1
|
Paisey SJ, Jones LR, Harrison DJ, Drummond NJ, Edwards OZ, Canham MA, Roberton VH, Marshall C, Parker G, Hills R, Rosser AE, Lane EL, Dunnett SB, Kunath T, Assaf Y, Lelos MJ. Imaging of human stem cell-derived dopamine grafts correlates with behavioural recovery and reveals microstructural brain changes. Neurobiol Dis 2025; 209:106910. [PMID: 40233853 DOI: 10.1016/j.nbd.2025.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025] Open
Abstract
Cell therapy is a promising therapeutic intervention for Parkinson's disease (PD) and is currently undergoing safety and efficacy testing in clinical trials worldwide. The goals of this project were (1) to determine whether [18F]Fluorodopa or [18F]Fallypride imaging correlates robustly with functional recovery; and (2) to explore whether diffusion-weighted MR imaging (DWI) could detect graft-induced cytoarchitectural changes in the host brain. hfVM and hESC-derived dopamine precursor cells were transplanted into the 6-OHDA lesioned rat striatum. Tests of motor function and PET and MR imaging were conducted up to 6 months post-transplantation. Our data demonstrate that [18F]Fluorodopa imaging identified presynaptic DA synthesis from hfVM and hESC-derived dopaminergic grafts and [18F]Fallypride imaging confirmed occupancy and normalisation of D2/D3 receptor expression in the grafted hemisphere. In hfVM grafted rats, [18F]Fluorodopa binding correlated robustly with motor recovery on a range of drug-induced and drug-free behavioural tasks. In hESC-DA grafted rats, improvements in [18F]Fluorodopa PET imaging signals preceded recovery of naturalistic motor behaviours. DWI revealed widespread graft-mediated microstructural changes in the rodent brain, which did not identify graft placement, but instead may reflect remodelling of neuroglia. These data further our understanding of the impact of dopaminergic grafts on brain cytoarchitecture and the potential of these radioligands to predict graft efficacy may aid in the translation of therapeutics from preclinical to clinical settings.
Collapse
Affiliation(s)
- Stephen J Paisey
- Wales Research and Diagnostic PET Imaging Centre, School of Medicine, Cardiff University, University Hospital Wales Main Building, Cardiff CF14 4XN, UK
| | - Lucy R Jones
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - David J Harrison
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Nicola J Drummond
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Olivia Z Edwards
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Maurice A Canham
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Victoria H Roberton
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Christopher Marshall
- Wales Research and Diagnostic PET Imaging Centre, School of Medicine, Cardiff University, University Hospital Wales Main Building, Cardiff CF14 4XN, UK
| | - Greg Parker
- Independent Imaging Consultant, Museum Avenue, Cardiff CF10 3AX, UK
| | - Rachel Hills
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Anne E Rosser
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, UK
| | - Stephen B Dunnett
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Yaniv Assaf
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; School of Biochemistry Neurobiology Biophysics, Faculty of Life Sciences, Tel Aviv University, Israel
| | - Mariah J Lelos
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
2
|
Delgado-Goñi T, Connor-Robson N, Cioroch M, Paisey S, Marshall C, Lane EL, Hauton D, McCullagh J, Magill PJ, Cragg SJ, Mackay CE, Wade-Martins R, Klein JC. Dopamine D2 receptor upregulation in dorsal striatum in the LRRK2-R1441C rat model of early Parkinson's disease revealed by in vivo PET imaging. Sci Rep 2025; 15:15943. [PMID: 40335575 PMCID: PMC12059153 DOI: 10.1038/s41598-025-99580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
We conducted PET imaging with [18F]FDOPA and dopamine D2/3 receptor ligand [18F]fallypride in aged transgenic rats carrying human pathogenic LRRK2 R1441C or G2019S mutations. These rats have mild age-dependent deficits in dopamine release restricted to dorsal striatum despite no overt loss of dopamine neurons or dopamine content and demonstrate L-DOPA-responsive movement deficits.LRRK2 mutant rats displayed no deficit in [18F]FDOPA uptake, consistent with intact dopamine synthesis in striatal axons. However, LRRK2-R1441C rats demonstrated greater binding of [18F]fallypride than LRRK2-G2019S or non-transgenic controls, from a regionally selective increase in dorsal striatum. Immunocytochemical labelling post-mortem confirmed a greater density of D2 receptors in LRRK2-R1441C than other genotypes restricted to dorsal striatum, consistent with upregulation of D2-receptors as a compensatory response to the greater dopamine release deficit previously demonstrated in this genotype.These results show that [18F]fallypride PET imaging is sensitive to dysregulation of dopamine signalling in the LRRK2-R1441C rat, revealing upregulation of D2 receptors that parallels observations in human putamen in early sporadic PD. Future studies of candidate therapies could exploit this non-invasive approach to assess treatment efficacy.
Collapse
Affiliation(s)
- Teresa Delgado-Goñi
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Natalie Connor-Robson
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Milena Cioroch
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stephen Paisey
- Wales Research and Diagnostic PET Imaging Centre (PETIC), School of Medicine, Heath Park, Cardiff University, Cardiff, Wales, UK
| | - Christopher Marshall
- Wales Research and Diagnostic PET Imaging Centre (PETIC), School of Medicine, Heath Park, Cardiff University, Cardiff, Wales, UK
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - David Hauton
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Peter J Magill
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Stephanie J Cragg
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Clare E Mackay
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Johannes C Klein
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Nerella SG, Michaelides M, Minamimoto T, Innis RB, Pike VW, Eldridge MAG. PET reporter systems for the brain. Trends Neurosci 2023; 46:941-952. [PMID: 37734962 PMCID: PMC10592100 DOI: 10.1016/j.tins.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Positron emission tomography (PET) can be used as a noninvasive method to longitudinally monitor and quantify the expression of proteins in the brain in vivo. It can be used to monitor changes in biomarkers of mental health disorders, and to assess therapeutic interventions such as stem cell and molecular genetic therapies. The utility of PET monitoring depends on the availability of a radiotracer with good central nervous system (CNS) penetration and high selectivity for the target protein. This review evaluates existing methods for the visualization of reporter proteins and/or protein function using PET imaging, focusing on engineered systems, and discusses possible approaches for future success in the development of high-sensitivity and high-specificity PET reporter systems for the brain.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Moon H, Kim B, Kwon I, Oh Y. Challenges involved in cell therapy for Parkinson's disease using human pluripotent stem cells. Front Cell Dev Biol 2023; 11:1288168. [PMID: 37886394 PMCID: PMC10598731 DOI: 10.3389/fcell.2023.1288168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Neurons derived from human pluripotent stem cells (hPSCs) provide a valuable tool for studying human neural development and neurodegenerative diseases. The investigation of hPSC-based cell therapy, involving the differentiation of hPSCs into target cells and their transplantation into affected regions, is of particular interest. One neurodegenerative disease that is being extensively studied for hPSC-based cell therapy is Parkinson's disease (PD), the second most common among humans. Various research groups are focused on differentiating hPSCs into ventral midbrain dopaminergic (vmDA) progenitors, which have the potential to further differentiate into neurons closely resembling DA neurons found in the substantia nigra pars compacta (SNpc) after transplantation, providing a promising treatment option for PD. In vivo experiments, where hPSC-derived vmDA progenitor cells were transplanted into the striatum or SNpc of animal PD models, the transplanted cells demonstrated stable engraftment and resulted in behavioral recovery in the transplanted animals. Several differentiation protocols have been developed for this specific cell therapy. However, the lack of a reliable live-cell lineage identification method presents a significant obstacle in confirming the precise lineage of the differentiated cells intended for transplantation, as well as identifying potential contamination by non-vmDA progenitors. This deficiency increases the risk of adverse effects such as dyskinesias and tumorigenicity, highlighting the importance of addressing this issue before proceeding with transplantation. Ensuring the differentiation of hPSCs into the target cell lineage is a crucial step to guarantee precise therapeutic effects in cell therapy. To underscore the significance of lineage identification, this review focuses on the differentiation protocols of hPSC-derived vmDA progenitors developed by various research groups for PD treatment. Moreover, in vivo experimental results following transplantation were carefully analyzed. The encouraging outcomes from these experiments demonstrate the potential efficacy and safety of hPSC-derived vmDA progenitors for PD cell therapy. Additionally, the results of clinical trials involving the use of hPSC-derived vmDA progenitors for PD treatment were briefly reviewed, shedding light on the progress and challenges faced in translating this promising therapy into clinical practice.
Collapse
Affiliation(s)
- Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Bokwang Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Inbeom Kwon
- Department of Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ni R. PET imaging in animal models of Parkinson's disease. Behav Brain Res 2023; 438:114174. [PMID: 36283568 DOI: 10.1016/j.bbr.2022.114174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
Abstract
Alpha-synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, are characterized by aberrant accumulation of alpha-synuclein and synaptic dysfunction leading to motor and cognitive deficits. Animal models of alpha-synucleinopathy have greatly facilitated the mechanistic understanding of the disease and the development of therapeutics. Various transgenic, alpha-synuclein fibril-injected, and toxin-injected animal models of Parkinson's disease and multiple system atrophy that recapitulate the disease pathology have been developed and widely used. Recent advances in positron emission tomography have allowed the noninvasive visualization of molecular alterations, underpinning behavioral dysfunctions in the brains of animal models and the longitudinal monitoring of treatment effects. Imaging studies in these disease animal models have employed multi-tracer PET designs to reveal dopaminergic deficits together with other molecular alterations. This review focuses on the development of new positron emission tomography tracers and studies of alpha-synuclein, synaptic vesicle glycoprotein 2A neurotransmitter receptor deficits such as dopaminergic receptor, dopaminergic transporter, serotonergic receptor, vesicular monoamine transporter 2, hypometabolism, neuroinflammation, mitochondrial dysfunction and leucine rich repeat kinase 2 in animal models of Parkinson's disease. The outstanding challenges and emerging applications are outlined, such as investigating the gut-brain-axis by using positron emission tomography in animal models, and provide a future outlook.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Real CC, Binda KH, Thomsen MB, Lillethorup TP, Brooks DJ, Landau AM. Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from in vivo PET Imaging Studies. Curr Neuropharmacol 2023; 21:1241-1272. [PMID: 36797611 PMCID: PMC10286593 DOI: 10.2174/1570159x21666230216101659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 02/18/2023] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative multisystem disorder leading to motor and non-motor symptoms in millions of individuals. Despite intense research, there is still no cure, and early disease biomarkers are lacking. Animal models of PD have been inspired by basic elements of its pathogenesis, such as dopamine dysfunction, alpha-synuclein accumulation, neuroinflammation and disruption of protein degradation, and these have been crucial for a deeper understanding of the mechanisms of pathology, the identification of biomarkers, and evaluation of novel therapies. Imaging biomarkers are non-invasive tools to assess disease progression and response to therapies; their discovery and validation have been an active field of translational research. Here, we highlight different considerations of animal models of PD that can be applied to future research, in terms of their suitability to answer different research questions. We provide the reader with important considerations of the best choice of model to use based on the disease features of each model, including issues related to different species. In addition, positron emission tomography studies conducted in PD animal models in the last 5 years are presented. With a variety of different species, interventions and genetic information, the choice of the most appropriate model to answer research questions can be daunting, especially since no single model recapitulates all aspects of this complex disorder. Appropriate animal models in conjunction with in vivo molecular imaging tools, if selected properly, can be a powerful combination for the assessment of novel therapies and developing tools for early diagnosis.
Collapse
Affiliation(s)
- Caroline Cristiano Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina Henrique Binda
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Majken Borup Thomsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea Pinholt Lillethorup
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David James Brooks
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Institute of Translational and Clinical Research, University of Newcastle, Upon Tyne, UK
| | - Anne Marlene Landau
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Wilson H, de Natale ER, Politis M. Concise Review: Recent advances in neuroimaging techniques to assist clinical trials on cell-based therapies in neurodegenerative diseases. Stem Cells 2022; 40:724-735. [PMID: 35671344 DOI: 10.1093/stmcls/sxac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/17/2022] [Indexed: 11/14/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are progressive disorders for which a curative therapy is still lacking. Cell-based therapy aims at replacing dysfunctional cellular populations by repairing damaged tissue and by enriching the microenvironment of selective brain areas, and thus constitutes a promising disease-modifying treatment of neurodegenerative diseases. Scientific research has engineered a wide range of human-derived cellular populations to help overcome some of the logistical, safety, and ethical issues associated with this approach. Open-label studies and clinical trials in human participants have employed neuroimaging techniques, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), to assess the success of the transplantation, to evaluate the functional integration of the implanted tissue into the host environment and to understand the pathophysiological changes associated with the therapy. Neuroimaging has constituted an outcome measure of large, randomized clinical trials, and has given answers to clarify the pathophysiology underlying some of the complications linked with this therapy. Novel PET radiotracers and MRI sequences for the staging of neurodegenerative diseases and to study alterations at molecular level significantly expands the translational potential of neuroimaging to assist pre-clinical and clinical research on cell-based therapy in these disorders. This concise review summarizes the current use of neuroimaging in human studies of cell-based replacement therapy and focuses on future application of PET and MRI techniques to evaluate the pathophysiology and treatment efficacy, as well as to aid patient selection and as an outcome measure to improve treatment success.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | | | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| |
Collapse
|
8
|
Pantic I, Cumic J, Skodric SR, Dugalic S, Brodski C. Oxidopamine and oxidative stress: Recent advances in experimental physiology and pharmacology. Chem Biol Interact 2021; 336:109380. [PMID: 33450287 DOI: 10.1016/j.cbi.2021.109380] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/01/2021] [Accepted: 01/10/2021] [Indexed: 12/20/2022]
Abstract
Oxidopamine (6-hydroxydopamine, 6-OHDA) is a toxin commonly used for the creation of experimental animal models of Parkinson's disease, attention-deficit hyperactivity disorder, and Lesch-Nyhan syndrome. Its exact mechanism of action is not completely understood, although there are many indications that it is related to the generation of reactive oxygen species (ROS), primarily in dopaminergic neurons. In certain experimental conditions, oxidopamine may also cause programmed cell death via various signaling pathways. Oxidopamine may also have a significant impact on chromatin structure and nuclear structural organization in some cells. Today, many researchers use oxidopamine-associated oxidative damage to evaluate different antioxidant-based pharmacologically active compounds as drug candidates for various neurological and non-neurological diseases. Additional research is needed to clarify the exact biochemical pathways associated with oxidopamine toxicity, related ROS generation and apoptosis. In this short review, we focus on the recent research in experimental physiology and pharmacology, related to the cellular and animal experimental models of oxidopamine - mediated toxicity.
Collapse
Affiliation(s)
- Igor Pantic
- University of Belgrade, Faculty of Medicine, Dr Subotica 8, RS-11129, Belgrade, Serbia; University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa, IL-3498838, Israel; Institute of medical physiology, Visegradska 26/II, RS-11129, Belgrade, Serbia.
| | - Jelena Cumic
- University of Belgrade, Faculty of Medicine, Dr Subotica 8, RS-11129, Belgrade, Serbia; Clinical Center of Serbia, Dr. KosteTodorovića 8, RS-11129, Belgrade, Serbia
| | | | - Stefan Dugalic
- Clinical Center of Serbia, Dr. KosteTodorovića 8, RS-11129, Belgrade, Serbia
| | - Claude Brodski
- Ben-Gurion University of the Negev, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Department of Physiology and Cell Biology, P.O.B. 653, Beersheba, Israel
| |
Collapse
|
9
|
Jang SE, Qiu L, Chan LL, Tan EK, Zeng L. Current Status of Stem Cell-Derived Therapies for Parkinson's Disease: From Cell Assessment and Imaging Modalities to Clinical Trials. Front Neurosci 2020; 14:558532. [PMID: 33177975 PMCID: PMC7596695 DOI: 10.3389/fnins.2020.558532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
Curative therapies or treatments reversing the progression of Parkinson’s disease (PD) have attracted considerable interest in the last few decades. PD is characterized by the gradual loss of dopaminergic (DA) neurons and decreased striatal dopamine levels. Current challenges include optimizing neuroprotective strategies, developing personalized drug therapy, and minimizing side effects from the long-term prescription of pharmacological drugs used to relieve short-term motor symptoms. Transplantation of DA cells into PD patients’ brains to replace degenerated DA has the potential to change the treatment paradigm. Herein, we provide updates on current progress in stem cell-derived DA neuron transplantation as a therapeutic alternative for PD. We briefly highlight cell sources for transplantation and focus on cell assessment methods such as identification of genetic markers, single-cell sequencing, and imaging modalities used to access cell survival and function. More importantly, we summarize clinical reports of patients who have undergone cell-derived transplantation in PD to better perceive lessons that can be drawn from past and present clinical outcomes. Modifying factors include (1) source of the stem cells, (2) quality of the stem cells, (3) age of the patient, (4) stage of disease progression at the time of cell therapy, (5) surgical technique/practices, and (6) the use of immunosuppression. We await the outcomes of joint efforts in clinical trials around the world such as NYSTEM and CiRA to further guide us in the selection of the most suitable parameters for cell-based neurotransplantation in PD.
Collapse
Affiliation(s)
- Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Ling Ling Chan
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore General Hospital Campus, Singapore, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, Duke University and National University of Singapore (DUKE-NUS), Graduate Medical School, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, Singapore, Singapore
| |
Collapse
|