1
|
Dabravolski SA, Popov MA, Utkina AS, Babayeva GA, Maksaeva AO, Sukhorukov VN, Orekhov AN. Preclinical and mechanistic perspectives on adipose-derived stem cells for atherosclerotic cardiovascular disease treatment. Mol Cell Biochem 2025:10.1007/s11010-025-05285-0. [PMID: 40234340 DOI: 10.1007/s11010-025-05285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Adipose-derived mesenchymal stem cells (AD-MSCs) are a promising therapeutic modality for cardiovascular diseases due to their immunomodulatory, anti-inflammatory, and pro-angiogenic properties. This manuscript explores the current status, challenges, and future directions of AD-MSC therapies, focusing on their application in atherosclerosis (AS), myocardial infarction (MI), and heart failure (HF). Preclinical studies highlight AD-MSC's ability to stabilise atherosclerotic plaques, reduce inflammation, and enhance myocardial repair through mechanisms such as macrophage polarisation, endothelial protection, and angiogenesis. Genetically and pharmacologically modified AD-MSCs, including those overexpressing SIRT1, IGF-1, and PD-L1 or primed with bioactive compounds, exhibit superior efficacy compared to unmodified cells. These modifications enhance cell survival, immunopotency, and reparative capacity, showcasing the potential for tailored therapies. However, clinical translation faces significant hurdles. While recent clinical trials have confirmed the safety of AD-MSC therapy, their efficacy remains inconsistent, necessitating further optimisation of patient selection, dosing strategies, and delivery methods. Donor variability, particularly in patients with co-morbidities like type 2 diabetes (T2D) or obesity, impairs AD-MSC efficacy. Emerging research on extracellular vesicles (EVs) derived from AD-MSC offers a promising cell-free alternative, retaining the therapeutic benefits while mitigating risks. Future perspectives emphasise the need for multidisciplinary approaches to overcome these limitations. Strategies include refining genetic modifications, exploring EV-based therapies, and integrating personalised medicine and advanced diagnostic tools. By addressing these challenges, AD-MSC therapies hold the potential to revolutionise the treatment of cardiovascular diseases, providing innovative solutions to improve patient outcomes.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51P.O. Box 78, 2161002, Karmiel, Israel.
| | - Mikhail A Popov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, 125315, Russia
| | - Aleksandra S Utkina
- Department of Commodity Expertise and Customs Business, Plekhanov Russian University of Economics, 36, Stremyanny Lane, 115054, Moscow, Russia
| | - Gulalek A Babayeva
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552, Moscow, Russia
| | - Anastasia O Maksaeva
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, 125315, Russia
- Sechenov First Moscow State Medical University, 8, Trubetskaya Street Building 2, 119991, Moscow, Russia
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, 125315, Russia
- Institute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, 119991, Moscow, Russia
| | - Alexander N Orekhov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 33, Profsoyuznaya Street Building 4, 117418, Moscow, Russia
| |
Collapse
|
2
|
Zang MX, Zhang G, Zhang Y, Wang SS, Zhai XW, Zhao N, Ge W, Xie JW, Shen W, Cheng SF. mTORC1 regulates the proliferation of SOX9 + porcine skin-derived stem cells (pSDSCs) by promoting S6K phosphorylation. Histochem Cell Biol 2025; 163:25. [PMID: 39833550 DOI: 10.1007/s00418-025-02354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Skin-derived stem cells (SDSCs) are a subtype of adult stem cells (ASCs) that are widely harvested and exempt from ethical restrictions in clinical applications. These cells possess capabilities for self-renewal, proliferation, and multi-lineage differentiation. Compared to model animals like rats and mice, pigs exhibit greater physiological similarity to humans. Porcine skin has very similar histological and physiological characteristics to human skin. Therefore, porcine skin is becoming increasingly significant as an in vitro model for research. In this study, porcine skin-derived stem cells (pSDSCs) were isolated and cultured in vitro for experiments. The expression of stemness-related gene SOX9 was detected. RNA sequencing (RNA-seq) results found that the mammalian target of rapamycin (mTOR) signaling pathway was significantly enriched in SOX9+ pSDSCs. To investigate the role of the mTOR signaling pathway, we added rapamycin (RAPA), an inhibitor of the mTOR complex 1 (mTORC1), and found that the proliferation rate of SOX9+ pSDSCs decreased significantly during culture. In addition, western blotting (WB) results demonstrated that mTORC1 promoted proliferation by phosphorylating S6 kinase (S6K) and then activating cyclin D1(CCND1) in SOX9+ pSDSCs. These findings provide insights into the mechanisms of adult stem cell proliferation.
Collapse
Affiliation(s)
- Ming-Xin Zang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Geng Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ying Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Sha-Sha Wang
- Qingdao Animal Husbandry and Veterinary Institute, Qingdao, 266000, Shandong, China
| | - Xiang-Wei Zhai
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Na Zhao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jin-Wen Xie
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
3
|
Xu Z, Li H, Cao G, Li P, Zhou H, Sun Y. The protective role of brown adipose tissue in cardiac cell damage after myocardial infarction and heart failure. Lipids Health Dis 2024; 23:338. [PMID: 39415186 PMCID: PMC11481725 DOI: 10.1186/s12944-024-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024] Open
Abstract
Acute myocardial infarction (AMI) and related cardiovascular disease complications are the leading causes of mortality worldwide. Brown adipose tissue (BAT) is thermogenic and characterized by the uncoupling protein expression. Recent studies have found that in cardiovascular diseases, activated BAT can effectively improve the prognosis of AMI and concurrent heart failure through intercellular communication. However, a clear and systematic understanding of the myocardial protective mechanism of BAT after AMI is lacking, especially in the endocrine function of BAT. This review describes the effects of BAT on various cells in the heart after AMI. BAT plays a protective role on cardiac cells and fibroblasts during ischemia/reperfusion (I/R), myocardial remodeling, and myocardial fibrosis. This review also discusses the changes caused by BAT activation in different stages of heart failure. Finally, this review summarizes the treatment methods that target BAT to improve AMI. Further in-depth researches are still needed to clarify the underlying mechanism of the connection between BAT and different cells in cardiac tissue in order to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guojie Cao
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Panpan Li
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haitao Zhou
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Sun
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Chu T, Yang MS. A Review of Structural Features, Biological Functions and Biotransformation Studies in Adipose Tissues and an Assessment of Progress and Implications. Endocr Metab Immune Disord Drug Targets 2023; 23:12-20. [PMID: 36043732 DOI: 10.2174/1871530322666220827145241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022]
Abstract
Roles for adipose tissues in energy metabolism, health maintenance and disease onset have been established. Evidence indicates that white, brown and beige fats are quite different in terms of their cellular origin and biological characteristics. These differences are significant in targeting adipocytes to study the pathogenesis and prevention strategies of related diseases. The biotransformations of white, brown and beige fat cells constitute an intriguing topic worthy of further study, and the molecular mechanisms underlying the biotransformations of white, brown and beige fat cells remain to be elucidated. Hence, we herein collected evidence from studies on adipose tissue or adipocytes, and we extracted the structural features, biologic functions, and biotransformations of adipose tissue/adipocytes. The present review aimed to summarize the latest research progress and propose novel research directions with respect to adipose tissue and adipocytes. We posit that this work will provide new insights and opportunities in the effective treatment strategies for obesity, diabetes and other lipid-related diseases. It will also contribute to our knowledge of the basic biologic underpinnings of adipocyte biology.
Collapse
Affiliation(s)
- Ting Chu
- Department of Nursing, School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, People's Republic of China
| | - Mao Sheng Yang
- Laboratory of Disorders Genes and Department of Pharmacology, Jishou University School of Pharmacy, Jishou 416000, Hunan Province, People's Republic of China
| |
Collapse
|
5
|
Zhang X, Ren Z, Jiang Z. EndMT-derived mesenchymal stem cells: a new therapeutic target to atherosclerosis treatment. Mol Cell Biochem 2022; 478:755-765. [PMID: 36083511 DOI: 10.1007/s11010-022-04544-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022]
Abstract
Cardiovascular diseases, such as coronary artery disease and stroke, are the main threats to human health worldwide. Atherosclerosis, a chronic inflammatory disorder, plays a role as an initiator of all of the above-mentioned diseases. Cell therapy for diseases has attracted widespread attention. Mesenchymal stem cells (MSCs) are a type of stem cell that still exist in adults and have the characteristics of self-renewal ability, pluripotent differentiation potential, immunomodulation, tissue regeneration, anti-inflammation and low immunogenicity. In light of the properties of MSCs, some researchers have begun to target MSCs to create a possible way to alleviate atherosclerosis. Most of these studies are focused on MSC transplantation, injecting MSCs to modulate macrophages, the key inflammatory cell in atherosclerosis plaque. According to recent studies, researchers found that endothelial-to-mesenchymal transition (EndMT) has something to do with atherosclerosis development. A new cell type MSC might also appear during the EndMT process. In this article, we summarize the characteristics of MSCs, the latest progress of MSC research and its application prospects, and in view of the process of EndMT occurring in atherosclerosis, we propose some new ideas for the treatment of atherosclerosis by targeting MSCs.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
6
|
Xi W, Chen W, Sun W, Li X, Suo Z, Jiang G, Gao P, Li Q. Correction to: Mitochondrial activity regulates the differentiation of skin-derived mesenchymal stem cells into brown adipocytes to contribute to hypertension. Stem Cell Res Ther 2021; 12:351. [PMID: 34134760 PMCID: PMC8210346 DOI: 10.1186/s13287-021-02408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Wenda Xi
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Wendong Chen
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Weihong Sun
- Department of Digestion, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Xiangxiao Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhimin Suo
- Department of Digestion, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Gonghao Jiang
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Pingjin Gao
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|