1
|
Tian RC, Zhang RY, Ma CF. Rejuvenation of Bone Marrow Mesenchymal Stem Cells: Mechanisms and Their Application in Senile Osteoporosis Treatment. Biomolecules 2025; 15:276. [PMID: 40001580 PMCID: PMC11853522 DOI: 10.3390/biom15020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) are multipotent cells present in bone marrow; they play a crucial role in the process of bone formation. Cellular senescence is defined as a stable state of cell cycle arrest that impairs the functioning of cells. Research has shown that aging triggers a state of senescence in BM-MSCs, leading to a reduced capacity for osteogenic differentiation and the accumulation of senescent cells, which can accelerate the onset of various diseases. Therefore, it is essential to explore mechanisms and strategies for the rejuvenation of senescent BM-MSCs. Senile osteoporosis (SOP) is a metabolic bone disease characterized by reduced bone formation. The senescence of BM-MSCs is considered one of the most important factors in the occurrence and development of SOP. Therefore, the rejuvenation of BM-MSCs for the treatment of SOP represents a promising strategy. This work provides a summary of the functional alterations observed in senescent BM-MSCs and a systematic review of the mechanisms that facilitate the rejuvenation of senescent BM-MSCs. Additionally, we analyze the progress in and the limitations associated with the application of rejuvenated senescent BM-MSCs to treat SOP, with the aim of providing new insights for the prevention and treatment of SOP.
Collapse
Affiliation(s)
- Rui-Chuan Tian
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing 100142, China;
- Graduate School, China Medical University, Shenyang 110002, China
| | - Ru-Ya Zhang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China;
| | - Chu-Fan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing 100142, China;
- Graduate School, China Medical University, Shenyang 110002, China
| |
Collapse
|
2
|
Zhu Y, Zeng Q, Shi Y, Qin Y, Liu S, Yang Y, Qiu Y, Pan M, An Z, Li S. Association between sarcopenia and osteoporosis: the cross-sectional study from NHANES 1999-2020 and a bi-directions Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1399936. [PMID: 39439568 PMCID: PMC11493612 DOI: 10.3389/fendo.2024.1399936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Background Osteoporosis (OP) and sarcopenia are prevalent musculoskeletal conditions among the elderly. Nevertheless, the causal relationship between sarcopenia and OP remains a subject of controversy and uncertainty. In this study, we employed cross-sectional analysis and Mendelian randomization (MR) to investigate the intricate relationship between sarcopenia and OP. Methods The cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning 1999-2020, which involved in 116,876 participants. It assessed the correlation between sarcopenia, osteoporosis (OP), and bone mineral density (BMD) using Chi-square tests, T-tests, and a multiple logistic regression model. Additionally, we conducted Mendelian randomization (MR) analysis to investigate the causal effects of sarcopenia-related characteristics (ALM) on OP. We employed IVW, sensitivity analysis, heterogeneity testing, and other methods for MR. The ALM data was sourced from the UK Biobank (n=450,243), while the aggregated data on OP was obtained from GWAS statistics (n=53,236). Results In this cross-sectional analysis, we observed that in the multivariate logistic regression model, without adjusting for any variables, OP emerged as a risk factor for sarcopenia [OR 95% CI = 1.90 (1.13-3.18), P = 0.02]. Following adjustments for gender, age, BMI, and biochemical variables, OP retained its status as a risk factor for sarcopenia [OR 95% CI = 3.54 (1.91-6.54), P < 0.001]. Moreover, after accounting for all variables, OP emerged as an independent risk factor for sarcopenia [OR 95% CI = 4.57 (1.47-14.22), P = 0.01].In the MR analysis, we uncovered that femoral neck BMD (FN BMD), lumbar spine BMD (LS BMD), and forearm bone mineral density (FA BMD) exerted a direct causal influence on ALM [FA BMD: OR 95% CI = 1.028 (1.008, 1.049), p = 0.006; FN BMD: OR (95% CI) = 1.131 (1.092, 1.170), p = 3.18E-12; LS BMD: OR (95% CI) = 1.080 (1.062, 1.098), p = 2.86E-19]. Conclusion Our study has revealed a positive correlation between OP and the prevalence of sarcopenia. It suggests a potentially robust causal relationship between OP and sarcopenia. Notably, OP appears to be associated with a higher likelihood of losing ALM, and a significant loss of ALM may contribute to a decline in LS BMD.
Collapse
Affiliation(s)
- Yuan Zhu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyue Zeng
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Shi
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Qin
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Simin Liu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuhao Yang
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Qiu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengjia Pan
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuangqing Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- General Practice Medical Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Xu Z, Zhang Z, Zhou H, Lin S, Gong B, Li Z, Zhao S, Hou Y, Peng Y, Bian Y. Bazi Bushen attenuates osteoporosis in SAMP6 mice by regulating PI3K-AKT and apoptosis pathways. J Cell Mol Med 2024; 28:e70161. [PMID: 39469911 PMCID: PMC11519748 DOI: 10.1111/jcmm.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Osteoporosis (OP), a systemic skeletal disease, is characterized by low bone mass, bone tissue degradation and bone microarchitecture disturbance. Bazi Bushen, a Chinese patented medicine, has been demonstrated to be effective in attenuating OP, but the pharmacological mechanism remains predominantly unclear. In this study, the senescence-accelerated mouse prone 6 (SAMP6) model was used to explore bone homeostasis and treated intragastrically for 9 weeks with Bazi Bushen. In vivo experiments showed that Bazi Bushen treatment not only upregulated the levels of bone mineral density and bone mineral content but also increased the content of RUNX2 and OSX. Furthermore, the primary culture of bone mesenchymal stem cells (BMSCs) in SAMP6 mice was used to verify the effects of Bazi Bushen on the balance of differentiation between osteoblasts and adipocytes, as well as ROS and aging levels. Finally, the pharmacological mechanism of Bazi Bushen in attenuating OP was investigated through network pharmacology and experimental verification, and we found that Bazi Bushen could significantly orchestrate bone homeostasis and attenuate the progression of OP by stimulating PI3K-Akt and inhibiting apoptosis. In summary, our work sheds light on the first evidence that Bazi Bushen attenuates OP by regulating PI3K-AKT and apoptosis pathways to orchestrate bone homeostasis.
Collapse
Affiliation(s)
- Zhe Xu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Zeyu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Huifang Zhou
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Shan Lin
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Boyang Gong
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Zhaodong Li
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Shuwu Zhao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Yunlong Hou
- National Key laboratory of Luobing Research and Innovative Chinese MedicineShijiazhuangP.R. China
| | - Yanfei Peng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| | - Yuhong Bian
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinP.R. China
| |
Collapse
|
4
|
Jiang N, Jiang J, Wang Q, Hao J, Yang R, Tian X, Wang H. Strategic targeting of miR-183 and β-catenin to enhance BMSC stemness in age-related osteoporosis therapy. Sci Rep 2024; 14:21489. [PMID: 39277663 PMCID: PMC11401869 DOI: 10.1038/s41598-024-72474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Age-related osteoporosis is a prevalent bone metabolic disorder distinguished by an aberration in the equilibrium between bone formation and resorption. The reduction in the stemness of Bone Marrow Mesenchymal Stem Cells (BMSCs) plays a pivotal role in the onset of this ailment. Comprehending the molecular pathways that govern BMSCs stemness is imperative for delineating the etiology of age-related osteoporosis and devising efficacious treatment modalities. The study utilized single-cell RNA sequencing and miRNA sequencing to investigate the cellular heterogeneity and stemness of BMSCs. Through dual-luciferase reporter assays and functional experiments, the regulatory effect of miR-183 on CTNNB1 (β-catenin) was confirmed. Overexpression and knockdown studies were conducted to explore the impact of miR-183 and β-catenin on stemness-related transcription factors Oct4, Nanog, and Sox2. Cell proliferation assays and osteogenic differentiation experiments were carried out to validate the influence of miR-183 and β-catenin on the stemness properties of BMSCs. Single-cell analysis revealed that β-catenin is highly expressed in both high stemness clusters and terminal differentiation clusters of BMSCs. Overexpression of β-catenin upregulated stemness transcription factors, while its suppression had the opposite effect, indicating a dual regulatory role of β-catenin in maintaining BMSCs stemness and promoting bone differentiation. Furthermore, the confluence of miRNA sequencing analyses and predictions from online databases revealed miR-183 as a potential modulator of BMSCs stemness and a novel upstream regulator of β-catenin. The overexpression of miR-183 effectively diminished the stemness characteristics of BMSCs by suppressing β-catenin, whereas the inhibition of miR-183 augmented stemness. These outcomes align with the observed alterations in the expression levels and functional assessments of transcription factors associated with stemness. This study provides evidence for the essential involvement of β-catenin in preserving the stemness of BMSCs, as well as elucidating the molecular mechanism through which miR-183 selectively targets β-catenin to modulate stemness. These results underscore the potential of miR-183 and β-catenin as molecular targets for augmenting the stemness of BMSCs. This strategy is anticipated to facilitate the restoration of bone microarchitecture and facilitate bone tissue regeneration by addressing potential cellular dysfunctions, thereby presenting novel targets and perspectives for the management of age-related osteoporosis.
Collapse
Affiliation(s)
- Nizhou Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jian Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Yang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Hong Wang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China.
| |
Collapse
|
5
|
Xu D, Li Z, Deng Z, Nie X, Pan Y, Cheng G. Degradation profiles of the poly(ε-caprolactone)/silk fibroin electrospinning membranes and their potential applications in tissue engineering. Int J Biol Macromol 2024; 266:131124. [PMID: 38522701 DOI: 10.1016/j.ijbiomac.2024.131124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Degradation profiles are critical for the optimal application of electrospun polymer nanofibers in tissue regeneration, wound healing, and drug delivery systems. In this study, natural and synthetic polymers and their composites were subjected to in vivo transplantation and in vitro treatment with lipases, macrophages, and acetic acid to evaluate their degradation patterns. The effects of environmental stimulation, surface wettability, and polymer components on the degradation profiles of the electrospinning poly(ε-caprolactone)/silk fibroin (PCL/SF) nanofibers were first evaluated. In vivo degradation study demonstrated that bulk degradation, characterized by the transition from microfibers to nanofibers, and surface erosion, characterized by fusion between the microfibers or direct erosion from both ends of the microfibers, occurred in the electrospun membranes; however, bulk degradation dominated their overall degradation. Furthermore, the degradation rates of the electrospun PCL/SF membranes varied according to the composition, morphology, and surface wettability of the composite membranes. After the incorporation of silk fibroin (SF), the degradation rate of the SF/PCL composite membranes was faster, accompanied by larger values of weight loss and molecular weight (Mw) loss when compared with that of the pure poly(ε-caprolactone) (PCL) membrane, indicating a close relationship between degradation rate and hydrophilicity of the electrospinning membranes. The in vitro experimental results demonstrated that enzymes and oxidation partially resulted in the surface erosion of the PCL/SF microfibers. Consequently, bulk degradation and surface erosion coordinated with each other to enhance the hydrophilicity of the electrospinning membranes and accelerate the in vivo degradation.
Collapse
Affiliation(s)
- Dongdong Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zongli Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Nie
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yihuai Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Gu Cheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Sun W, Lv J, Guo S, Lv M. Cellular microenvironment: a key for tuning mesenchymal stem cell senescence. Front Cell Dev Biol 2023; 11:1323678. [PMID: 38111850 PMCID: PMC10725964 DOI: 10.3389/fcell.2023.1323678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to self-renew and differentiate into multiple cell types, making them highly suitable for use as seed cells in tissue engineering. These can be derived from various sources and have been found to play crucial roles in several physiological processes, such as tissue repair, immune regulation, and intercellular communication. However, the limited capacity for cell proliferation and the secretion of senescence-associated secreted phenotypes (SASPs) pose challenges for the clinical application of MSCs. In this review, we provide a comprehensive summary of the senescence characteristics of MSCs and examine the different features of cellular microenvironments studied thus far. Additionally, we discuss the mechanisms by which cellular microenvironments regulate the senescence process of MSCs, offering insights into preserving their functionality and enhancing their effectiveness.
Collapse
Affiliation(s)
| | | | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Zheng Y, Wang X, Pan Y, Shi X, Yang L, Lou Y. Orientin suppresses osteoclastogenesis and ameliorates ovariectomy-induced osteoporosis via suppressing ROS production. Food Sci Nutr 2023; 11:5582-5595. [PMID: 37701239 PMCID: PMC10494641 DOI: 10.1002/fsn3.3516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
The aberrant differentiation of osteoclasts is a key feature of the pathogenesis of osteoporosis, which has a devastating impact on human health. While the effects of Orientin (Ori) on osteoporosis, particularly on RANKL-stimulated osteoclast production and activation, remain still unclear, Ori has been found to display several biological activities, including antioxidant and anti-inflammatory. In this work, we investigated the possible pathways through which Ori suppressed RANKL-induced osteoclast development and showed for the first time that it does so. The macrophages from the bone marrow (BMMs) were cultivated and then treated with Ori after being stimulated with RANKL. Then, TRAP-positive multinucleated cells were counted, and F-actin ring analysis was used to assess Ori's impact on mature osteoclast development. In addition, dihydroethidium (DHE) staining was used to evaluate the impact of Ori on RANKL-induced reactive oxygen species (ROS). In addition, we performed western blotting and quantitative RT-PCR analysis to investigate probable causes of these downregulation effects. We discovered that Ori inhibits the creation of osteoclasts, the gene and protein expressions unique to osteoclasts, and the ROS production. By activating Nrf2 and other ROS-scavenging enzymes, Ori reduces intracellular ROS levels. The expression of the main transcription factor of osteoclast development, c-Fos, was downregulated together with NFATc1, CTSK, and NFATc2, thanks to Ori's inhibition of RANKL-induced NF-κB. Consistent with its in vitro antiosteoclastogenic action, Ori therapy in the ovariectomized (OVX) rat model was also able to restore bone mass and improve microarchitecture in the distal femurs. Together, our results demonstrate that Ori is a flavonoid molecule with therapeutic promise for bone illnesses associated with osteoclasts, such as osteoporosis.
Collapse
Affiliation(s)
- Yan Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
- Department of EndocrinologyAffiliated Yueqing HospitalWenzhouChina
| | - Xing Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Ya‐Jing Pan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Xiao‐Feng Shi
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Lei Yang
- Department of OrthopedicThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yong‐Liang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
8
|
Qiu M, Li C, Cai Z, Li C, Yang K, Tulufu N, Chen B, Cheng L, Zhuang C, Liu Z, Qi J, Cui W, Deng L. 3D Biomimetic Calcified Cartilaginous Callus that Induces Type H Vessels Formation and Osteoclastogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207089. [PMID: 36999832 PMCID: PMC10238192 DOI: 10.1002/advs.202207089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Indexed: 06/04/2023]
Abstract
The formation of a calcified cartilaginous callus (CACC) is crucial during bone repair. CACC can stimulate the invasion of type H vessels into the callus to couple angiogenesis and osteogenesis, induce osteoclastogenesis to resorb the calcified matrix, and promote osteoclast secretion of factors to enhance osteogenesis, ultimately achieving the replacement of cartilage with bone. In this study, a porous polycaprolactone/hydroxyapatite-iminodiacetic acid-deferoxamine (PCL/HA-SF-DFO) 3D biomimetic CACC is developed using 3D printing. The porous structure can mimic the pores formed by the matrix metalloproteinase degradation of the cartilaginous matrix, HA-containing PCL can mimic the calcified cartilaginous matrix, and SF anchors DFO onto HA for the slow release of DFO. The in vitro results show that the scaffold significantly enhances angiogenesis, promotes osteoclastogenesis and resorption by osteoclasts, and enhances the osteogenic differentiation of bone marrow stromal stem cells by promoting collagen triple helix repeat-containing 1 expression by osteoclasts. The in vivo results show that the scaffold significantly promotes type H vessels formation and the expression of coupling factors to promote osteogenesis, ultimately enhancing the regeneration of large-segment bone defects in rats and preventing dislodging of the internal fixation screw. In conclusion, the scaffold inspired by biological bone repair processes effectively promotes bone regeneration.
Collapse
Affiliation(s)
- Minglong Qiu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Changwei Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Cuidi Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Kai Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Nijiati Tulufu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Bo Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Liang Cheng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Chengyu Zhuang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhihong Liu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jin Qi
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
9
|
de Farias JO, Rezende TMB. Dental pulp and apical papilla cells senescence: causes, consequences, and prevention. Biogerontology 2023:10.1007/s10522-023-10029-y. [PMID: 37010664 DOI: 10.1007/s10522-023-10029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
Dental pulp under physiological conditions has a defense function, repair capacity, and important mechanisms in pathological processes. In addition, the dental papilla is involved in important defense processes and an essential function in the pulp revascularization process. It is known that dental pulp and apical papilla undergo a natural aging process, in addition to stressful situations such as bruxism, inflammation, and infections. Both aging and stressful situations can lead to cellular senescence. Some evidence indicates that the changes resulting from this cellular state can directly affect the efficiency of cells in these tissues and affect conservative and regenerative clinical treatments. Thus, it is necessary to understand the causes and consequences of cellular senescence in addition to the development of methods for senescence prevention. This review aims to provide an overview of possible causes and consequences of senescence in dental pulp and stem cells from apical papilla and discusses possible methods to prevent this cellular state.
Collapse
Affiliation(s)
- Jade Ormondes de Farias
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n - Asa Norte, Brasília, DF, Brazil
| | - Taia Maria Berto Rezende
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n - Asa Norte, Brasília, DF, Brazil.
- Curso de Odontologia, Universidade Católica de Brasília, QS 07 Lote 01, Brasília, DF, Brazil.
- Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SHAN 916 Módulo B Avenida W5 - Asa Norte, Campus II - Modulo C, Room C - 221, Brasília, DF, 70.790-160, Brazil.
| |
Collapse
|
10
|
Qi L, Ge W, Pan C, Jiang W, Lin D, Zhang L. Compromised osteogenic effect of exosomes internalized by senescent bone marrow stem cells via endocytoses involving clathrin, macropinocytosis and caveolae. Front Bioeng Biotechnol 2023; 10:1090914. [PMID: 36686252 PMCID: PMC9846034 DOI: 10.3389/fbioe.2022.1090914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Stem cell senescence leads to progressive functional declines and disrupts the physiological homeostasis of bone environment. Stem cell-derived exosomes are emerging as promising therapeutical approaches to treat diverse aging-related osseous diseases. Herein, a previously reported osteoinductive exosome (OI-exo) was applied as a therapeutic agent for bone repair in aging individuals and its internalization mechanisms in senescent bone marrow stem cells (BMSCs) were explored. The results demonstrated that OI-exos derived from young BMSCs could partially rescue the proliferation, osteogenic differentiation and alleviate aging phenotypes in vitro. OI-exo-delivered hierarchical mesoporous bioactive glass (MBG) scaffold effectively promote in vivo bone formation in aging rat cranial defect model. However, the osteogenic effects of OI-exo both in vitro and in vivo were compromised in senescent individuals and for aging BMSCs compared to younger ones. This study revealed that non-senescent BMSCs internalized exosomes exclusively via clathrin-mediated endocytosis, while senescent BMSCs additionally evoked macropinocytosis and caveolae-mediated endocytosis to mediate the internalization of exosomes. The alteration of endocytic manner of senescent BMSCs and the involvement of macropinocytosis might be responsible for the compromised effects of therapeutical exosomes. The phenomena discovered in this study could also be extended to other scenarios where drugs or treatments exerted compromised effects in aging individuals. The influence of endocytic manner, avoidance of macropinocytosis-related negative effects should be taken into considerations in future therapeutic design for aging populations.
Collapse
Affiliation(s)
- Lei Qi
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Weiwen Ge
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Cancan Pan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Weidong Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dan Lin
- Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Lei Zhang, ; Dan Lin,
| | - Lei Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China,*Correspondence: Lei Zhang, ; Dan Lin,
| |
Collapse
|
11
|
Li L, Li A, Gan L, Zuo L. Roxadustat improves renal osteodystrophy by dual regulation of bone remodeling. Endocrine 2023; 79:180-189. [PMID: 36184719 DOI: 10.1007/s12020-022-03199-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Renal osteodystrophy (ROD), a component of chronic kidney disease-mineral and bone disorder (CKD-MBD) can lead to bone loss increasing fracture risks in CKD patients. Therefore, it is important to prevent and treat ROD. Activation of hypoxia-inducible factor-1α (HIF-1α) signaling was reported to prevent osteoporotic bone loss. Roxadustat, which is used to treat renal anemia in the clinic, is a novel HIF stabilizer. In our study, we aimed to investigate the effects of roxadustat on ROD. METHODS We established an adenine-induced CKD rat model. Roxadustat was administered intragastrically to normal and CKD rats for 4 weeks. Hemoglobin concentrations and serum biochemical parameters were tested, and bone histomorphometric analysis was performed. RESULTS CKD rats exhibited impaired renal function with anemia, secondary hyperparathyroidism and high-turnover ROD-induced significant bone loss. Roxadustat ameliorated renal anemia and attenuated the extreme increase in intact parathyroid hormone (iPTH) and fibroblast growth factor 23 (FGF23) in CKD rats. Bone histomorphometric analysis showed that roxadustat significantly alleviated bone loss and bone microarchitecture deterioration in CKD rats by increasing osteoblast activity and inhibiting osteoclast activity. We did not find that roxadustat had significant effects on bone metabolism in normal rats. CONCLUSION Roxadustat can improve ROD via dual regulation of bone remodeling. The use of roxadustat may be a promising strategy to treat osteoporotic bone disorders, such as ROD.
Collapse
Affiliation(s)
- Luyao Li
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Afang Li
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Liangying Gan
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
12
|
Chang X, Xu S, Zhang H. Regulation of bone health through physical exercise: Mechanisms and types. Front Endocrinol (Lausanne) 2022; 13:1029475. [PMID: 36568096 PMCID: PMC9768366 DOI: 10.3389/fendo.2022.1029475] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis, characterized by bone mineral density reduction, bone mass loss, increased bone fragility, and propensity to fractures, is a common disease in older individuals and one of the most serious health problems worldwide. The imbalance between osteoblasts and osteoclasts results in the predominance of bone resorption and decreased bone formation. In recent years, it has been found that regular and proper exercise not only helps prevent the occurrence of osteoporosis but also adds benefits to osteoporosis therapy; accordingly, bone homeostasis is closely associated with mechanical stress and the intricate crosstalk between osteoblasts and osteoclasts. In this review, we summarize the mechanisms of exercise on osteoporosis and provide new proposals for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Xinyu Chang
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Hao Zhang
- Department of Traumatic Orthopedics, the First Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Ibrahim MA, Khalifa AM, Mohamed AA, Galhom RA, Korayem HE, Abd El-Fadeal NM, Abd-Eltawab Tammam A, Khalifa MM, Elserafy OS, Abdel-Karim RI. Bone-Marrow-Derived Mesenchymal Stem Cells, Their Conditioned Media, and Olive Leaf Extract Protect against Cisplatin-Induced Toxicity by Alleviating Oxidative Stress, Inflammation, and Apoptosis in Rats. TOXICS 2022; 10:toxics10090526. [PMID: 36136492 PMCID: PMC9504158 DOI: 10.3390/toxics10090526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Hepatic and renal damage is a cisplatin (Cis)-induced deleterious effect that is a major limiting factor in clinical chemotherapy. OBJECTIVES The current study was designed to investigate the influence of pretreatment with olive leaf extract (OLE), bone-marrow-derived mesenchymal stem cells (BM-MSC), and their conditioned media (CM-MSC) against genotoxicity, nephrotoxicity, hepatotoxicity, and immunotoxicity induced by cisplatin in rats. METHODS The rats were randomly divided into six groups (six rats each) as follows: Control; OLE group, treated with OLE; Cis group, treated with a single intraperitoneal dose of Cis (7 mg/kg bw); Cis + OLE group, treated with OLE and cisplatin; Cis + CM-MSC group, treated with BM-MSC conditioned media and Cis; and Cis + MSC group, treated with BM-MSC in addition to Cis. RESULTS Cis resulted in a significant deterioration in hepatic and renal functions and histological structures. Furthermore, it increased inflammatory markers (TNF-α, IL-6, and IL-1β) and malondialdehyde (MDA) levels and decreased glutathione (GSH) content, total antioxidant capacity (TAC), catalase (CAT), and superoxide dismutase (SOD) activity in hepatic and renal tissues. Furthermore, apoptosis was evident in rat tissues. A significant increase in serum 8-hydroxy-2-deoxyguanosine (8-OH-dG), nitric oxide (NO) and lactate dehydrogenase (LDH), and a decrease in lysozyme activity were detected in Cis-treated rats. OLE, CM-MSC, and BM-MSC have significantly ameliorated Cis-induced deterioration in hepatic and renal structure and function and improved oxidative stress and inflammatory markers, with preference to BM-MSC. Moreover, apoptosis was significantly inhibited, evident from the decreased expression of Bax and caspase-3 genes and upregulation of Bcl-2 proteins in protective groups as compared to Cis group. CONCLUSIONS These findings indicate that BM-MSC, CM-MSC, and OLE have beneficial effects in ameliorating cisplatin-induced oxidative stress, inflammation, and apoptosis in the hepatotoxicity, nephrotoxicity, immunotoxicity, and genotoxicity in a rat model.
Collapse
Affiliation(s)
- Mahrous A. Ibrahim
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt or
| | - Athar M. Khalifa
- Pathology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
| | - Alaa A. Mohamed
- Medical Biochemistry Division, Pathology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Rania A. Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Human Anatomy and Embryology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Horeya E. Korayem
- Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
| | - Noha M. Abd El-Fadeal
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
| | - Ahmed Abd-Eltawab Tammam
- Physiology Department, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Mansour Khalifa
- Human Physiology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
- Human Physiology Department, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Osama S. Elserafy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
- Criminal Justice and Forensic Sciences Department, King Fahd Security College, Riyadh 11451, Saudi Arabia
| | - Rehab I. Abdel-Karim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt or
| |
Collapse
|
14
|
Ferroptosis and Its Role in Chronic Diseases. Cells 2022; 11:cells11132040. [PMID: 35805124 PMCID: PMC9265893 DOI: 10.3390/cells11132040] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
Ferroptosis, which has been widely associated with many diseases, is an iron-dependent regulated cell death characterized by intracellular lipid peroxide accumulation. It exhibits morphological, biochemical, and genetic characteristics that are unique in comparison to other types of cell death. The course of ferroptosis can be accurately regulated by the metabolism of iron, lipids, amino acids, and various signal pathways. In this review, we summarize the basic characteristics of ferroptosis, its regulation, as well as the relationship between ferroptosis and chronic diseases such as cancer, nervous system diseases, metabolic diseases, and inflammatory bowel diseases. Finally, we describe the regulatory effects of food-borne active ingredients on ferroptosis.
Collapse
|
15
|
Li L, Li A, Zhu L, Gan L, Zuo L. Roxadustat promotes osteoblast differentiation and prevents estrogen deficiency-induced bone loss by stabilizing HIF-1α and activating the Wnt/β-catenin signaling pathway. J Orthop Surg Res 2022; 17:286. [PMID: 35597989 PMCID: PMC9124388 DOI: 10.1186/s13018-022-03162-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Osteoporosis is a very common skeletal disorder that increases the risk of fractures. However, the treatment of osteoporosis is challenging. Hypoxia-inducible factor-1α (HIF-1α) plays an important role in bone metabolism. Roxadustat is a novel HIF stabilizer, and its effects on bone metabolism remain unknown. This study aimed to investigate the effects of roxadustat on osteoblast differentiation and bone remodeling in an ovariectomized (OVX) rat model. METHODS In vitro, primary mouse calvarial osteoblasts were treated with roxadustat. Alkaline phosphatase (ALP) activity and extracellular matrix mineralization were assessed. The mRNA and protein expression levels of osteogenic markers were detected. The effects of roxadustat on the HIF-1α and Wnt/β-catenin pathways were evaluated. Furthermore, osteoblast differentiation was assessed again after HIF-1α expression knockdown or inhibition of the Wnt/β-catenin pathway. In vivo, roxadustat was administered orally to OVX rats for 12 weeks. Then, bone histomorphometric analysis was performed. The protein expression levels of the osteogenic markers HIF-1α and β-catenin in bone tissue were detected. RESULTS In vitro, roxadustat significantly increased ALP staining intensity, enhanced matrix mineralization and upregulated the expression of osteogenic markers at the mRNA and protein levels in osteoblasts compared with the control group. Roxadustat activated the HIF-1α and Wnt/β-catenin pathways. HIF-1α knockdown or Wnt/β-catenin pathway inhibition significantly attenuated roxadustat-promoted osteoblast differentiation. In vivo, roxadustat administration improved bone microarchitecture deterioration and alleviated bone loss in OVX rats by promoting bone formation and inhibiting bone resorption. Roxadustat upregulated the protein expression levels of the osteogenic markers, HIF-1α and β-catenin in the bone tissue of OVX rats. CONCLUSION Roxadustat promoted osteoblast differentiation and prevented bone loss in OVX rats. The use of roxadustat may be a new promising strategy to treat osteoporosis.
Collapse
Affiliation(s)
- Luyao Li
- Department of Nephrology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing, 100044 China
| | - Afang Li
- Department of Nephrology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing, 100044 China
| | - Li Zhu
- Department of Nephrology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing, 100044 China
| | - Liangying Gan
- Department of Nephrology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing, 100044 China
| | - Li Zuo
- Department of Nephrology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing, 100044 China
| |
Collapse
|
16
|
Song S, Guo Y, Yang Y, Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther 2022; 237:108168. [PMID: 35283172 DOI: 10.1016/j.pharmthera.2022.108168] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Osteoporosis, is the most common bone disorder worldwide characterized by low bone mineral density, leaving affected bones vulnerable to fracture. Bone homeostasis depends on the precise balance between bone resorption by osteoclasts and bone matrix formation by mesenchymal lineage osteoblasts, and involves a series of complex and highly regulated steps. Bone homeostasis will be disrupted when the speed of bone resorption is faster than bone formation. Based on various regulatory mechanisms of bone homeostasis, a series of drugs targeting osteoporosis have emerged in clinical practice, including bisphosphonates, selective estrogen receptor modulators, calcitonin, molecular-targeted drugs and so on. However, many drugs have major adverse effects or are unsuitable for long-term use. Therefore, it is very urgent to find more effective therapeutic drugs based on the new pathogenesis of osteoporosis. In this review, we summarize novel mechanisms involved in the pathological process of osteoporosis, including the roles of gut microbiome, autophagy, iron balance and cellular senescence. Based on the above pathological mechanism, we found promising drugs for osteoporosis treatment, such as: probiotics, alpha-ketoglutarate, senolytics and hydrogen sulfide. This new finding may provide an important basis for elucidating the complex pathological mechanisms of osteoporosis and provide promising drugs for clinical osteoporosis treatment.
Collapse
Affiliation(s)
- Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430077, PR China
| | - Yuehua Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|