute liver failure. Front Immunol 2023; 14:1243220. [PMID: 37744328 PMCID: PMC10513107 DOI: 10.3389/fimmu.2023.1243220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Acute liver failure (ALF) is a high-mortality syndrome for which liver transplantation is considered the only effective treatment option. A shortage of donor organs, high costs and surgical complications associated with immune rejection constrain the therapeutic effects of liver transplantation. Recently, mesenchymal stem cell (MSC) therapy was recognized as an alternative strategy for liver transplantation. Bone marrow mesenchymal stem cells (BMSCs) have been used in clinical trials of several liver diseases due to their ease of acquisition, strong proliferation ability, multipotent differentiation, homing to the lesion site, low immunogenicity and anti-inflammatory and antifibrotic effects. In this review, we comprehensively summarized the harvest and culture expansion strategies for BMSCs, the development of animal models of ALF of different aetiologies, the critical mechanisms of BMSC therapy for ALF and the challenge of clinical application.
Collapse
Affiliation(s)
| | | | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Shang J, Yu Z, Xiong C, Zhang J, Gong J, Yu C, Huang Y, Zhou X. Resistin targets TAZ to promote osteogenic differentiation through PI3K/AKT/mTOR pathway. iScience 2023; 26:107025. [PMID: 37389179 PMCID: PMC10300212 DOI: 10.1016/j.isci.2023.107025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Osteogenic differentiation (OD) of bone marrow mesenchymal stem cells (BMSCs) contributes significantly to the regeneration of bone defects. Resistin, an adipose tissue-specific secretory factor, has been shown to involve many different functions, including metabolism, inflammation, cancer, and bone remodeling. However, the effects and mechanisms of resistin on OD of BMSCs remain unclear. Herein, we demonstrated that resistin was highly expressed in BMSCs with OD. Upregulation of resistin contributed to the progression of OD of BMSCs by activating PI3K/AKT/mTOR signaling pathway. In addition, resistin facilitated OD by targeting transcriptional co-activator with PDZ-binding motif (TAZ). In a rat femoral condyle bone defect model, local injection of resistin significantly promoted bone repair and improved bone formation. This work contributes to better understanding the mechanism of resistin directly involved in the OD and might provide a new therapeutic strategy for bone defect regeneration.
Collapse
Affiliation(s)
- JingJing Shang
- Department of Pharmacy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Zhentang Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Department of Graduate School, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Chengwei Xiong
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Junjie Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Jinhong Gong
- Department of Pharmacy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Changlin Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai 811800, China
| |
Collapse
|
8
|
Ariano A, Posa F, Storlino G, Mori G. Molecules Inducing Dental Stem Cells Differentiation and Bone Regeneration: State of the Art. Int J Mol Sci 2023; 24:9897. [PMID: 37373044 DOI: 10.3390/ijms24129897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Teeth include mesenchymal stem cells (MSCs), which are multipotent cells that promote tooth growth and repair. Dental tissues, specifically the dental pulp and the dental bud, constitute a relevant source of multipotent stem cells, known as dental-derived stem cells (d-DSCs): dental pulp stem cells (DPSCs) and dental bud stem cells (DBSCs). Cell treatment with bone-associated factors and stimulation with small molecule compounds are, among the available methods, the ones who show excellent advantages promoting stem cell differentiation and osteogenesis. Recently, attention has been paid to studies on natural and non-natural compounds. Many fruits, vegetables, and some drugs contain molecules that can enhance MSC osteogenic differentiation and therefore bone formation. The purpose of this review is to examine research work over the past 10 years that has investigated two different types of MSCs from dental tissues that are attractive targets for bone tissue engineering: DPSCs and DBSCs. The reconstruction of bone defects, in fact, is still a challenge and therefore more research is needed; the articles reviewed are meant to identify compounds useful to stimulate d-DSC proliferation and osteogenic differentiation. We only consider the results of the research which is encouraging, assuming that the mentioned compounds are of some importance for bone regeneration.
Collapse
Affiliation(s)
- Anastasia Ariano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Francesca Posa
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Giuseppina Storlino
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
9
|
Jia L, Li D, Wang YN, Zhang D, Xu X. PSAT1 positively regulates the osteogenic lineage differentiation of periodontal ligament stem cells through the ATF4/PSAT1/Akt/GSK3β/β-catenin axis. J Transl Med 2023; 21:70. [PMID: 36732787 PMCID: PMC9893676 DOI: 10.1186/s12967-022-03775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) are important seed cells for tissue engineering to realize the regeneration of alveolar bone. Understanding the gene regulatory mechanisms of osteogenic lineage differentiation in PDLSCs will facilitate PDLSC-based bone regeneration. However, these regulatory molecular signals have not been clarified. METHODS To screen potential regulators of osteogenic differentiation, the gene expression profiles of undifferentiated and osteodifferentiated PDLSCs were compared by microarray and bioinformatics methods, and PSAT1 was speculated to be involved in the gene regulation network of osteogenesis in PDLSCs. Lentiviral vectors were used to overexpress or knock down PSAT1 in PDLSCs, and then the proliferation activity, migration ability, and osteogenic differentiation ability of PDLSCs in vitro were analysed. A rat mandibular defect model was built to analyse the regulatory effects of PSAT1 on PDLSC-mediated bone regeneration in vivo. The regulation of PSAT1 on the Akt/GSK3β/β-catenin signalling axis was analysed using the Akt phosphorylation inhibitor Ly294002 or agonist SC79. The potential sites on the promoter of PSAT1 that could bind to the transcription factor ATF4 were predicted and verified. RESULTS The microarray assay showed that the expression levels of 499 genes in PDLSCs were altered significantly after osteogenic induction. Among these genes, the transcription level of PSAT1 in osteodifferentiated PDLSCs was much lower than that in undifferentiated PDLSCs. Overexpressing PSAT1 not only enhanced the proliferation and osteogenic differentiation abilities of PDLSCs in vitro, but also promoted PDLSC-based alveolar bone regeneration in vivo, while knocking down PSAT1 had the opposite effects in PDLSCs. Mechanistic experiments suggested that PSAT1 regulated the osteogenic lineage fate of PDLSCs through the Akt/GSK3β/β-catenin signalling axis. PSAT1 expression in PDLSCs during osteogenic differentiation was controlled by transcription factor ATF4, which is realized by the combination of ATF4 and the PSAT1 promoter. CONCLUSION PSAT1 is a potential important regulator of the osteogenic lineage differentiation of PDLSCs through the ATF4/PSAT1/Akt/GSK3β/β-catenin signalling pathway. PSAT1 could be a candidate gene modification target for enhancing PDLSCs-based bone regeneration.
Collapse
Affiliation(s)
- Linglu Jia
- grid.27255.370000 0004 1761 1174Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China ,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China ,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China ,Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Dongfang Li
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China ,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China ,Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Ya-Nan Wang
- grid.27255.370000 0004 1761 1174Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China ,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China ,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China ,Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China. .,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China. .,Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1 Wenhua Road West, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China. .,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China. .,Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| |
Collapse
|
10
|
Zhan J, Luo D, Zhao B, Chen S, Luan J, Luo J, Hou Y, Hou Y, Xu W, Yan W, Qi J, Li X, Zhang Q, Lin D. Polydatin administration attenuates the severe sublesional bone loss in mice with chronic spinal cord injury. Aging (Albany NY) 2022; 14:8856-8875. [DOI: 10.18632/aging.204382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Jiheng Zhan
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dan Luo
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Bingde Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shudong Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Jiyao Luan
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou 450046, China
| | - Junhua Luo
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Hou
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yonghui Hou
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Wenke Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wanying Yan
- National Quality Testing Center for Processed Food, Guangzhou Inspection and Testing Certification Group Company Limited, Guangzhou 511447, China
| | - Ji Qi
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xing Li
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Qing Zhang
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Spine, Wangjing Hospital of Chinese Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Dingkun Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
11
|
Yun HM, Lee JY, Kim B, Park KR. Suffruticosol B Is an Osteogenic Inducer through Osteoblast Differentiation, Autophagy, Adhesion, and Migration. Int J Mol Sci 2022; 23:ijms232113559. [PMID: 36362346 PMCID: PMC9658763 DOI: 10.3390/ijms232113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Suffruticosol B (Suf-B) is a stilbene found in Paeonia suffruticosa ANDR., which has been traditionally used in medicine. Stilbenes and their derivatives possess various pharmacological effects, such as anticancer, anti-inflammatory, and anti-osteoporotic activities. This study aimed to explore the bone-forming activities and mechanisms of Suf-B in pre-osteoblasts. Herein, >99.9% pure Suf-B was isolated from P. suffruticosa methanolic extracts. High concentrations of Suf-B were cytotoxic, whereas low concentrations did not affect cytotoxicity in pre-osteoblasts. Under zero levels of cytotoxicity, Suf-B exhibited bone-forming abilities by enhancing alkaline phosphatase enzyme activities, bone matrix calcification, and expression levels with non-collagenous proteins. Suf-B induces intracellular signal transduction, leading to nuclear RUNX2 expression. Suf-B-stimulated differentiation showed increases in autophagy proteins and autophagosomes, as well as enhancement of osteoblast adhesion and transmigration on the ECM. These results indicate that Suf-B has osteogenic qualities related to differentiation, autophagy, adhesion, and migration. This also suggests that Suf-B could have a therapeutic effect as a phytomedicine in skeletal disorders.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Joon Yeop Lee
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Bomi Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Kyung-Ran Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Korea
- Correspondence: ; Tel.: +82-62-712-4412; Fax: +82-62-372-4102
| |
Collapse
|
12
|
Li Y, Li L, Li X, Luo B, Ye Q, Wang H, Yang L, Zhu X, Han L, Zhang R, Tian H, Wang P. A mechanistic review of chinese medicine polyphenols on bone formation and resorption. Front Pharmacol 2022; 13:1017538. [PMID: 36313339 PMCID: PMC9597080 DOI: 10.3389/fphar.2022.1017538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Bone reconstruction includes a steady state system of bone formation and bone absorption. This tight coupling requires subtle coordination between osteoblasts and osteoclasts. If this balance is broken, it will lead to bone mass loss, bone density reduction, and bone metabolic diseases, such as osteoporosis. Polyphenols in Chinese herbal medicines are active ingredients in plant extracts with high safety and few side effects, and they can play a role in affecting bone formation and bone resorption. Some of these have estrogen-like effects and can better target bone health in postmenopausal women. The purpose of this review is to provide comprehensive information on the mechanisms underlying the relationship between traditional Chinese medicine polyphenols and bone formation or bone resorption.
Collapse
Affiliation(s)
- Yan Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lingyu Li
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Bingjie Luo
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Qianyun Ye
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Haoyu Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaofeng Zhu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
| | - Li Han
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ronghua Zhang
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| | - Panpan Wang
- Cancer Research Institute, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Ronghua Zhang, ; Huaqin Tian, ; Panpan Wang,
| |
Collapse
|
13
|
Kang P, Wu Z, Huang Y, Luo Z, Huo S, Chen Q. Histone H3K9 demethylase JMJD2B/KDM4B promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating H3K9me2 on RUNX2. PeerJ 2022; 10:e13862. [PMID: 36217382 PMCID: PMC9547583 DOI: 10.7717/peerj.13862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Background A variety of proteins including epigenetic factors are involved in the differentiation of human bone marrow mesenchymal stem cells. These cells also exhibited an epigenetic plasticity that enabled them to trans-differentiate from adipocytes to osteoblasts (and vice versa) after commitment. Further in-depth study of their epigenetic alterations may make sense. Methods Chromatin Immunoprecipitation-PCR (ChIP-PCR) was used to detect the methylation enrichment status of H3K9me2 in the Runx2 promoter, alizarin red and alkaline phosphatase (ALP) staining were used to detect osteogenic differentiation and mineralization ability, western blot and quantitative RT-PCR were used to measure the differential expression of osteogenesis-related proteins and genes. Recombinant Lentivirus mediated gain-of-function and loss-of-function study. The scale of epigenetic modification was detected by laser confocal. Results Our results showed that compared with human bone marrow mesenchymal stem cells (hBMSCs) without osteogenic differentiation treatment, hBMSCs after osteogenic differentiation significantly promoted osteogenic differentiation and mRNA expression such as JMJD2B/KDM4B, osteogenesis-related genes like Runx2 and FAM210A in hBMSCs cells, suggesting that upregulation of JMJD2B/KDM4B is involved in the promoting effect of osteogenesis. After overexpression and silencing expression of JMJD2B, we found a completely opposite and significant difference in mRNA expression of osteogenesis-related genes and staining in hBMSCs. Overexpression of JMJD2B/KDM4B significantly promoted osteogenic differentiation, suggesting that JMJD2B/KDM4B could promote osteogenesis. In addition, ChIP-PCR showed that overexpression of JMJD2B/KDM4B significantly reversed the methylation enrichment status of H3K9me2 in Runx2 promoter. Furthermore, overexpression of JMJD2B/KDM4B significantly reverses the inhibitory effect of BIX01294 on H3K9me2, suggesting that JMJD2B/KDM4B regulates the osteogenic differentiation of hBMSCs by changing the methylation status of H3K9me2 at the Runx2 promoter. Conclusions Taken together, these results suggest that JMJD2B/ KDM4B may induce the osteogenic differentiation of hBMSCs by regulating the methylation level of H3K9me2 at the Runx2 promoter.
Collapse
Affiliation(s)
- Pan Kang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiming Wu
- University Medical Center Utrecht, Utrecht, Netherlands
| | - Yuxi Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhen Luo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaochuan Huo
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qunqun Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China,The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China,Guangdong Research Institute for Orthopedics & Traumatology of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022; 27:6474. [PMID: 36235012 PMCID: PMC9572446 DOI: 10.3390/molecules27196474] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin is a natural potent stilbenoid polyphenol and a resveratrol derivative with improved bioavailability. Polydatin possesses potential biological activities predominantly through the modulation of pivotal signaling pathways involved in inflammation, oxidative stress, and apoptosis. Various imperative biological activities have been suggested for polydatin towards promising therapeutic effects, including anticancer, cardioprotective, anti-diabetic, gastroprotective, hepatoprotective, neuroprotective, anti-microbial, as well as health-promoting roles on the renal system, the respiratory system, rheumatoid diseases, the skeletal system, and women's health. In the present study, the therapeutic targets, biological activities, pharmacological mechanisms, and health benefits of polydatin are reviewed to provide new insights to researchers. The need to develop further clinical trials and novel delivery systems of polydatin is also considered to reveal new insights to researchers.
Collapse
Affiliation(s)
- Ahmad Karami
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Leila Kooshki
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
15
|
Polydatin inhibits IL-1β-mediated chondrocyte inflammation and ameliorates cartilage degradation: Involvement of the NF-κB and Wnt/β-catenin pathways. Tissue Cell 2022; 78:101865. [DOI: 10.1016/j.tice.2022.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
|
16
|
Kangari P, Roshangar L, Iraji A, Talaei-Khozani T, Razmkhah M. Accelerating effect of Shilajit on osteogenic property of adipose-derived mesenchymal stem cells (ASCs). J Orthop Surg Res 2022; 17:424. [PMID: 36153551 PMCID: PMC9509599 DOI: 10.1186/s13018-022-03305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Shilajit has been widely used remedy for treating a numerous of illness such as bone defects in Iran traditional folk medicine since hundreds of years ago. The aim of the present study was to explore the effect of Shilajit on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (ASCs) in two- (2D) and three-dimensional (3D) cultures. MATERIALS AND METHODS ASCs were seeded in 3D 1% alginate (Alg) hydrogel with or without Shilajit (500 µg/mL) and compared with 2D cultures. Then, characterization was done using electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX), alkaline phosphatase (ALP) activity, alizarin red staining and Raman confocal microscopy. RESULTS Adding Shilajit had no impact on the Alg scaffold degradability. In the 3D hydrogel and in the presence of osteogenic medium (OM), Shilajit acted as enhancer to increase ALP activity and also showed osteoinductive property in the absence of OM compared to the 2D matched groups at all time points (days 7 and 21 both P = 0.0006, for 14 days P = 0.0006 and P = 0.002, respectively). In addition, calcium deposition was significantly increased in the cultures exposed to Shilajit compared to 2D matched groups on days 14 (P < 0.0001) and 21 (P = 0.0003 and P = 0.003, respectively). In both 3D and 2D conditions, Shilajit induced osteogenic differentiation, but Shilajit/Alg combination starts osteogenic differentiation in a short period of time. CONCLUSION As Shilajit accelerates the differentiation of ASCs into the osteoblasts, without changing the physical properties of the Alg hydrogel, this combination may pave the way for more promising remedies considering bone defects.
Collapse
Affiliation(s)
- Parisa Kangari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Iraji
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Rai D, Tripathi AK, Sardar A, Pandey AR, Sinha S, Chutani K, Dhaniya G, Kothari P, Sashidhara KV, Trivedi R. A novel BMP2 secretagogue ameliorates glucocorticoid induced oxidative stress in osteoblasts by activating NRF2 dependent survival while promoting Wnt/β-catenin mediated osteogenesis. Free Radic Biol Med 2022; 190:124-147. [PMID: 35963563 DOI: 10.1016/j.freeradbiomed.2022.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/16/2023]
Abstract
In our previous study, a novel BMP2 secretagogue was synthesized belonging to a class of galloyl conjugates of flavanones, with remarkable osteogenic potential that promoted bone regeneration. We aimed to establish the protective effect of our compound against bone loss that co-exists with excess Glucocorticoid (GC) therapy. GC therapy induces osteoblast damage leading to apoptosis by increasing reactive oxygen species (ROS). Our results delineate that compound 5e (a BMP2 secretagogue) activates NRF2 signalling to counter the disturbed cellular redox homeostasis and escalate osteoblast survival as assessed by Western blot and immunocytochemistry. Depletion of NRF2 by siRNA blocked activation of the NRF2/HO-1 pathway, magnified oxidative stress, increased apoptosis and abrogated the protective effects of compound 5e. 5e, on the other hand, increased ALP, mineralization activity, and promoted osteoblast differentiation by activating WNT/β-catenin signalling in BMP2 dependent manner, validated by Western blot of WNT3A, SOST, GSK3-β and β-catenin nuclear translocation. Treatment of 5e in presence of BMP inhibitor noggin attenuated the osteogenic efficacy and minimized Wnt//β-catenin signalling in presence of dexamethasone. Our compound prevents GC challenged trabecular and cortical bone loss assessed by micro-CT and promotes bone formation and osteocyte survival determined by calcein labelling and TUNEL assay in GC treated animals. The osteogenic potential of the compound was authenticated by bone turnover markers. On a concluding note, compounds with BMP upregulation can be potential therapeutics for the prevention and treatment of glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Divya Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ashish Kumar Tripathi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anirban Sardar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Alka Raj Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Shradha Sinha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Kunal Chutani
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Geeta Dhaniya
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Priyanka Kothari
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
18
|
Liu G, Xiao G, Su J, Xu R, Xia Z. Editorial: Tissue Stem Cells During Trauma: From Basic Biology to Translational Medicine. Front Cell Dev Biol 2022; 10:914582. [PMID: 35693930 PMCID: PMC9178558 DOI: 10.3389/fcell.2022.914582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Guohui Liu, ; Guozhi Xiao, ; Jiacan Su, ; Ren Xu, ; Zhidao Xia,
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Guohui Liu, ; Guozhi Xiao, ; Jiacan Su, ; Ren Xu, ; Zhidao Xia,
| | - Jiacan Su
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Guohui Liu, ; Guozhi Xiao, ; Jiacan Su, ; Ren Xu, ; Zhidao Xia,
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Guohui Liu, ; Guozhi Xiao, ; Jiacan Su, ; Ren Xu, ; Zhidao Xia,
| | - Zhidao Xia
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
- *Correspondence: Guohui Liu, ; Guozhi Xiao, ; Jiacan Su, ; Ren Xu, ; Zhidao Xia,
| |
Collapse
|
19
|
Chen L, Zhang M, Ding Y, Li M, Zhong J, Feng S. Fluoride induces hypomethylation of BMP2 and activates osteoblasts through the Wnt/β-catenin signaling pathway. Chem Biol Interact 2022; 356:109870. [PMID: 35218729 DOI: 10.1016/j.cbi.2022.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Skeletal fluorosis has become a public health issue in recent years as its serious impact on patients' life expectancy. Bone morphogenetic protein 2 (BMP2) plays a key role in promoting osteogenesis. However, the mechanism of BMP2-Wnt/β-catenin axis in skeletal fluorosis needs further exploration. METHODS The RT-qPCR and western blot assay were carried out to examine the mRNA and protein levels. Cell viability was measured by MTT assay. A commercial ALP assay kit was used to detect ALP activities. Alizarin Red staining was performed to measure the formation of mineralized nodules. Methylation-specific PCR (MSP) was performed to measure the methylation level of BMP2. RESULTS Fluoride promoted the expression of osteogenic marker genes (OPN, OCN, OSX and RUNX2) and induced the proliferation and differentiation of MC3T3-E1 cells. Fluoride induced hypomethylation and high expression of BMP2. Furthermore, knockdown of BMP2 reversed the promoting effect of fluoride on osteogenic differentiation of MC3T3-E1. The expression of β-catenin, glycogen synthase kinase 3β (GSK3β), wingless/integrated 3α (Wnt3α), low-density lipoprotein receptor-related protein 5 (LRP5) and dishevelled 1 (Dv1) were increased in osteoblasts treated with fluoride, however, knockdown of BMP2 reversed this phenomenon. Simultaneous knockdown of BMP2 and β-catenin significantly inhibited the differentiation of osteoblasts induced by fluoride. CONCLUSION Fluoride contributed to proliferation and differentiation of osteoblasts through BMP2-Wnt/β-catenin axis, providing a feasible theoretical basis for the treatment of skeletal fluorosis.
Collapse
Affiliation(s)
- Long Chen
- Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, Xinjiang Province, PR China
| | - Meilin Zhang
- Cilinical Laboratoray of Urumqi Blood Center, Urumqi, 830000, Xinjiang Province, PR China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, Xinjiang Province, PR China
| | - Min Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, Xinjiang Province, PR China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, PR China.
| | - Shumei Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, Xinjiang Province, PR China.
| |
Collapse
|
20
|
Pandey R, Garg A, Gupta K, Shukla P, Mandrah K, Roy S, Chattopadhyay N, Bandyopadhyay S. Arsenic Induces Differential Neurotoxicity in Male, Female, and E2-Deficient Females: Comparative Effects on Hippocampal Neurons and Cognition in Adult Rats. Mol Neurobiol 2022; 59:2729-2744. [PMID: 35175559 DOI: 10.1007/s12035-022-02770-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023]
Abstract
We earlier reported that arsenic induced hippocampal neuronal loss, causing cognitive dysfunctions in male rats. This neuronal damage mechanism involved an altered bone morphogenetic protein (BMP2)/Smad and brain-derived neurotrophic factor (BDNF)/TrkB signaling. Susceptibility to toxicants is often sex-dependent, and hence we studied the comparative effects of arsenic in adult male and female rats. We observed that a lower dose of arsenic reduced learning-memory ability, examined through passive avoidance and Y-maze tests, in male but not female rats. Again, male rats exhibited greater learning-memory loss at a higher dose of arsenic. Supporting this, arsenic-treated male rats demonstrated larger reduction in the hippocampal NeuN and %-surviving neurons, together with increased apoptosis and altered BMP2/Smad and BDNF/TrkB pathways compared to their female counterparts. Since the primary female hormone, estrogen (E2), regulates normal brain functions, we next probed whether endogenous E2 levels in females offered resistance against arsenic-induced neurotoxicity. We used ovariectomized (OVX) rat as the model for E2 deficiency. We primarily identified that OVX itself induced hippocampal neuronal damage and cognitive decline, involving an increased BMP2/Smad and reduced BDNF/TrkB. Further, these effects appeared greater in arsenic + OVX compared to arsenic + sham (ovary intact) or OVX rats alone. The OVX-induced adverse effects were significantly reduced by E2 treatment. Overall, our study suggests that adult males could be more susceptible than females to arsenic-induced neurotoxicity. It also indicates that endogenous E2 regulates hippocampal BMP and BDNF signaling and restrains arsenic-induced neuronal dysfunctions in females, which may be inhibited in E2-deficient conditions, such as menopause or ovarian failure.
Collapse
Affiliation(s)
- Rukmani Pandey
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Asmita Garg
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Gupta
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pallavi Shukla
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Ye P, Wu H, Jiang Y, Xiao X, Song D, Xu N, Ma X, Zeng J, Guo Y. Old dog, new tricks: Polydatin as a multitarget agent for current diseases. Phytother Res 2021; 36:214-230. [PMID: 34936712 DOI: 10.1002/ptr.7306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Polydatin (PD) is a natural single-crystal product that is primarily extracted from the traditional plant Polygonum cuspidatum Sieb. et Zucc. Early research showed that PD exhibited a variety of biological activities. PD has attracted increasing research interest since 2014, but no review comprehensively summarized the new findings. A great gap between its biological activities and drug development remains. It is necessary to summarize new findings on the pharmacological effects of PD on current diseases. We propose that PD will most likely be used in cardiac and cerebral ischaemia/reperfusion-related diseases and atherosclerosis in the future. The present work classified these new findings according to diseases and summarized the main effects of PD via specific mechanisms of action. In summary, we found that PD played a therapeutic role in a variety of diseases, primarily via five mechanisms: antioxidative effects, antiinflammatory effects, regulation of autophagy and apoptosis, maintenance of mitochondrial function, and lipid regulation.
Collapse
Affiliation(s)
- Penghui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Lin Z, Xiong Y, Hu Y, Chen L, Panayi AC, Xue H, Zhou W, Yan C, Hu L, Xie X, Sun Y, Mi B, Liu G. Polydatin Ameliorates Osteoporosis via Suppression of the Mitogen-Activated Protein Kinase Signaling Pathway. Front Cell Dev Biol 2021; 9:730362. [PMID: 34660587 PMCID: PMC8511501 DOI: 10.3389/fcell.2021.730362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose: Polydatin (POL) is a natural active compound found in Polygonum multiflorum with reported anti-oxidant and antiviral effects. With the aging population there has been a stark increase in the prevalence of osteoporosis (OP), rendering it an imposing public health issue. The potential effect of POL as a therapy for OP remains unclear. Therefore, we sought to investigate the therapeutic effect of POL in OP and to elucidate the underlying signaling mechanisms in its regulatory process. Methods: The POL-targeted genes interaction network was constructed using the Search Tool for Interacting Chemicals (STITCH) database, and the shared Kyoto Encyclopedia of Genes and Genomes (KEGG). Pathways involved in OP and POL-targeted genes were identified. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the osteogenic genes and the phosphorylation level in pre-osteoblastic cells. In addition, ALP and alizarin red staining was used to test the effect of POL on extracellular matrix mineralization. Results: Twenty-seven KEGG pathways shared between POL-related genes and OP were identified. MAPK signaling was identified as a potential key mechanism. In vitro results highlighted a definitive anti-OP effect of POL. The phosphorylation levels of MAPK signaling, including p38α, ERK1/2, and JNK, were significantly decreased in this regulatory process. Conclusion: Our results suggest that POL has a promising therapeutic effect in OP. MAPK signaling may be the underlying mechanism in this effect, providing a novel sight in discovering new drugs for OP.
Collapse
Affiliation(s)
- Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Chenchen Yan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xudong Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yun Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
23
|
Mkhumbeni N, Pillay M, Mtunzi F, Motaung KSC. Effect of Eucomis autumnalis on the Osteogenic Differentiation of Adipose Derived Stem Cells. Tissue Eng Part A 2021; 28:136-149. [PMID: 34269614 DOI: 10.1089/ten.tea.2021.0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eucomis autumnalis subsp. autumnalis (Mill.) Chitt. (EASA) is a commonly used medicinal plant for the treatment of fractures, osteoarthritis, back pain, and wound healing in Southern Africa. In this study, the effects of water and acetone extracts of EASA on the viability, osteogenic differentiation, and mineralization of human adipose derived stem cells (hADSCs) were investigated in vitro. The results showed that both water and acetone extracts of EASA increased cell viability at concentrations between 10 to 50 µg/mL on day 7 and 14 of treatment. Osteogenic differentiation and mineralization of hADSCs was optimal at 5 μg/mL for the water extract and at 5 to 10 μg/ml for the acetone extract. A 5 µg/ml acetone extract up-regulated the expression of the ALP, Runx2, Col1a1, and osteocalcin genes. In addition, EASA up-regulated β-catenin, cyclin D1 and osteoprotegerin genes. The results suggest that EASA may likely up-regulate the expression of β-catenin, which subsequently up-regulates the osteogenic marker genes through Runx2. On the other hand, EASA also up-regulates cyclin D1 supporting the growth of precursor cells. Additionally, EASA upregulated the expression of osteoprotegerin (OPG) suggesting that it may inhibit bone resorption. The results of this study support the traditional use of the plant in bone healing.
Collapse
Affiliation(s)
- Nolutho Mkhumbeni
- Tshwane University of Technology Faculty of Science, 275316, Department of Biomedical Sciences, Pretoria, Gauteng, South Africa.,Vaal University of Technology Faculty of Applied and Computer Sciences, 442135, Department of Health Sciences, Vanderbijlpark, Gauteng, South Africa;
| | - Michael Pillay
- Vaal University of Technology Faculty of Applied and Computer Sciences, 442135, Department of Biotechnology, Vanderbijlpark, Gauteng, South Africa;
| | - Fanyana Mtunzi
- Vaal University of Technology Faculty of Applied and Computer Sciences, 442135, Department of Chemistry , Vanderbijlpark, Gauteng, South Africa;
| | | |
Collapse
|
24
|
Wnt signaling: An attractive target for periodontitis treatment. Biomed Pharmacother 2020; 133:110935. [PMID: 33227711 DOI: 10.1016/j.biopha.2020.110935] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is the most common chronic inflammatory disease, and a leading cause of tooth loss. Characterized by resorption of alveolar process and destruction of periodontal ligaments, periodontitis can impact not only periodontal tissues but also systemic diseases, such as diabetes, cardiovascular diseases, and respiratory infections. Currently, it is a hotspot to manage destruction and gain regeneration of periodontal tissues. Increasing evidence indicates that the Wnt signaling plays an important role in homeostasis of periodontal tissues, functions of periodontal derived cells, and progression of periodontitis. Its molecule expressions were abnormal in periodontitis. As such, modulators targeting the Wnt signaling may be an adjuvant therapy for periodontitis treatment. This review elucidates the role of Wnt signaling and its molecules, with a view to develop a potential application of drugs targeting the Wnt signaling for periodontitis treatment.
Collapse
|