1
|
Warren AJ, Liu L, O'Toole DP, Laffey JG, Masterson CH. The impact of the inflammatory pulmonary microenvironment on the behavior and function of mesenchymal stromal cells. Expert Rev Respir Med 2025:1-12. [PMID: 40223328 DOI: 10.1080/17476348.2025.2491715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION Acute respiratory distress syndrome is characterized by the dysregulation and activation of several inflammatory pathways which lead to widespread inflammation in the lungs. Presently, direct therapy is unavailable and the use of mesenchymal stromal cells as a direct therapy has been proposed, as early-phase studies have shown promise. AREAS COVERED MSCs exert various therapeutic effects on the inflammatory microenvironment, such as anti-microbial effects, restoration of the alveolar-capillary barrier, and exuding various anti-inflammatory effects. However, to exert these effects MSCs need to be submitted to specific external stimuli which can affect their immunomodulation, survival, migration and metabolic state. This review references several articles found through targeted searches in PubMed [Accessed between November 2024 and March 2025], for key terms such as 'mesenchymal stromal cells', 'inflammatory microenvironment', anti-inflammatory', 'metabolism', and 'immunomodulation'. EXPERT OPINION The advancement of MSCs therapy in the treatment of ARDS has not progressed as effectively as one might have anticipated. Several clinical findings have established patient subgroups based on inflammatory cytokine profiles and severity of ARDS. This variation in patients may influence the clinical efficacy of MSCs and instead of concluding that MSCs therapy is not worth pursuing, more research is needed to develop an appropriate therapy.
Collapse
Affiliation(s)
- Abigail Jm Warren
- Anaesthesia, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Lanzhi Liu
- Physiology, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Daniel P O'Toole
- Physiology, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| | - Claire H Masterson
- Physiology, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Oliver-Vila I, Sesma-Herrero E, Belda F, Seriola A, Ojosnegros S. Robust differentiation and potent immunomodulation of human mesenchymal stromal cells cultured with a xeno-free GMP protein supplement. Cytotherapy 2025; 27:552-561. [PMID: 39864016 DOI: 10.1016/j.jcyt.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND/AIMS Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited. Here, we evaluate a xeno-free human plasma-derived protein supplement (Plastem, Grifols) for the expansion and functional evaluation of hMSCs. METHODS hMSC from bone marrow, adipose tissue and umbilical cord were obtained from two suppliers and cultured in Dulbecco's modified Eagle's medium (DMEM/F-12) supplemented with fetal bovine serum 10% (FBS), human platelet lysate 5% (hPL) or Plastem 10%+ hPL0.5%. Cell proliferation was evaluated after culturing hMSC for 13 days with trypan blue exclusion. hMSC immunophenotype was assessed by flow cytometry of surface markers expression. Multipotentiality assay determined the ability of hMSC to differentiate into osteogenic, chondrogenic and adipogenic lineages after 21 days, by using specific staining. Immunomodulatory properties of hMSC were analyzed by measuring suppression of human peripheral blood mononuclear cell (PBMC) proliferation in co-culture with hMSC. RESULTS Plastem 10% + hPL 0.5% supported robust and sustained hMSC growth with a similar efficiency to the reference supplement FBS 10%. hMSC cultured with the xeno-free supplement presented a similar morphology comparable to FBS-supplemented cells and maintained typical expression of markers: positive (>95%) for CD90, CD73 and CD105; and negative (<5%) for CD45, CD14, CD19, CD34 and HLA-DR. Likewise, hMSC showed potent, in vitro differentiation potential into osteogenic, chondrogenic and adipogenic lineages, outperforming the results obtained with traditional reference supplements in several instances. They retained their immunomodulatory properties, inhibiting the proliferation of phytohemagglutinin (PHA)-stimulated PBMCs with a notable enhancement of the immunomodulatory capacity of hMSCs compared to conventional reference supplements. CONCLUSIONS Plastem allowed hMSC expansion while preserving phenotype and showed remarkable differentiation and immunomodulatory properties, supporting its use for cell therapy manufacturing processes as a robust, xeno-free alternative to FBS and hPL. Moreover, Plastem can be manufactured at an industrial level, making it a scalable solution for widespread application.
Collapse
Affiliation(s)
| | - Eduardo Sesma-Herrero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francisco Belda
- Research and Development, Bio Supplies Division, Grifols, Sant Cugat del Vallès, Barcelona, Spain
| | - Anna Seriola
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Samuel Ojosnegros
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
3
|
Sadeghi M, Moghaddam A, Amiri AM, Charoghdoozi K, Mohammadi M, Dehnavi S, Orazizadeh M. Improving the Wound Healing Process: Pivotal role of Mesenchymal stromal/stem Cells and Immune Cells. Stem Cell Rev Rep 2025; 21:680-697. [PMID: 39921839 DOI: 10.1007/s12015-025-10849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Wound healing, a physiological process, involves several different types of cells, from immune cells to non-immune cells, including mesenchymal stromal/stem cells (MSC), and their interactions. Immune cells including macrophages, neutrophils, dendritic cells (DC), innate lymphoid cells (ILC), natural killer (NK) cells, and B and T lymphocytes participate in wound healing by secreting various mediators and interacting with other cells. MSCs, as self-renewing, fast proliferating, and multipotent stromal/stem cells, are found in a wide variety of tissues and critically involved in different phases of wound healing by secreting various molecules that help to improve tissue healing and regeneration. In this review, first, we described the four main phases of wound healing, second, we reviewed the function of MSCs, MSC secretome and immune cells in improving the progress of wound repair (mainly focusing on skin wound healing), third, we explained the immune cells/MSCs interactions in the process of wound healing and regeneration, and finally, we introduce clinical applications of MSCs to improve the process of wound healing.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Moghaddam
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kianush Charoghdoozi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Tai TS, Chen YH, Yao CL, Lin JH, Yang YS, Shi JW, Fang LW, Hsu DW, Kuo SC, Hsu SC. Cellular sentinels: empowering survival and immune defense in hematopoietic stem cell transplantation through mesenchymal stem cells and T lymphocytes. BMC Med 2025; 23:164. [PMID: 40102849 PMCID: PMC11921582 DOI: 10.1186/s12916-025-03987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) is a critical treatment for hematologic disorders such as leukemia, lymphoma, and specific immune deficiencies. Despite its efficacy, challenges such as engraftment failure and delayed neutrophil regeneration remain significant barriers. These complications lead to prolonged cytopenia, increased risks of infections and other complications, and elevated morbidity and mortality rates. While mesenchymal stem cells (MSCs) are known to play essential roles in supporting hematopoiesis, the precise mechanisms and interactions between MSCs and other cellular components in HSCT require further investigation. METHODS To address these challenges, we explored the combined infusion of allotype-cord blood hematopoietic stem cells (HSCs) and activated T cells from the same donor along with third-party MSCs. The study assessed the effects of this triple-cell therapy on neutrophil differentiation and function ex vivo and in vivo. Using a respiratory infection model, we evaluated the accumulation of human neutrophils, cytokine secretion (IL-6 and IL-8), bacterial clearance, and overall survival compared to control groups. RESULTS The triple-cell therapy demonstrated a significant improvement in the differentiation of human HSCs into neutrophils both in ex vivo and in vivo. In the respiratory infection model, this approach resulted in enhanced accumulation of human neutrophils, increased secretion of IL-6 and IL-8, superior bacterial clearance, and reduced mortality rates compared to the control group. These findings highlight the synergistic interplay between allo-HSCs, MSCs, and activated T cells in promoting neutrophil production and function. CONCLUSIONS Our study presents a novel therapeutic strategy combining allo-HSCs, activated T cells, and third-party MSCs to enhance neutrophil production and functionality post-transplantation. This approach not only accelerates neutrophil regeneration but also improves resistance to infections, offering a promising avenue to overcome engraftment challenges in HSCT.
Collapse
Grants
- 112-2314-B-182A-082 - National Science and Technology Council
- MOST 103-2320-B-400-021-, MOST-106-2320-B-400-024 Ministry of Science and Technology, Taiwan
- MOST 103-2320-B-400-021-, MOST-106-2320-B-400-024 Ministry of Science and Technology, Taiwan
- MOST 103-2320-B-400-021-, MOST-106-2320-B-400-024 Ministry of Science and Technology, Taiwan
- MOST 103-2320-B-400-021-, MOST-106-2320-B-400-024 Ministry of Science and Technology, Taiwan
- MOST 103-2320-B-400-021-, MOST-106-2320-B-400-024 Ministry of Science and Technology, Taiwan
- IV-101-PP-22, IV-103-PP-29, IV-106-PP-26, MG-108-SP-12 National Health Research Institutes
- IV-101-PP-22, IV-103-PP-29, IV-106-PP-26, MG-108-SP-12 National Health Research Institutes
Collapse
Affiliation(s)
- Tzong-Shyuan Tai
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| | - Yun-Hsiang Chen
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, 242062, Taiwan
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei, 100210, Taiwan
- Food Industry Research and Development Institute, Hsinchu, 30062, Taiwan
| | - Yu-Shao Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jai-Wen Shi
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung City, 82444, Taiwan
| | - Li-Wen Fang
- Department of Nutrition, I-Shou University, Kaohsiung City, 82445, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung City, 82444, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan.
- Immunology Research and Development Center, China Medical University, Taichung City, 404328, Taiwan.
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 97004, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80761, Taiwan.
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, 40227, Taiwan.
| |
Collapse
|
5
|
Karpenko DV. Immune modulatory stem cells represent a significant component of the immune system. Front Immunol 2025; 16:1543495. [PMID: 40098974 PMCID: PMC11911480 DOI: 10.3389/fimmu.2025.1543495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
|
6
|
Li L, He Y, Zhao J, Yin H, Feng X, Fan X, Wu W, Lu Q. Mesenchymal Stromal Cell-Based Therapy: A Promising Approach for Autoimmune Diseases. Clin Rev Allergy Immunol 2025; 68:21. [PMID: 39982546 DOI: 10.1007/s12016-025-09030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Autoimmune diseases are characterized by immune dysregulation, resulting in aberrant reactivity of T cells and antibodies to self-antigens, leading to various patterns of inflammation and organ dysfunction. However, current therapeutic agents exhibit broad-spectrum activity and lack disease-specific selectivity, leading to enduring adverse effects, notably severe infections, and malignancies, and patients often fail to achieve the intended clinical goals. Mesenchymal stromal cells (MSCs) are multipotent stromal cells that can be easily derived from various tissues, such as adipose tissue, umbilical cords, Wharton's jelly, placenta, and dental tissues. MSCs offer advantages due to their immunomodulatory and anti-inflammatory abilities, low immunogenicity, and a high capacity for proliferation and multipotent differentiation, making them excellent candidates for cell-based treatment in autoimmune disorders. This review will cover preclinical studies and clinical trials involving MSCs in autoimmune diseases, as well as the primary challenges associated with the clinical application of MSC therapies and strategies for maximizing their therapeutic potential.
Collapse
Affiliation(s)
- Liming Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yong He
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Junpeng Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Huiqi Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiwei Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xinyu Fan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wei Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
7
|
Pakdaman Kolour SS, Nematollahi S, Dehbozorgi M, Fattahi F, Movahed F, Esfandiari N, Kahrizi MS, Ghavamikia N, Hajiagha BS. Extracecellulr vesicles (EVs) microRNAs (miRNAs) derived from mesenchymal stem cells (MSCs) in osteoarthritis (OA); detailed role in pathogenesis and possible therapeutics. Heliyon 2025; 11:e42258. [PMID: 40007782 PMCID: PMC11850152 DOI: 10.1016/j.heliyon.2025.e42258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The primary cause of pain and disability in the world is osteoarthritis (OA), a common joint disease characterized by the primary pathological alteration in articular cartilage deterioration. The general outcome of treatment is not acceptable despite current interventions. Therefore, joint replacement surgery is frequently needed by patients with severe OA. Mesenchymal stem cells (MSCs) have become a practical treatment choice for preclinical and clinical OA palliation in recent years, mainly due to their unique immunomodulatory attributes. Further, attractive candidates for cell-free therapy for OA are MSC-derived extracecellulr vesicles (EVs) that convey bioactive molecules of the original cells, such as microRNAs. These EVs have been shown to significantly influence the regulation of various physiological activities of cells in the joint cavity. Dysregulated miRNAs upregulate the synthesis of enzymes that degrade cartilage, downregulate the expression of components in the cartilage matrix, promote the production of proinflammatory cytokines, induce programmed cell death in chondrocytes, inhibit the process of autophagy in chondrocytes, and participate in pathways related to pain. MiRNAs are also found in extracellular membranous vesicles (EVs), such as exosomes, and play a role in intercellular communication in osteoarthritic joints. Thus, the biosynthesis, chemical makeup, and mechanism of action of miRNAs-enriched EVs in OA are all thoroughly covered in this review. We additionally discussed how miRNA-enriched MSC-EVs might be used therapeutically to change intercellular interaction in OA.
Collapse
Affiliation(s)
| | - Saeide Nematollahi
- Department of Radiology, Kerman University of Paramedical Sciences, Kerman, Iran
| | | | | | - Fatemeh Movahed
- Department of Gynecology, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Nima Ghavamikia
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Salmanian Hajiagha
- Department of Cellular and Molecular Biology, Faculty of Basic Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Lee JS, Lee SB, Kang KY, Oh SH, Chae DS. Review of Recent Treatment Strategies for Lumbar Disc Herniation (LDH) Focusing on Nonsurgical and Regenerative Therapies. J Clin Med 2025; 14:1196. [PMID: 40004728 PMCID: PMC11856164 DOI: 10.3390/jcm14041196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Conservative treatment is primarily performed for the treatment of patients with lumbar disc herniation (LDH), but if it does not respond, surgical treatment can be performed. Surgical intervention has a positive effect on the rapid improvement of LDH symptoms. However, the effectiveness of surgical versus conservative treatment for LDH is controversial, especially regarding long-term effects. Recently, a treatment using platelet-rich plasma (PRP), bone marrow aspirate concentrate (BMAC), low-intensity pulsed ultrasound (LIPUS), etc., has been actively conducted as a treatment to avoid side effects of surgery and promote tissue regeneration. In this paper, the literature evaluating the effectiveness of non-surgical treatment options is reviewed with an emphasis on the effectiveness of clinical application. Several clinical studies have shown that PRP, biomaterials, BMAC, and LIPUS treatment promote tissue regeneration and alleviate symptoms. Although PRP-applied studies have suggested disc height changes, cell therapy and LIPUS treatment have many shortcomings in clinical aspects of tissue regeneration. Therefore, it is necessary to establish a unified, safe protocol and standardize the method of presenting results to confirm the clinical effect of the treatment for impaired intervertebral regeneration in patients with intervertebral disc degeneration (IDD), including LDH.
Collapse
Affiliation(s)
- Jae Sun Lee
- Department of Research Support Office of Medical & Sciences Research Institute, International St. Mary’s Hospital, Incheon 22711, Republic of Korea;
| | - Soo-Bin Lee
- Department of Orthopedic Surgery, Catholic Kwandong University, College of Medicine, International St. Mary’s Hospital, Incheon 22711, Republic of Korea; (S.-B.L.); (K.-Y.K.); (S.H.O.)
| | - Kyung-Yil Kang
- Department of Orthopedic Surgery, Catholic Kwandong University, College of Medicine, International St. Mary’s Hospital, Incheon 22711, Republic of Korea; (S.-B.L.); (K.-Y.K.); (S.H.O.)
- College of Medicine, Catholic Kwandong Graduate School, Gangneung-si 25601, Republic of Korea
| | - Seong Ho Oh
- Department of Orthopedic Surgery, Catholic Kwandong University, College of Medicine, International St. Mary’s Hospital, Incheon 22711, Republic of Korea; (S.-B.L.); (K.-Y.K.); (S.H.O.)
- College of Medicine, Catholic Kwandong Graduate School, Gangneung-si 25601, Republic of Korea
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, Catholic Kwandong University, College of Medicine, International St. Mary’s Hospital, Incheon 22711, Republic of Korea; (S.-B.L.); (K.-Y.K.); (S.H.O.)
| |
Collapse
|
9
|
Lin H, Guo B, Li Z, Wang C, Wu W, Lu Z, Wang L, Wu J, Li J, Hao J, Feng Y. Human embryonic stem cell-derived immunity-and-matrix-regulatory cells on collagen scaffold effectively treat rat corneal alkali burn. Exp Eye Res 2025; 251:110164. [PMID: 39571781 DOI: 10.1016/j.exer.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Corneal alkali burns (CAB) are a severe form of ocular injury that often leads to significant vision loss, with limited effective treatment options available beyond corneal transplantation. Immunity and matrix-regulatory cells (IMRCs) have emerged as a promising alternative due to their ability to modulate immune responses and support tissue repair. This study investigates the efficacy of IMRCs on collagen scaffolds (IMRCs-col) for treating CAB in a rat model. We developed a novel treatment combining IMRCs with a collagen scaffold to align with the ocular surface structure. In vitro analyses showed that IMRCs-col significantly upregulated the expression of immune regulatory molecules, including IL-1RA and SCF. Additionally, IMRCs-col effectively inhibited the production of pro-inflammatory cytokines (IL-8 and Gro-a/CXCL1) while promoting pro-regenerative cytokines (bFGF, HGF, and PDGF). In an animal model of CAB, IMRCs-col transplantation demonstrated substantial efficacy in restoring corneal opacity and reducing neovascularization. Histological examination revealed reduced inflammation and improved corneal tissue regeneration compared to untreated CAB. Enhanced activation of pathways associated with anti-inflammatory responses and tissue repair was observed at days 3, 7, and 21 post-treatment.
Collapse
Affiliation(s)
- Haimiao Lin
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Baojie Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhongwen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chenxin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wenyu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Zhaoxiang Lu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jinming Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
10
|
Abu-El-Rub E, Khaswaneh RR, Almahasneh FA, Almazari R, Alzu'bi A. Adipose Tissue and Bone Marrow-Derived Mesenchymal Stem Cells are not Really the Same: Investigating the Differences in Their Immunomodulatory, Migratory, and Adhesive Profile. Biochem Genet 2025; 63:378-392. [PMID: 38441812 DOI: 10.1007/s10528-024-10724-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/28/2024] [Indexed: 09/03/2024]
Abstract
Mesenchymal stem cells (MSCs) are the most widely used stem cells in regenerative medicine. They can be isolated from multiple sources, most commonly bone marrow and adipose tissue. MSCs derived from different sources show similar molecular and biological characteristics, but there is ongoing debate regarding the best source of MSCs and the potential biological differences between MSCs from different origins. Bone marrow derived-MSCs (BM-MSCs) and adipose tissue-derived MSCs (AD-MSCs) share many molecular and immunomodulatory properties. In this study, we compared the levels of major immunomodulatory, adhesive, and migratory factors in human BM-MSCs and AD-MSCs under normal conditions, which will help determine the suitability and specificity of each type for certain therapeutic applications. WST1 assay and fluorescent assay SUC-LLVY-AMC were used to measure MSC proliferation and 26S proteasome activity, respectively. Western blotting, ELISA Assays, and bright field live imaging were also used. AD-MSCs and BM-MSCs exhibited similar morphology and proliferation rate. A significantly higher 26S proteasome activity was detected in AD-MSCs than in BM-MSCs. Levels of ICAM-1, integrin α5 and integrin α6 were significantly higher in AD-MSCs compared to BM-MSCs, while no significant difference in CXCR4 levels was observed. Expression of IDO and factor H was significantly higher in AD-MSCs, while CTLA-4 and IL-10 levels were higher in BM-MSCs. This indicates that AD-MSCs and BM-MSCs have different immunomodulatory and adhesion profiles. MSCs isolated from different sources may show differences in their biological and immunomodulatory properties, suggesting a potential suitability of certain MSCs type for specific conditions. Also, combination of different MSCs types could help optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ramada R Khaswaneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan.
| | - Fatimah A Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Rawan Almazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ayman Alzu'bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| |
Collapse
|
11
|
Song J, Wu Y, Chen Y, Sun X, Zhang Z. Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review). Mol Med Rep 2025; 31:2. [PMID: 39422035 PMCID: PMC11551531 DOI: 10.3892/mmr.2024.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic wounds represent a significant complication of diabetes and present a substantial challenge to global public health. Macrophages are crucial effector cells that play a pivotal role in the pathogenesis of diabetic wounds, through their polarization into distinct functional phenotypes. The field of epigenetics has emerged as a rapidly advancing research area, as this phenomenon has the potential to markedly affect gene expression, cellular differentiation, tissue development and susceptibility to disease. Understanding epigenetic mechanisms is crucial to further exploring disease pathogenesis. A growing body of scientific evidence has highlighted the pivotal role of epigenetics in the regulation of macrophage phenotypes. Various epigenetic mechanisms, such as DNA methylation, histone modification and non‑coding RNAs, are involved in the modulation of macrophage phenotype differentiation in response to the various environmental stimuli present in diabetic wounds. The present review provided an overview of the various changes that take place in macrophage phenotypes and functions within diabetic wounds and discussed the emerging role of epigenetic modifications in terms of regulating macrophage plasticity in diabetic wounds. It is hoped that this synthesis of information will facilitate the elucidation of diabetic wound pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Jielin Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Yuqing Wu
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yunli Chen
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xu Sun
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Zhaohui Zhang
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| |
Collapse
|
12
|
Wang Y, Yung P, Lu G, Liu Y, Ding C, Mao C, Li ZA, Tuan RS. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology-Biology Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401334. [PMID: 38491868 PMCID: PMC11733728 DOI: 10.1002/adma.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Yuwei Liu
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- The First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037P. R. China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Zhong Alan Li
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Key Laboratory of Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhen518172P. R. China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| |
Collapse
|
13
|
Ren H, Wang Y, Chen Y, Ma F, Shi Q, Wang Z, Gui Y, Liu J, Tang H. The therapeutic effects of induced pluripotent stem cell-derived mesenchymal stem cells on Parkinson's disease. IUBMB Life 2025; 77:e2936. [PMID: 39740935 DOI: 10.1002/iub.2936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/12/2024] [Indexed: 01/02/2025]
Abstract
Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity. So we evaluated the therapeutic effects of iMSCs on PD. iMSCs were administered by tail vein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD models of C57BL/6 mice. The results showed iMSCs increased body weights, inhibited the prolongation of latencies to descend in pole tests, the decrease of grip strength in grip strength tests and increase of open arm entries in elevated plus maze test, and showed a trend to alleviate striatal dopamine loss. They indicate iMSCs might improve functions partially by preserving striatal dopamine in PD. We for the first time (1) found that iMSC has therapeutic effects on PD; (2) tested specifically muscle strength in cell therapy for PD and found it increases muscle strength; (3) found cell therapy alleviated the increase of entries into the open arms in PD. It suggests iMSC is a promising candidate for clinical investigations and drug development for PD.
Collapse
Affiliation(s)
- Hao Ren
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Yuwei Wang
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Yingying Chen
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Feilong Ma
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Qing Shi
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Zichen Wang
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Yaoting Gui
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Jianbo Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Huiru Tang
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| |
Collapse
|
14
|
Im GI. Clinical updates in mesenchymal stromal cell therapy for osteoarthritis treatment. Expert Opin Biol Ther 2025; 25:187-195. [PMID: 39710894 DOI: 10.1080/14712598.2024.2446612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Osteoarthritis (OA) is a common chronic musculoskeletal disease with heterogeneous clinical manifestations and variable responses to different treatments. Unfortunately, there is no effective disease modifying therapy at present that can alter the natural course of the disease. Cell therapy based on mesenchymal stromal cells (MSCs) may offer an attractive therapeutic option for OA with their multiple modes of action, particularly immune-regulatory and regenerative capacities. AREAS COVERED In this narrative review, updates on mode of action based on patient's data, factors that can influence the efficacy of MSC treatment, current status in clinical application of MSCs as seen from randomized, controlled OA trials are introduced as well as the author's perspectives in the future of MSCs as OA therapeutics. EXPERT OPINION Symptomatic relief is not sufficient to justify the high cost associated with culture-expanded stem cells. Its advantages and efficacy over simple and low risk/cost modalities should be seriously reevaluated. Also, as the short-term strategy, efforts should be made to lower the cost of MSC therapy. In the future, multiomics technology may help to predict that subgroup of patients who will favorably respond to stem cell treatment, which would enhance the cost effectiveness and therapeutic benefit of MSC therapy.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
15
|
Jamshidi A, Beheshti Maal A, Alikhani M, Madani H, Sadri B, Moghaddassi M, Salimzadeh A, Ahmadipour M, Shahrbaf MA, Hajizadeh-Saffar E, Baghaban Eslaminejad M, Hassani SN, Taghiyar L, Abbasi F, Baharvand H, Vosough M. Allogeneic bone marrow derived clonal mesenchymal stromal cells in refractory rheumatoid arthritis: a pilot study. Regen Med 2024; 19:599-609. [PMID: 39713986 DOI: 10.1080/17460751.2024.2443352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024] Open
Abstract
AIMS This phase I trial assessed the safety and potential efficacy of monthly 3 dose intravenous infusion of allogeneic bone marrow-derived clonal mesenchymal stromal cells (BM-cMSCs) in refractory rheumatoid arthritis (RA) patients over 24 weeks. PATIENTS & METHODS Six patients with refractory RA received BM-cMSC infusions at one-month intervals over a 24-week period. Safety outcomes included adverse events (AEs) and serious adverse events (SAEs). Clinical efficacy was assessed using the Visual Analog Scale (VAS), Simple and Clinical Disease Activity Indices (SDAI/CDAI), Health Assessment Questionnaire (HAQ), and American College of Rheumatology (ACR) response criteria. Serological makers including: erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), IL-10, IL-17, TNF-α, and Treg/Th17 ratios were measured. RESULTS BM-cMSC infusions were well-tolerated, with no SAEs reported. VAS scores improved in three patients, with two achieving sustained pain relief and quality-of-life enhancement. Four patients met ACR20 at week 16, while SDAI and CDAI scores indicated disease activity reduction in three patients. Anti-CCP and RF levels showed variable responses, with some increases not consistently correlating with clinical outcomes. Serological biomarkers showed mixed results; IL-10 increased in five patients, while pro-inflammatory markers TNF-α and IL-17 decreased in the same individuals. CONCLUSIONS BM-cMSC therapy demonstrated a favorable safety profile and potential efficacy in managing refractory RA. While preliminary results are promising, further studies with larger cohorts and long-term follow-up are needed to validate these findings and optimize therapeutic strategies. CLINICAL TRIAL REGISTRATION IRCT20080728001031N29.
Collapse
Affiliation(s)
- Ahmadreza Jamshidi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Beheshti Maal
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Majid Alikhani
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Madani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahareh Sadri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Moghaddassi
- Rheumatology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimzadeh
- Rheumatology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Ahmadipour
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Shahrbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Taghiyar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Abbasi
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Geng X, Fu Z, Geng G, Chi K, Liu C, Hong H, Cai G, Chen X, Hong Q. Astilbin improves the therapeutic effects of mesenchymal stem cells in AKI-CKD mice by regulating macrophage polarization through PTGS2-mediated pathway. Stem Cell Res Ther 2024; 15:427. [PMID: 39543734 PMCID: PMC11566621 DOI: 10.1186/s13287-024-04025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) have been proven to be appropriate candidates for the treatment of AKI-CKD, their efficacy is limited and variable. Astilbin (AST) had a protective effect on MSCs from oxidative stress via ROS-scavenging, however, whether it can improve MSCs' renoprotection and the underlying mechanism need to be elucidated. METHODS AST-pretreated MSCs were administered intravenously into the ischemia-reperfusion injury mice models and the renal function, pathological changes and inflammation. Were evaluated. In addition, DARTS, molecular docking, surface plasma resonance(SPR), dual-luciferase reporter gene assay and the ChIP-PCR were utilized to explore the potential signaling pathways through which AST exert renal protective effects on MSCs. RESULTS AST-pretreated MSCs markedly improved kidney function, reduced kidney pathological injury and inflammation in AKI and AKI-CKD mice. RNA-seq results showed that PTGS2 related pathway was significantly up-regulated in MSCs after AST pretreatment. DARTS assay, molecular docking and SPR assay revealed that AST could bind with the transcriptional factor of Kruppel-Like Factor 4(KLF4) protein. The promoter of PTGS2 had the binding and transcriptional activation by KLF4. Furthermore, AST pretreatment promoted the secretion of PGE2 in MSCs. And then the westren blot results showed that the protein levels of CD163 and CD206 were upregulated after coculture in AST-pretreated MSCs, indicating that the polarization of RAW264.7 cells towards M2-like macrophages was induced. Knockdown of PTGS2 reversed the ability of AST-pretreated MSCs in converting macrophages to M2 phenotype and reducing their therapeutic effects on AKI-CKD mice. CONCLUSION AST pretreatment enhances the efficacy of MSCs on AKI and AKI-CKD mice by inducing of M2-like phenotype polarization in macrophages through the PTGS2-mediated pathway. This approach not only provides a novel strategy to strengthen the capability of MSCs but also helps elucidate the beneficial effects of the Chinese herbal medicine AST.
Collapse
Affiliation(s)
- Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Healthcare Office of Service Bureau, Agency for Offices Administration, Central Military Commission, People's Republic of China, Beijing, 100034
| | - Zhangning Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Guangrui Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Critical Care Medicine, 920th Hospital of Joint Logistics Support Force of Chinese PLA, Kunming, 650032, Yunnan Province, China
| | - Kun Chi
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Haijuan Hong
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
17
|
Chen J, Xie S, Qiu D, Xie M, Wu M, Li X, Zhang X, Wu Q, Xiong Y, Wu C, Ren J, Peng Y. The NLRP3 molecule influences the therapeutic effects of mesenchymal stem cells through Glut1-mediated energy metabolic reprogramming. J Adv Res 2024; 65:125-136. [PMID: 38070595 PMCID: PMC11519012 DOI: 10.1016/j.jare.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Numerous studies demonstrated that NLRP3 has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Mesenchymal stem cells (MSCs) regulated the NLRP3 inflammasome, which has emerged as a novel therapeutic approach for treating IBD. OBJECTIVES The exact role of NLRP3 in regulating MSCs' function is unclear. Our study aimed to explore how NLRP3 affects the therapeutic effects of MSCs in colitis. METHODS We extracted MSCs from the bone marrow of C57BL/6 mice and Nlrp3 KO mice, and identified them using differentiation assays and flow cytometry. In vitro, Both WT MSCs and Nlrp3 KO MSCs were stimulated with inflammatory factor Lipopolysaccharide (LPS), and only WT MSCs were stimulated with varying concentrations of the NLRP3 inhibitor MCC950, then, quantified IL-10 levels in the supernatant. RNA-seq was performed to examine gene expression patterns and Seahorse was used to assess oxidative phosphorylation (OXPHOS) and glycolysis levels. Western blot was used to evaluate protein expression. In vivo, we treated DSS-induced colitis with either WT or Nlrp3 KO MSCs, monitoring weight, measuring colon length, and further evaluation. We also treated DSS-induced colitis with pretreated MSCs (BAY876, oe-Glut1, or oe-NLRP3), following the same experimental procedures as described above. RESULTS Our results demonstrate that Nlrp3 deletion did not affect MSC phenotypes, but rather promoted osteogenic differentiation. However, the absence of Nlrp3 reduced IL-10 production in MSCs in the presence of LPS, leading to impaired protection on DSS-induced colitis. Conversely, overexpression of NLRP3 promotes the production of IL-10, enhancing therapeutic effects. Further investigation revealed that Nlrp3 deficiency downregulated Glut1 expression and glycolysis activation in MSCs, resulting in decreased IL-10 production. Notably, overexpressing Glut1 in Nlrp3 KO MSCs restored their therapeutic effect that was previously dampened due to Nlrp3 deletion. CONCLUSION Our findings demonstrate that NLRP3 heightens the therapeutic effects of MSC treatment on DSS-induced colitis.
Collapse
Affiliation(s)
- Jingrou Chen
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Shujuan Xie
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Dongbo Qiu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Maosheng Xie
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengye Wu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoping Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qili Wu
- Medical Research Center, Guangdong Provincial Hospital, Guangzhou 510080, China
| | - Yi Xiong
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Changyou Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Ren
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, China.
| | - Yanwen Peng
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
18
|
Maeda S, Matsumoto M, Segawa K, Iwamoto K, Nakamura N. Development of scaffold-free tissue-engineered constructs derived from mesenchymal stem cells with serum-free media for cartilage repair and long-term preservation. Cytotechnology 2024; 76:595-612. [PMID: 39188648 PMCID: PMC11344744 DOI: 10.1007/s10616-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/18/2024] [Indexed: 08/28/2024] Open
Abstract
Synovial mesenchymal stem cells (sMSCs) have great potential for cartilage repair, but their therapeutic design to avoid adverse effects associated with unknown factors remains a challenge. In addition, because long-term preservation is indispensable to maintain high quality levels until implantation, it is necessary to reduce their fluctuations. This study aimed to investigate the properties and feasibility of novel scaffold-free tissue-engineered constructs using serum-free media and to develop long-term preservation methods. sMSCs were cultured in serum-free media, seeded at high density in a monolayer, and finally developed as a sheet-like construct called "gMSC1". The properties of frozen gMSC1 (Fro-gMSC1) were compared with those of refrigerated gMSC1 (Ref-gMSC1) and then examined by their profile. Chondrogenic differentiation potential was analyzed by quantitative real-time polymerase chain reaction and quantification of glycosaminoglycan content. Xenografts into the cartilage defect model in rats were evaluated by histological staining. gMSC1 showed nearly similar properties independent of the preservation conditions. The animal experiment demonstrated that the defect could be filled with cartilage-like tissue with good integration to the adjacent tissue, suggesting that gMSC1 was formed and replaced the cartilage. Furthermore, several chondrogenesis-related factors were significantly secreted inside and outside gMSC1. Morphological analysis of Fro-gMSC1 revealed comparable quality levels to those of fresh gMSC1. Thus, if cryopreserved, gMSC1, with no complicated materials or processes, could have sustained cartilage repair capacity. gMSC1 is a prominent candidate in novel clinical practice for cartilage repair, allowing for large quantities to be manufactured at one time and preserved for a long term by freezing. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00637-y.
Collapse
Affiliation(s)
- Satoshi Maeda
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Masaya Matsumoto
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Kotaro Segawa
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Kaori Iwamoto
- TWOCELLS Co., Ltd, 1–6-10 Deshio, Minami-ku, Hiroshima, 734–0001 Japan
| | - Norimasa Nakamura
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2–2 Yamadaoka, Suita, Osaka, 565–0871 Japan
| |
Collapse
|
19
|
Reis ALG, Maximino JR, Lage LADPC, Gomes HR, Pereira J, Brofman PRS, Senegaglia AC, Rebelatto CLK, Daga DR, Paiva WS, Chadi G. Proteomic analysis of cerebrospinal fluid of amyotrophic lateral sclerosis patients in the presence of autologous bone marrow derived mesenchymal stem cells. Stem Cell Res Ther 2024; 15:301. [PMID: 39278909 PMCID: PMC11403799 DOI: 10.1186/s13287-024-03820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/27/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressive motoneuron degenerative disorder. There are still no drugs capable of slowing disease evolution or improving life quality of ALS patients. Thus, autologous stem cell therapy has emerged as an alternative treatment regime to be investigated in clinical ALS. METHOD Using Proteomics and Protein-Protein Interaction Network analyses combined with bioinformatics, the possible cellular mechanisms and molecular targets related to mesenchymal stem cells (MSCs, 1 × 106 cells/kg, intrathecally in the lumbar region of the spine) were investigated in cerebrospinal fluid (CSF) of ALS patients who received intrathecal infusions of autologous bone marrow-derived MSCs thirty days after cell therapy. Data are available via ProteomeXchange with identifier PXD053129. RESULTS Proteomics revealed 220 deregulated proteins in CSF of ALS subjects treated with MSCs compared to CSF collected from the same patients prior to MSCs infusion. Bioinformatics enriched analyses highlighted events of Extracellular matrix and Cell adhesion molecules as well as related key targets APOA1, APOE, APP, C4A, C5, FGA, FGB, FGG and PLG in the CSF of cell treated ALS subjects. CONCLUSIONS Extracellular matrix and cell adhesion molecules as well as their related highlighted components have emerged as key targets of autologous MSCs in CSF of ALS patients. TRIAL REGISTRATION Clinicaltrial.gov identifier NCT0291768. Registered 28 September 2016.
Collapse
Affiliation(s)
- Ana Luiza Guimarães Reis
- Laboratorio de Neurologia Translacional, Departamento de Neurologia, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Jessica Ruivo Maximino
- Laboratorio de Neurologia Translacional, Departamento de Neurologia, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | | | - Hélio Rodrigues Gomes
- Departamento de Neurologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Juliana Pereira
- LIM-31, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Catolica do Parana, Curitiba, PR, 80215-901, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Catolica do Parana, Curitiba, PR, 80215-901, Brazil
| | - Carmen Lúcia Kuniyoshi Rebelatto
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Catolica do Parana, Curitiba, PR, 80215-901, Brazil
| | - Debora Regina Daga
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Catolica do Parana, Curitiba, PR, 80215-901, Brazil
| | - Wellingson Silva Paiva
- Departamento de Neurologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil
| | - Gerson Chadi
- Laboratorio de Neurologia Translacional, Departamento de Neurologia, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil.
- Departamento de Neurologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
20
|
Deng X, Zhang S, Qing Q, Wang P, Ma H, Ma Q, Zhao W, Tang H, Lu M. Distinct biological characteristics of mesenchymal stem cells separated from different components of human placenta. Biochem Biophys Rep 2024; 39:101739. [PMID: 38974020 PMCID: PMC11225169 DOI: 10.1016/j.bbrep.2024.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tremendous potential in cell therapy and regenerative medicine. The placenta-derived MSCs (PMSCs) are becoming favorable sources as they are ethically preferable and rich in MSCs. Although several subgroups of PMSCs have been identified from human term placenta, optimal sources for specific clinical applications remain to be elucidated. This study aimed to isolate MSCs from various components of the placenta, and compare their biological characteristics, including morphology, proliferation, immunophenotype, differentiation potential, growth factor and cytokine secretion, and immunomodulatory properties. Finally, four distinct groups of PMSCs were isolated from the placenta: amniotic membrane-derived MSCs (AM-MSCs), chorionic membrane-derived MSCs (CM-MSCs), chorionic plate-derived MSCs (CP-MSCs), and chorionic villi-derived MSCs (CV-MSCs). The results showed that CV-MSCs had good proliferation ability, and were easier to induce osteogenic and chondrogenic differentiation; CP-MSCs exhibited the strongest inhibitory effect on the proliferation of activated T cells, secreted high levels of EGF and IL-6, and could well differentiate into osteoblasts, adipocytes, and chondroblasts; AM-MSCs showed good growth dynamics in the early generations, were able to grow at high density, and tended to induce differentiation into osteogenic and neural lineages. These findings may provide novel evidence for the selection of seed cells in clinical application.
Collapse
Affiliation(s)
- Xiangxiong Deng
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Su Zhang
- Huzhou Maternity and Child Health Care Hospital, Huzhou, Zhejiang, 313000, China
| | - Quan Qing
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Pengfei Wang
- Huzhou Maternity and Child Health Care Hospital, Huzhou, Zhejiang, 313000, China
| | - Haiyang Ma
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Qinghua Ma
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Weixiang Zhao
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Hanjing Tang
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Min Lu
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| |
Collapse
|
21
|
Harimi S, Khansarinejad B, Fesahat F, Mondanizadeh M. Hsa-miR-15b-5p/miR-195-5p Controls Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells Through Regulating Indian Hedgehog Expression. Appl Biochem Biotechnol 2024; 196:4793-4806. [PMID: 37964167 DOI: 10.1007/s12010-023-04777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Osteoblastogenesis is regulated by several signaling pathways like hedgehog signaling. Of three types of mammalian Hedgehog genes, the Indian Hedgehog (Ihh) plays an important role in the formation of the skeleton. Mesenchymal stem cells (MSCs) isolated from adipose tissue have been considered a good source of osteoblast differentiation. Evidence also suggests that miRNAs play an important role in regulating key stages of osteoblast differentiation. In this study, two miRNAs targeting the Ihh were predicted by using bioinformatics analysis. ASCs were successfully derived, purified, and characterized from human adipose tissue. ASCs were chemically induced into osteoblast cells. Then, differentiation was confirmed by alkaline phosphatase (ALP) activity and Alizarin red staining. The relative expression of Ihh and related miRNAs was evaluated after 0, 7, 14, and 21 from the differentiation duration. The results of bioinformatics data showed that has-miR-195-5p and has-miR-15b-5p target the Ihh gene. The expression of Ihh significantly increased in a time-dependent manner in the differentiation process. In contrast, miR-195-5p and miR-15b-5p were significantly downregulated dependent on time duration (P < 0.01). Overall, the data indicate the antithetical regulation of Ihh versus has-miR-195-5p and has-miR-15b-5p during the differentiation process. These results support the hypothesis that these mi-RNAs could target the Ihh in the pathway of osteoblast differentiation derived from human ASCs.
Collapse
Affiliation(s)
- Samaneh Harimi
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
22
|
Wu M, Li C, Zhou X, Wu Z, Feng J, Guo X, Fang R, Lian Q, Pan M, Lai X, Peng Y. Wogonin preconditioning of MSCs improved their therapeutic efficiency for colitis through promoting glycolysis. Inflammopharmacology 2024; 32:2575-2587. [PMID: 38753221 DOI: 10.1007/s10787-024-01491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/07/2024] [Indexed: 08/06/2024]
Abstract
Inflammatory bowel diseases (IBDs) are prevalent and debilitating diseases with limited clinical treatment strategies. Mesenchymal stem cell (MSCs) are pluripotent stem cells with self-renewal capability and multiple immunomodulatory effects, which make them a promising therapeutic approach for IBDs. Thus, optimization of MSCs regimes is crucial for their further clinical application. Wogonin, a flavonoid-like compound with extensive immunomodulatory and adjuvant effects, has been investigated as a potential pretreatment for MSCs in IBD treatment. In this study, we employed the DSS-induced acute colitis mouse model to compare the therapeutic effectiveness of MSCs in pretreated with or without wogonin and further explore the underlying mechanism. Compared to untreated MSCs, MSCwogonin (pretreated with wogonin) showed greater effectiveness in the treatment of colitis. Further experiments revealed that wogonin treatment activated the AKT signaling pathway, resulting in higher cellular glycolysis. Inhibition of AKT phosphorylation by perifosine not only decreased glycolysis but impaired the therapeutic efficiency of MSCwogonin. Consistent with these results, qPCR data indicated that wogonin treatment induced the expression of immunomodulatory molecules IL-10, IDO, and AGR1, which were reduced by perifosine. Together, our data demonstrated that wogonin preconditioning strategy further augmented the therapeutic efficacy of MSCs via promoting glycolysis, which should be a promising strategy for optimizing MSCs therapy in IBDs.
Collapse
Affiliation(s)
- Mengye Wu
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Cuiping Li
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Xue Zhou
- Department of Ultrasonic Medicine, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Zhiyong Wu
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jianqi Feng
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Xiaolu Guo
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Rui Fang
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Qinghai Lian
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Ming Pan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Xiaorong Lai
- Department of Tumor Internal Medicine, Guangdong General Hospital Welfare Branch, Guangdong Academy of Medical Sciences, Guangzhou, 518067, Guangdong, China
| | - Yanwen Peng
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
23
|
Niknam B, Ayenehdeh JM, Hossein-Khannazer N, Vosough M, Tajik N. Adipose Tissue-Derived Mesenchymal Stromal Cells Modulate Inflammatory Response and Improve Allograft Islet Transplant in Mice Model of Type 1 Diabetes. Endocr Res 2024; 49:223-231. [PMID: 38982737 DOI: 10.1080/07435800.2024.2377286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Type 1 diabetes mellitus (T1DM) is an autoimmune disease where immune cells attack insulin-producing beta cells. Islet transplantation is a promising treatment for T1DM. This study aims to evaluate the effects of adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with pancreatic islet transplantation using hydrogel. METHODS T1DM mouse model was established using streptozotocin (STZ). Islets and AT-MSCs were co-embedded in a hydrogel and transplanted into diabetic mice. Five groups with six animals in each (control, hydrogel alone, AT-MSCs embedded hydrogel, islet embedded in hydrogel, and islet + AT-MSCs co-imbedded into a hydrogel) were evaluated in terms of blood glucose, insulin levels and serum and lavage cytokine production. RESULTS During 32 days, blood glucose levels decreased from over 400 mg/dl to less than 150 mg/dl in the transplanted mice. Analysis showed increased transformation growth factor beta (TGF-β1) and IL-4 levels, while IL-17 and IFN-γ levels significantly decreased in the MSC-treated groups. CONCLUSION These findings suggest that using AT-MSCs with hydrogel could be a beneficial alternative for enhancing pancreatic islet engraftment and function.
Collapse
Affiliation(s)
- Bahare Niknam
- Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Mohammadi Ayenehdeh
- Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nader Tajik
- Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Zhong Y, Zhu Y, Hu X, Zhang L, Xu J, Wang Q, Liu J. Human embryonic stem cell-derived mesenchymal stromal cells suppress inflammation in mouse models of rheumatoid arthritis and lung fibrosis by regulating T-cell function. Cytotherapy 2024; 26:930-938. [PMID: 38520411 DOI: 10.1016/j.jcyt.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AIMS Rheumatoid arthritis (RA) is characterized by an overactive immune system, with limited treatment options beyond immunosuppressive drugs or biological response modifiers. Human embryonic stem cell-derived mesenchymal stromal cells (hESC-MSCs) represent a novel alternative, possessing diverse immunomodulatory effects. In this study, we aimed to elucidate the therapeutic effects and underlying mechanisms of hESC-MSCs in treating RA. METHODS MSC-like cells were differentiated from hESC (hESC-MSCs) and cultured in vitro. Cell proliferation was assessed using Cell Counting Kit-8 assay and Ki-67 staining. Flow cytometry was used to analyze cell surface markers, T-cell proliferation and immune cell infiltration. The collagen-induced arthritis (CIA) mouse model and bleomycin-induced model of lung fibrosis (BLE) were established and treated with hESC-MSCs intravenously for in vivo assessment. Pathological analyses, reverse transcription-quantitative polymerase chain reaction and Western blotting were conducted to evaluate the efficacy of hESC-MSCs treatment. RESULTS Intravenous transplantation of hESC-MSCs effectively reduced inflammation in CIA mice in this study. Furthermore, hESC-MSC administration enhanced regulatory T cell infiltration and activation. Additional findings suggest that hESC-MSCs may reduce lung fibrosis in BLE mouse models, indicating their potential to mitigate complications associated with RA progression. In vitro experiments revealed a significant inhibition of T-cell activation and proliferation during co-culture with hESC-MSCs. In addition, hESC-MSCs demonstrated enhanced proliferative capacity compared with traditional primary MSCs. CONCLUSIONS Transplantation of hESC-MSCs represents a promising therapeutic strategy for RA, potentially regulating T-cell proliferation and differentiation.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yisheng Zhu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaohao Hu
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Lin Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiahuan Xu
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Qingwen Wang
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China; Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Jingfeng Liu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.
| |
Collapse
|
25
|
Tang J, Chen Y, Wang C, Xia Y, Yu T, Tang M, Meng K, Yin L, Yang Y, Shen L, Xing H, Mao X. The role of mesenchymal stem cells in cancer and prospects for their use in cancer therapeutics. MedComm (Beijing) 2024; 5:e663. [PMID: 39070181 PMCID: PMC11283587 DOI: 10.1002/mco2.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are recruited by malignant tumor cells to the tumor microenvironment (TME) and play a crucial role in the initiation and progression of malignant tumors. This role encompasses immune evasion, promotion of angiogenesis, stimulation of cancer cell proliferation, correlation with cancer stem cells, multilineage differentiation within the TME, and development of treatment resistance. Simultaneously, extensive research is exploring the homing effect of MSCs and MSC-derived extracellular vesicles (MSCs-EVs) in tumors, aiming to design them as carriers for antitumor substances. These substances are targeted to deliver antitumor drugs to enhance drug efficacy while reducing drug toxicity. This paper provides a review of the supportive role of MSCs in tumor progression and the associated molecular mechanisms. Additionally, we summarize the latest therapeutic strategies involving engineered MSCs and MSCs-EVs in cancer treatment, including their utilization as carriers for gene therapeutic agents, chemotherapeutics, and oncolytic viruses. We also discuss the distribution and clearance of MSCs and MSCs-EVs upon entry into the body to elucidate the potential of targeted therapies based on MSCs and MSCs-EVs in cancer treatment, along with the challenges they face.
Collapse
Affiliation(s)
- Jian Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Yu Chen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Medical Affairs, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Chunhua Wang
- Department of Clinical LaboratoryXiangyang No. 1 People's HospitalHubei University of MedicineXiangyangHubei ProvinceChina
| | - Ying Xia
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Tingyu Yu
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Mengjun Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Kun Meng
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial MicrobiologyMinistry of EducationTianjin Key Laboratory of Industry MicrobiologyNational and Local United Engineering Lab of Metabolic Control Fermentation TechnologyChina International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal ChemistryCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and ImmunityNational Clinical Research Center for Infectious DiseaseState Key Discipline of Infectious DiseaseShenzhen Third People's HospitalSecond Hospital Affiliated to Southern University of Science and TechnologyShenzhenChina
| | - Liang Shen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Hui Xing
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| | - Xiaogang Mao
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| |
Collapse
|
26
|
Rostami Z, Saharkhiz M, Khorashadizadeh M, Ayadilord M, Naseri M. The immunoregulatory property of mesenchymal stem cells in Crocin treatment by expression modulation of microRNA-155, microRNA-21, microRNA-23b, microRNA-126a, and their target inflammatory genes. Gene 2024; 916:148446. [PMID: 38583816 DOI: 10.1016/j.gene.2024.148446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Mesenchymal stem cells (MSCs) have high priority in clinical applications for treatment of immune disorders because of their immunomodulatory function. A lot of researches have currently been undertaken to enhance the stemness capacities of the cells and pick an excellent type of MSCs for clinical approaches. This study aims to assess the immunomodulatory related MicroRNAs (miRNAs) expression as well as their target genes in both adipose derived stem cells (Ad-SCs) and dental pulp derived stem cell (DP-SCs) in the presence or lack of Crocin (saffron plant's bioactive compound). For this purpose, first MSCs were extracted from adipose and dental pulp tissues, and then their mesenchymal nature was confirmed using flow cytometry and differentiation tests. Following the cell treatment with an optimal-non-toxic dose of Crocin (Obtained by MTT test), the expression of 4 selected immunomodulatory-related micro-RNAs (Mir-126, -21, -23, and-155) and their target genes (PI3K/ Akt 1 and 2/ NFKB and RELA) were assessed by RT-PCR. Our findings revealed that miRNA-23 and miRNA-126 were up-regulated in both types of cells treated with Crocin, while in the other side, miRNA-21 and miRNA-155 were down-regulated in DP-SCs and were up-regulated in Ad-SCs under treatment. Moreover, the real-time PCR results indicated that Crocin could significantly down regulate the expression of PI3K/ Akt1/ Akt2/ NFKB/ RELA genes in DP-SCs and PI3K/Akt2 genes in Ad-SCs and up regulate the expression of Akt1/ NFKB/ RELA genes in recent cells. Based on the analysis of the obtained data, the immunoregulatory effects of Crocin were higher in DP-SCs than in Ad-SCs. In conclusion, Crocin could control essential signaling pathways related to the inflammation by regulating the expression of related- miRNAs genes that play a key function in the immune regulation pathways in MSCs. Our findings can give an understanding of the mechanisms by which Crocin enhances the immunomodulatory feature of MSCs. According to the research findings, DP-SCs are probably a better immunomodulator in Crocin treatment than Ad-SCs and it may be helpful for MSCs selection in clinical applications for modulation or treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Zeinab Rostami
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mansoore Saharkhiz
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Malaksima Ayadilord
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
27
|
Shen R, Lu Y, Cai C, Wang Z, Zhao J, Wu Y, Zhang Y, Yang Y. Research progress and prospects of benefit-risk assessment methods for umbilical cord mesenchymal stem cell transplantation in the clinical treatment of spinal cord injury. Stem Cell Res Ther 2024; 15:196. [PMID: 38956734 PMCID: PMC11218107 DOI: 10.1186/s13287-024-03797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Over the past decade, we have witnessed the development of cell transplantation as a new strategy for repairing spinal cord injury (SCI). However, due to the complexity of the central nervous system (CNS), achieving successful clinical translation remains a significant challenge. Human umbilical cord mesenchymal stem cells (hUMSCs) possess distinct advantages, such as easy collection, lack of ethical concerns, high self-renewal ability, multilineage differentiation potential, and immunomodulatory properties. hUMSCs are promising for regenerating the injured spinal cord to a significant extent. At the same time, for advancing SCI treatment, the appropriate benefit and risk evaluation methods play a pivotal role in determining the clinical applicability of treatment plans. Hence, this study discusses the advantages and risks of hUMSCs in SCI treatment across four dimensions-comprehensive evaluation of motor and sensory function, imaging, electrophysiology, and autonomic nervous system (ANS) function-aiming to improve the rationality of relevant clinical research and the feasibility of clinical translation.
Collapse
Affiliation(s)
- Ruoqi Shen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Chaoyang Cai
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Ziming Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jiayu Zhao
- Department of Neuro-Oncological Surgery, Neurosurgery Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yingjie Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yinian Zhang
- Department of Neuro-Oncological Surgery, Neurosurgery Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
28
|
Li W, Si Y, Wang Y, Chen J, Huo X, Xu P, Jiang B, Li Z, Shang K, Luo Q, Xiong Y. hUCMSC-derived exosomes protect against GVHD-induced endoplasmic reticulum stress in CD4 + T cells by targeting the miR-16-5p/ATF6/CHOP axis. Int Immunopharmacol 2024; 135:112315. [PMID: 38805908 DOI: 10.1016/j.intimp.2024.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
Exosomes generated from mesenchymal stem cells (MSCs) are thought to be a unique therapeutic strategy for several autoimmune deficiency illnesses. The purpose of this study was to elucidate the protective effects of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exo) on CD4+ T cells dysfunction during graft-versus-host disease (GVHD) and to identify the underlying processes involved. Here, we showed that hUCMSC-Exo treatment can effectively attenuate GVHD injury by alleviating redox metabolism disorders and inflammatory cytokine bursts in CD4+ T cells. Furthermore, hUCMSC-Exo ameliorate ER stress and ATF6/CHOP signaling-mediated apoptosis in CD4+ T cells and promote the development of CD4+IL-10+ T cells during GVHD. Moreover, downregulating miR-16-5p in hUCMSC-Exo impaired their ability to prevent CD4+ T cells apoptosis and weakened their ability to promote the differentiation of CD4+IL-10+ T cells. Collectively, the obtained data suggested that hUCMSC-Exo suppress ATF6/CHOP signaling-mediated ER stress and apoptosis in CD4+ T cells, enhance the differentiation of CD4+IL-10+ T cells, and reverse the imbalance of immune homeostasis in the GVHD process by transferring miR-16-5p. Our study provided further evidence that GVHD patients can benefit from hUCMSC-Exo-mediated therapy.
Collapse
Affiliation(s)
- Weihan Li
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China; Shanghai Mebo Life Science & Technology Co., Shanghai, PR China
| | - Yaru Si
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yueming Wang
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China
| | - Juntong Chen
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Xingyu Huo
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Pengzhan Xu
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Bingzhen Jiang
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Zile Li
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Kangdi Shang
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Qianqian Luo
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| | - Yanlian Xiong
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China; Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
29
|
Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Neuroprotective Effects of Curcumin in Neurodegenerative Diseases. Foods 2024; 13:1774. [PMID: 38891002 PMCID: PMC11172163 DOI: 10.3390/foods13111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Curcumin, a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, is now considered a candidate drug for the treatment of neurological diseases, including Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and prion disease, due to its potent anti-inflammatory, antioxidant potential, anticancerous, immunomodulatory, neuroprotective, antiproliferative, and antibacterial activities. Traditionally, curcumin has been used for medicinal and dietary purposes in Asia, India, and China. However, low water solubility, poor stability in the blood, high rate of metabolism, limited bioavailability, and little capability to cross the blood-brain barrier (BBB) have limited the clinical application of curcumin, despite the important pharmacological activities of this drug. A variety of nanocarriers, including liposomes, micelles, dendrimers, cubosome nanoparticles, polymer nanoparticles, and solid lipid nanoparticles have been developed with great success to effectively deliver the active drug to brain cells. Functionalization on the surface of nanoparticles with brain-specific ligands makes them target-specific, which should significantly improve bioavailability and reduce harmful effects. The aim of this review is to summarize the studies on curcumin and/or nanoparticles containing curcumin in the most common neurodegenerative diseases, highlighting the high neuroprotective potential of this nutraceutical.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| |
Collapse
|
30
|
Li C, Sun Y, Xu W, Chang F, Wang Y, Ding J. Mesenchymal Stem Cells-Involved Strategies for Rheumatoid Arthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305116. [PMID: 38477559 PMCID: PMC11200100 DOI: 10.1002/advs.202305116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/13/2023] [Indexed: 03/14/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation of the joints and bone destruction. Because of systemic administration and poor targeting, traditional anti-rheumatic drugs have unsatisfactory treatment efficacy and strong side effects, including myelosuppression, liver or kidney function damage, and malignant tumors. Consequently, mesenchymal stem cells (MSCs)-involved therapy is proposed for RA therapy as a benefit of their immunosuppressive and tissue-repairing effects. This review summarizes the progress of MSCs-involved RA therapy through suppressing inflammation and promoting tissue regeneration and predicts their potential clinical application.
Collapse
Affiliation(s)
- Chaoyang Li
- Department of OrthopedicsThe Second Hospital of Jilin University4026 Yatai StreetChangchun130041P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yifu Sun
- Department of OrthopedicsThe Second Hospital of Jilin University4026 Yatai StreetChangchun130041P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Fei Chang
- Department of OrthopedicsThe Second Hospital of Jilin University4026 Yatai StreetChangchun130041P. R. China
| | - Yinan Wang
- Department of BiobankDivision of Clinical ResearchThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
31
|
Yun F, Zhaorigen B, Han X, Li X, Yun S. Islet Like Cells Induced from Umbilical Cord Mesenchymal Stem Cells with Neonatal Bovine Pancreatic Mesenchymal Exosomes for Treatment of Diabetes Mellitus. Horm Metab Res 2024; 56:463-470. [PMID: 37832580 DOI: 10.1055/a-2166-4546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
To investigate the safety and efficacy of the islet-like cell (cell) induced from human umbilical cord mesenchymal stem cell (UCMSC) with different methods for the treatment of diabetic animal model. UCMSCs were induced to βcells with cytokines (CY) and neonatal bovine pancreatic mesenchymal cell exosomes (Ex) combined with CY (EX+CY). The insulin secretion of UCMSC and βcell was measured with ELISA when the cells were growing in different concentrations of glucose media for different times. UCMSCs (4×105) and the same number of cells prepared with two methods were transplanted to type I diabetic rat models. UCMSCs could be induced into islet βcells by CY or EX+CY in vitro. The insulin secretion of the prepared β cells growing in 25.0 mM glucose medium was over 5-fold of that in 6.0 mM glucose. The transplantation of the βcells to type I diabetic rat models could reduce the blood glucose and prolong the survival time. The β cells induced by EX+CY had much more significant effects on decreasing blood glucose and increasing survival time (p<0.01). The cells did not affect blood sugar level and had no serious side-effects in human health. UCMSC could be induced to islet βcells with either CY or EX+CY. The transplantation of the induced islet βcells could reduce blood glucose and prolong the survival time of diabetic animal models. Although the cells induced with EX+CY had more significant effects on diabetic rats, they did not affect blood glucose level and had no serious side-effects in human health.
Collapse
Affiliation(s)
- Feiyu Yun
- Stem Cell Center, Affiliated Hospital of Inner Mongolia Medical University, Huhehot, China
| | - Bayalige Zhaorigen
- Stem Cell Center, Affiliated Hospital of Inner Mongolia Medical University, Huhehot, China
| | - Xia Han
- Stem Cell Center, Affiliated Hospital of Inner Mongolia Medical University, Huhehot, China
| | - Xin Li
- Fengyuan Biosciences Company, Fengyuan Biosciences Company, Guangzhou, China
| | - Sheng Yun
- Stem Cell Center, Affiliated Hospital of Inner Mongolia Medical University, Huhehot, China
| |
Collapse
|
32
|
Nawar AA, Farid AM, Wally R, Tharwat EK, Sameh A, Elkaramany Y, Asla MM, Kamel WA. Efficacy and safety of stem cell transplantation for multiple sclerosis: a systematic review and meta-analysis of randomized controlled trials. Sci Rep 2024; 14:12545. [PMID: 38822024 PMCID: PMC11143245 DOI: 10.1038/s41598-024-62726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Multiple sclerosis (MS) is a common autoimmune neurological disease affecting patients' motor, sensory, and visual performance. Stem Cell Transplantation (SCT) is a medical intervention where a patient is infused with healthy stem cells with the purpose of resetting their immune system. SCT shows remyelinating and immunomodulatory functions in MS patients, representing a potential therapeutic option. We conducted this systematic review and meta-analysis that included randomized control trials (RCTs) of SCT in MS patients to investigate its clinical efficacy and safety, excluding observational and non-English studies. After systematically searching PubMed, Web of Science, Scopus, and Cochrane Library until January 7, 2024, nine RCTs, including 422 patients, were eligible. We assessed the risk of bias (ROB) in these RCTs using Cochrane ROB Tool 1. Data were synthesized using Review Manager version 5.4 and OpenMeta Analyst software. We also conducted subgroup and sensitivity analyses. SCT significantly improved patients expanded disability status scale after 2 months (N = 39, MD = - 0.57, 95% CI [- 1.08, - 0.06], p = 0.03). SCT also reduced brain lesion volume (N = 136, MD = - 7.05, 95% CI [- 10.69, - 3.4], p = 0.0002). The effect on EDSS at 6 and 12 months, timed 25-foot walk (T25-FW), and brain lesions number was nonsignificant. Significant adverse events (AEs) included local reactions at MSCs infusion site (N = 25, RR = 2.55, 95% CI [1.08, 6.03], p = 0.034) and hematological disorders in patients received immunosuppression and autologous hematopoietic SCT (AHSCT) (N = 16, RR = 2.33, 95% CI [1.23, 4.39], p = 0.009). SCT can improve the disability of MS patients and reduce their brain lesion volume. The transplantation was generally safe and tolerated, with no mortality or significant serious AEs, except for infusion site reactions after mesenchymal SCT and hematological AEs after AHSCT. However, generalizing our results is limited by the sparse number of RCTs conducted on AHSCT. Our protocol was registered on PROSPERO with a registration number: CRD42022324141.
Collapse
Affiliation(s)
| | | | - Rim Wally
- Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Engy K Tharwat
- Bioinformatics Group, Centre for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Ahmed Sameh
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yomna Elkaramany
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Walaa A Kamel
- Neurology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
33
|
Tahmasebi F, Asl ER, Vahidinia Z, Faghihi F, Barati S. The comparative effects of bone marrow mesenchymal stem cells and supernatant transplantation on demyelination and inflammation in cuprizone model. Mol Biol Rep 2024; 51:674. [PMID: 38787497 DOI: 10.1007/s11033-024-09628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) with inflammation and immune dysfunction. OBJECTIVES We compared the remyelination and immunomodulation properties of mesenchymal stem cells (MSCs) with their conditioned medium (CM) in the cuprizone model. METHODS Twenty-four C57BL/ 6 mice were divided into four groups. After cuprizone demyelination, MSCs and their CM were injected into the right lateral ventricle of mice. The expression level of IL-1β, TNF-α, and BDNF genes was evaluated using the qRT-PCR. APC antibody was used to assess the oligodendrocyte population using the immunofluorescent method. The remyelination and axonal repair were studied by specific staining of the LFB and electron microscopy techniques. RESULTS Transplantation of MSCs and CM increased the expression of the BDNF gene and decreased the expression of IL-1β and TNF-α genes compared to the cuprizone group, and these effects in the cell group were more than CM. Furthermore, cell transplantation resulted in a significant improvement in myelination and axonal repair, which was measured by luxol fast blue and transmission electron microscope images. The cell group had a higher number of oligodendrocytes than other groups. CONCLUSIONS According to the findings, injecting MSCs intraventricularly versus cell-conditioned medium can be a more effective approach to improving chronic demyelination in degenerative diseases like MS.
Collapse
Affiliation(s)
- Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Pad Nahad Tabiat Company, Ltd, Tehran, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
34
|
Chang L, Fan WW, Yuan HL, Liu X, Wang Q, Ruan GP, Pan XH, Zhu XQ. Role of umbilical cord mesenchymal stromal cells in skin rejuvenation. NPJ Regen Med 2024; 9:20. [PMID: 38729990 PMCID: PMC11087646 DOI: 10.1038/s41536-024-00363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Aging is the main cause of many degenerative diseases. The skin is the largest and the most intuitive organ that reflects the aging of the body. Under the interaction of endogenous and exogenous factors, there are cumulative changes in the structure, function, and appearance of the skin, which are characterized by decreased synthesis of collagen and elastin, increased wrinkles, relaxation, pigmentation, and other aging characteristics. skin aging is inevitable, but it can be delayed. The successful isolation of mesenchymal stromal cells (MSC) in 1991 has greatly promoted the progress of cell therapy in human diseases. The International Society for Cellular Therapy (ISCT) points out that the MSC is a kind of pluripotent progenitor cells that have self-renewal ability (limited) in vitro and the potential for mesenchymal cell differentiation. This review mainly introduces the role of perinatal umbilical cord-derived MSC(UC-MSC) in the field of skin rejuvenation. An in-depth and systematic understanding of the mechanism of UC-MSCs against skin aging is of great significance for the early realization of the clinical transformation of UC-MSCs. This paper summarized the characteristics of skin aging and summarized the mechanism of UC-MSCs in skin rejuvenation reported in recent years. In order to provide a reference for further research of UC-MSCs to delay skin aging.
Collapse
Affiliation(s)
- Le Chang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Wei-Wen Fan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - He-Ling Yuan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xin Liu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Qiang Wang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Guang-Ping Ruan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xing-Hua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| | - Xiang-Qing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
35
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
36
|
Almahasneh F, Abu-El-Rub E, Khasawneh RR, Almazari R. Effects of high glucose and severe hypoxia on the biological behavior of mesenchymal stem cells at various passages. World J Stem Cells 2024; 16:434-443. [PMID: 38690519 PMCID: PMC11056633 DOI: 10.4252/wjsc.v16.i4.434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been extensively studied for therapeutic potential, due to their regenerative and immunomodulatory properties. Serial passage and stress factors may affect the biological characteristics of MSCs, but the details of these effects have not been recognized yet. AIM To investigate the effects of stress factors (high glucose and severe hypoxia) on the biological characteristics of MSCs at different passages, in order to optimize the therapeutic applications of MSCs. METHODS In this study, we investigated the impact of two stress conditions; severe hypoxia and high glucose on human adipose-tissue derived MSCs (hAD-MSCs) at passages 6 (P6), P8, and P10. Proliferation, senescence and apoptosis were evaluated measuring WST-1, senescence-associated beta-galactosidase, and annexin V, respectively. RESULTS Cells at P6 showed decreased proliferation and increased apoptosis under conditions of high glucose and hypoxia compared to control, while the extent of senescence did not change significantly under stress conditions. At P8 hAD-MSCs cultured in stress conditions had a significant decrease in proliferation and apoptosis and a significant increase in senescence compared to counterpart cells at P6. Cells cultured in high glucose at P10 had lower proliferation and higher senescence than their counterparts in the previous passage, while no change in apoptosis was observed. On the other hand, MSCs cultured under hypoxia showed decreased senescence, increased apoptosis and no significant change in proliferation when compared to the same conditions at P8. CONCLUSION These results indicate that stress factors had distinct effects on the biological processes of MSCs at different passages, and suggest that senescence may be a protective mechanism for MSCs to survive under stress conditions at higher passage numbers.
Collapse
Affiliation(s)
- Fatimah Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan.
| | - Ramada R Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Rawan Almazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
37
|
Hou XY, Danzeng LM, Wu YL, Ma QH, Yu Z, Li MY, Li LS. Mesenchymal stem cells and their derived exosomes for the treatment of COVID-19. World J Stem Cells 2024; 16:353-374. [PMID: 38690515 PMCID: PMC11056634 DOI: 10.4252/wjsc.v16.i4.353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response. Therefore, suppressing the overactive immune response may be an effective strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.
Collapse
Affiliation(s)
- Xiang-Yi Hou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - La-Mu Danzeng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Yi-Lin Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Qian-Hui Ma
- Department of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| | - Zheng Yu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Mei-Ying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
38
|
Maged G, Abdelsamed MA, Wang H, Lotfy A. The potency of mesenchymal stem/stromal cells: does donor sex matter? Stem Cell Res Ther 2024; 15:112. [PMID: 38644508 PMCID: PMC11034072 DOI: 10.1186/s13287-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising therapeutic tool in cell therapy and tissue engineering because of their multi-lineage differentiation capacity, immunomodulatory effects, and tissue protective potential. To achieve optimal results as a therapeutic tool, factors affecting MSC potency, including but not limited to cell source, donor age, and cell batch, have been investigated. Although the sex of the donor has been attributed as a potential factor that can influence MSC potency and efficacy, the impact of donor sex on MSC characteristics has not been carefully investigated. In this review, we summarize published studies demonstrating donor-sex-related MSC heterogeneity and emphasize the importance of disclosing donor sex as a key factor affecting MSC potency in cell therapy.
Collapse
Affiliation(s)
- Ghada Maged
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Menna A Abdelsamed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, 29425, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Ahmed Lotfy
- Department of Surgery, Medical University of South Carolina, 29425, Charleston, SC, USA.
| |
Collapse
|
39
|
Anatskaya OV, Vinogradov AE. Polyploidy Promotes Hypertranscription, Apoptosis Resistance, and Ciliogenesis in Cancer Cells and Mesenchymal Stem Cells of Various Origins: Comparative Transcriptome In Silico Study. Int J Mol Sci 2024; 25:4185. [PMID: 38673782 PMCID: PMC11050069 DOI: 10.3390/ijms25084185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSC) attract an increasing amount of attention due to their unique therapeutic properties. Yet, MSC can undergo undesirable genetic and epigenetic changes during their propagation in vitro. In this study, we investigated whether polyploidy can compromise MSC oncological safety and therapeutic properties. For this purpose, we compared the impact of polyploidy on the transcriptome of cancer cells and MSC of various origins (bone marrow, placenta, and heart). First, we identified genes that are consistently ploidy-induced or ploidy-repressed through all comparisons. Then, we selected the master regulators using the protein interaction enrichment analysis (PIEA). The obtained ploidy-related gene signatures were verified using the data gained from polyploid and diploid populations of early cardiomyocytes (CARD) originating from iPSC. The multistep bioinformatic analysis applied to the cancer cells, MSC, and CARD indicated that polyploidy plays a pivotal role in driving the cell into hypertranscription. It was evident from the upregulation of gene modules implicated in housekeeping functions, stemness, unicellularity, DNA repair, and chromatin opening by means of histone acetylation operating via DNA damage associated with the NUA4/TIP60 complex. These features were complemented by the activation of the pathways implicated in centrosome maintenance and ciliogenesis and by the impairment of the pathways related to apoptosis, the circadian clock, and immunity. Overall, our findings suggest that, although polyploidy does not induce oncologic transformation of MSC, it might compromise their therapeutic properties because of global epigenetic changes and alterations in fundamental biological processes. The obtained results can contribute to the development and implementation of approaches enhancing the therapeutic properties of MSC by removing polyploid cells from the cell population.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Institute of Cytology Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | | |
Collapse
|
40
|
Xiao R, Chen Y, Hu Z, Tang Q, Wang P, Zhou M, Wu L, Liang D. Identification of the Efficient Enhancer Elements in FVIII-Padua for Gene Therapy Study of Hemophilia A. Int J Mol Sci 2024; 25:3635. [PMID: 38612447 PMCID: PMC11011560 DOI: 10.3390/ijms25073635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Hemophilia A (HA) is a common X-linked recessive hereditary bleeding disorder. Coagulation factor VIII (FVIII) is insufficient in patients with HA due to the mutations in the F8 gene. The restoration of plasma levels of FVIII via both recombinant B-domain-deleted FVIII (BDD-FVIII) and B-domain-deleted F8 (BDDF8) transgenes was proven to be helpful. FVIII-Padua is a 23.4 kb tandem repeat mutation in the F8 associated with a high F8 gene expression and thrombogenesis. Here we screened a core enhancer element in FVIII-Padua for improving the F8 expression. In detail, we identified a 400 bp efficient enhancer element, C400, in FVIII-Padua for the first time. The core enhancer C400 extensively improved the transcription of BDDF8 driven by human elongation factor-1 alpha in HepG2, HeLa, HEK-293T and induced pluripotent stem cells (iPSCs) with different genetic backgrounds, as well as iPSCs-derived endothelial progenitor cells (iEPCs) and iPSCs-derived mesenchymal stem cells (iMSCs). The expression of FVIII protein was increased by C400, especially in iEPCs. Our research provides a novel molecular target to enhance expression of FVIII protein, which has scientific value and application prospects in both viral and nonviral HA gene therapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Desheng Liang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (R.X.); (Y.C.); (Z.H.); (M.Z.)
| |
Collapse
|
41
|
Pirsadeghi A, Namakkoobi N, Behzadi MS, Pourzinolabedin H, Askari F, Shahabinejad E, Ghorbani S, Asadi F, Hosseini-Chegeni A, Yousefi-Ahmadipour A, Kamrani MH. Therapeutic approaches of cell therapy based on stem cells and terminally differentiated cells: Potential and effectiveness. Cells Dev 2024; 177:203904. [PMID: 38316293 DOI: 10.1016/j.cdev.2024.203904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/24/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Cell-based therapy, as a promising regenerative medicine approach, has been a promising and effective strategy to treat or even cure various kinds of diseases and conditions. Generally, two types of cells are used in cell therapy, the first is the stem cell, and the other is a fully differentiated cell. Initially, all cells in the body are derived from stem cells. Based on the capacity, potency and differentiation potential of stem cells, there are four types: totipotent (produces all somatic cells plus perinatal tissues), pluripotent (produces all somatic cells), multipotent (produces many types of cells), and unipotent (produces a particular type of cells). All non-totipotent stem cells can be used for cell therapy, depending on their potency and/or disease state/conditions. Adult fully differentiated cell is another cell type for cell therapy that is isolated from adult tissues or obtained following the differentiation of stem cells. The cells can then be transplanted back into the patient to replace damaged or malfunctioning cells, promote tissue repair, or enhance the targeted organ's overall function. With increasing science and knowledge in biology and medicine, different types of techniques have been developed to obtain efficient cells to use for therapeutic approaches. In this study, the potential and opportunity of use of all cell types, both stem cells and fully differentiated cells, are reviewed.
Collapse
Affiliation(s)
- Ali Pirsadeghi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Namakkoobi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahtab Sharifzadeh Behzadi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hanieh Pourzinolabedin
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Erfan Shahabinejad
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ghorbani
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hosseini-Chegeni
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Kamrani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
42
|
Yang J, Wang X, Zeng X, Wang R, Ma Y, Fu Z, Wan Z, Wang Z, Yang L, Chen G, Gong X. One-step stromal vascular fraction therapy in osteoarthritis with tropoelastin-enhanced autologous stromal vascular fraction gel. Front Bioeng Biotechnol 2024; 12:1359212. [PMID: 38410163 PMCID: PMC10895027 DOI: 10.3389/fbioe.2024.1359212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Background: Osteoarthritis (OA) is a debilitating degenerative joint disease, leading to significant pain and disability. Despite advancements, current regenerative therapies, such as mesenchymal stem cells (MSCs), face challenges in clinical efficacy and ethical considerations. This study aimed to evaluate the therapeutic potential of stromal vascular fraction gel (SVF-gel) in comparison to available treatments like hyaluronic acid (HA) and adipose-derived stem cells (ADSCs) and to assess the enhancement of this potential by incorporating tropoelastin (TE). Methods: We conducted a comparative laboratory study, establishing an indirect co-culture system using a Transwell assay to test the effects of HA, ADSCs, SVF-gel, and TE-SVF-gel on osteoarthritic articular chondrocytes (OACs). Chondrogenic and hypertrophic markers were assessed after a 72-hour co-culture. SVF-gel was harvested from rat subcutaneous abdominal adipose tissue, with its mechanical properties characterized. Cell viability was specifically analyzed for SVF-gel and TE-SVF-gel. The in vivo therapeutic effectiveness was further investigated in a rat model of OA, examining MSCs tracking, effects on cartilage matrix synthesis, osteophyte formation, and muscle weight changes. Results: Cell viability assays revealed that TE-SVF-gel maintained higher cell survival rates than SVF-gel. In comparison to the control, HA, and ADSCs groups, SVF-gel and TE-SVF-gel significantly upregulated the expression of chondrogenic markers COL 2, SOX-9, and ACAN and downregulated the hypertrophic marker COL 10 in OACs. The TE-SVF-gel showed further improved expression of chondrogenic markers and a greater decrease in COL 10 expression compared to SVF-gel alone. Notably, the TE-SVF-gel treated group in the in vivo OA model exhibited the most MSCs on the synovial surface, superior cartilage matrix synthesis, increased COL 2 expression, and better muscle weight recovery, despite the presence of fewer stem cells than other treatments. Discussion: The findings suggest that SVF-gel, particularly when combined with TE, provides a more effective regenerative treatment for OA by enhancing the therapeutic potential of MSCs. This combination could represent an innovative strategy that overcomes limitations of current therapies, offering a new avenue for patient treatment. Further research is warranted to explore the long-term benefits and potential clinical applications of this combined approach.
Collapse
Affiliation(s)
- Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - XueBao Zeng
- Chongqing Yan Yu Medical Beauty Clinic, Chongqing, China
| | - Rong Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanming Ma
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zu Wan
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
43
|
Bu X, Gao Y, Pan W, Liu L, Wang J, Yin Z, Ping B. Human Amniotic Membrane-Derived Mesenchymal Stem Cells Prevent Acute Graft-Versus-Host Disease in an Intestinal Microbiome-Dependent Manner. Transplant Cell Ther 2024; 30:189.e1-189.e13. [PMID: 37939900 DOI: 10.1016/j.jtct.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Acute graft-versus-host disease (aGVHD) represents a fatal severe complication after allogeneic hematopoietic stem cell transplantation. As a promising cell therapeutic strategy of aGVHD, the mechanism of mesenchymal stem cells (MSC) to ameliorate aGVHD has not been fully clarified, especially in the field of intestinal homeostasis including the intestinal microbiome involved in the pathogenesis of aGVHD. The present study aimed to explore the effect of MSC on intestinal homeostasis including the intestinal barrier and intestinal microbiome and its metabolites, as well as the role of intestinal microbiome in the preventive process of hAMSCs ameliorating aGVHD. The preventive effects of human amniotic membrane-derived MSC (hAMSCs) was assessed in humanized aGVHD mouse models. Immunohistochemistry and RT-qPCR were used to evaluate intestinal barrier function. The 16S rRNA sequencing and targeted metabolomics assay were performed to observe the alternation of intestinal microbiome and the amounts of medium-chain fatty acids (MCFAs) and short-chain fatty acids (SCFAs), respectively. Flow cytometry was performed to analyze the frequencies of T immune cells. Through animal experiments, we found that hAMSCs had the potential to prevent aGVHD. HAMSCs could repair the damage of intestinal barrier structure and function, as well as improve the dysbiosis of intestinal microbiome induced by aGVHD, and meanwhile, upregulate the concentration of metabolites SCFAs, so as to reshape intestinal homeostasis. Gut microbiota depletion and fecal microbial transplantation confirmed the involvement of intestinal microbiome in the preventive process of hAMSCs on aGVHD. Our findings showed that hAMSCs prevented aGVHD in an intestinal microbiome-dependent manner, which might shed light on a new mechanism of hAMSCs inhibiting aGVHD and promote the development of new prophylaxis regimes for aGVHD prevention.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weifeng Pan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baohong Ping
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
44
|
Kolahi Azar H, Imanpour A, Rezaee H, Ezzatifar F, Zarei-Behjani Z, Rostami M, Azami M, Behestizadeh N, Rezaei N. Mesenchymal stromal cells and CAR-T cells in regenerative medicine: The homing procedure and their effective parameters. Eur J Haematol 2024; 112:153-173. [PMID: 37254607 DOI: 10.1111/ejh.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Mesenchymal stromal cells (MSCs) and chimeric antigen receptor (CAR)-T cells are two core elements in cell therapy procedures. MSCs have significant immunomodulatory effects that alleviate inflammation in the tissue regeneration process, while administration of specific chemokines and adhesive molecules would primarily facilitate CAR-T cell trafficking into solid tumors. Multiple parameters affect cell homing, including the recipient's age, the number of cell passages, proper cell culture, and the delivery method. In addition, several chemokines are involved in the tumor microenvironment, affecting the homing procedure. This review discusses parameters that improve the efficiency of cell homing and significant cell therapy challenges. Emerging comprehensive mechanistic strategies such as non-systemic and systemic homing that revealed a significant role in cell therapy remodeling were also reviewed. Finally, the primary implications for the development of combination therapies that incorporate both MSCs and CAR-T cells for cancer treatment were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aylar Imanpour
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Rezaee
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ezzatifar
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zeinab Zarei-Behjani
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Advanced School of Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Behestizadeh
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
45
|
Jagdale S, Agarwal B, Dixit A, Gaware S. Chitosan as excellent bio-macromolecule with myriad of anti-activities in biomedical applications - A review. Int J Biol Macromol 2024; 257:128697. [PMID: 38096939 DOI: 10.1016/j.ijbiomac.2023.128697] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
The aim of the study is to explore the myriad of anti-activities of chitosan - deacylated derivative of chitin in biomedical applications. Chitosan consists of reactive residual amino groups, which can be modified chemically to obtain wide range of derivatives. These derivatives exhibit the controlled physicochemical characteristics, which in turn improve its functional properties. Such derivatives find numerous applications in the field of biomedical science, agriculture, tissue engineering, bone regeneration and environmental science. This study presents a comprehensive overview of the multifarious anti-activities of chitosan and its derivatives in the field of biomedical science including anti-microbial, antioxidant, anti-tumor, anti-HIV, anti-fungal, anti- inflammatory, anti-Alzheimer's, anti-hypertensive and anti-diabetic activity. It briefly details these anti-activities with respect to its mode of action, pharmacological effects and potential applications. It also presents the overview of current research exploring novel derivatives of chitosan and its anti- activities in the recent past. Finally, the review projects the prospective potential of chitosan and its derivatives and expects to encourage the readers to develop new drug delivery systems based on such chitosan derivatives and explore its applications in biomedical science for benefit of mankind.
Collapse
Affiliation(s)
- Sachin Jagdale
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India.
| | - Babita Agarwal
- Department of Pharmaceutical Chemistry, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| | - Abhishek Dixit
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| | - Saurabh Gaware
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon-Pune, Maharashtra 411033, India
| |
Collapse
|
46
|
Leal Reis I, Lopes B, Sousa P, Sousa AC, Branquinho MV, Caseiro AR, Rêma A, Briote I, Mendonça CM, Santos JM, Atayde LM, Alvites RD, Maurício AC. Treatment of Equine Tarsus Long Medial Collateral Ligament Desmitis with Allogenic Synovial Membrane Mesenchymal Stem/Stromal Cells Enhanced by Umbilical Cord Mesenchymal Stem/Stromal Cell-Derived Conditioned Medium: Proof of Concept. Animals (Basel) 2024; 14:370. [PMID: 38338013 PMCID: PMC10854557 DOI: 10.3390/ani14030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Horses are high-performance athletes prone to sportive injuries such as tendonitis and desmitis. The formation of fibrous tissue in tendon repair remains a challenge to overcome. This impels regenerative medicine to develop innovative therapies that enhance regeneration, retrieving original tissue properties. Multipotent Mesenchymal Stem/Stromal Cells (MSCs) have been successfully used to develop therapeutic products, as they secrete a variety of bioactive molecules that play a pivotal role in tissue regeneration. These factors are released in culture media for producing a conditioned medium (CM). The aforementioned assumptions led to the formulation of equine synovial membrane MSCs (eSM-MSCs)-the cellular pool that naturally regenerates joint tissue-combined with a medium enriched in immunomodulatory factors (among other bioactive factors) produced by umbilical cord stroma-derived MSCs (eUC-MSCs) that naturally contribute to suppressing the immune rejection in the maternal-fetal barrier. A description of an equine sport horse diagnosed with acute tarsocrural desmitis and treated with this formulation is presented. Ultrasonographic ligament recovery occurred in a reduced time frame, reducing stoppage time and allowing for the horse's return to unrestricted competition after the completion of a physical rehabilitation program. This study focused on the description of the therapeutic formulation and potential in an equine desmitis treatment using the cells themselves and their secretomes.
Collapse
Affiliation(s)
- Inês Leal Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
- Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Inês Briote
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Carla M. Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Jorge Miguel Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís M. Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| |
Collapse
|
47
|
Abatay Sel F, Erol A, Suleymanoglu M, Kuruca DS, Savran Oguz F. Easy and Rapid Methods for Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Human Umbilical Wharton's Jelly-Derived Mesenchymal Stem Cells. Methods Mol Biol 2024; 2736:77-84. [PMID: 37140810 DOI: 10.1007/7651_2023_479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
These protocols describe modified methods that use Ficoll-Paque density gradient for umbilical cord blood-derived mesenchymal stem cells and explant method for Wharton's jelly-derived mesenchymal stem cells. The Ficoll-Paque density gradient method allows to obtain mesenchymal stem cells while eliminating monocytic cells. In this method, precoating the cell culture flasks with fetal bovine serum helps remove the monocytic cells and instruct more pure mesenchymal stem cells. On the other hand, the explant method for Wharton's jelly-derived mesenchymal stem cell is user-friendly and cost-effective than enzymatic methods. In this chapter, we provide a collection of protocols to obtain mesenchymal stem cells from human umbilical cord blood and Wharton's jelly.
Collapse
Affiliation(s)
- Figen Abatay Sel
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
- Department of Medical Biology, Istanbul University, Institute of Graduate Studies in Health Science, Istanbul, Turkey
| | - Ayse Erol
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Mediha Suleymanoglu
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Durdane Serap Kuruca
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Turkey
- Istanbul Atlas University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Fatma Savran Oguz
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| |
Collapse
|
48
|
Harjacek M. Role of regulatory T cells in pathogenesis and therapeutics of spondyloarthritis. REGULATORY T CELLS AND AUTOIMMUNE DISEASES 2024:165-196. [DOI: 10.1016/b978-0-443-13947-5.00042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
Naeem A, Waseem A, Siddiqui AJ, Ray B, Sinha R, Khan AQ, Haque R, Raza SS. Focusing on the cytokine storm in the battle against COVID-19: the rising role of mesenchymal-derived stem cells. Stem Cells 2024:191-207. [DOI: 10.1016/b978-0-323-95545-4.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Garcia Gómez-Heras S, Garcia-Arranz M, Vega-Clemente L, Olivera-Salazar R, Vélez Pinto JF, Fernández-García M, Guadalajara H, Yáñez R, Garcia-Olmo D. Study of the Effect of Wild-Type and Transiently Expressing CXCR4 and IL-10 Mesenchymal Stromal Cells in a Mouse Model of Peritonitis. Int J Mol Sci 2023; 25:520. [PMID: 38203690 PMCID: PMC10778615 DOI: 10.3390/ijms25010520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Sepsis due to peritonitis is a process associated with an inflammatory state. Mesenchymal stromal cells (MSCs) modulate the immune system due to the paracrine factors released and may be a therapeutic alternative. Three treatment groups were developed in a murine model of peritonitis to verify the effect of human adipose mesenchymal stem cell (hASCs). Additionally, a temporary modification was carried out on them to improve their arrival in inflamed tissues (CXCR4), as well as their anti-inflammatory activity (IL-10). The capacity to reduce systemic inflammation was studied using a local application (peritoneal injection) as a treatment route. Comparisons involving the therapeutic effect of wild-type ASCs and ASCs transiently expressing CXCR4 and IL-10 were carried out with the aim of generating an improved anti-inflammatory response for sepsis in addition to standard antibiotic treatment. However, under the experimental conditions used in these studies, no differences were found between both groups with ASCs. The peritoneal administration of hASCs or genetically modified hASCs constitutes an efficient and safe therapy in our model of mouse peritonitis.
Collapse
Affiliation(s)
- Soledad Garcia Gómez-Heras
- Department of Basic Health Science, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Mariano Garcia-Arranz
- New Therapy Laboratory, Health Research Institute Fundación Jiménez Díaz, 28033 Madrid, Spain; (L.V.-C.); (R.O.-S.); (H.G.); (D.G.-O.)
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Luz Vega-Clemente
- New Therapy Laboratory, Health Research Institute Fundación Jiménez Díaz, 28033 Madrid, Spain; (L.V.-C.); (R.O.-S.); (H.G.); (D.G.-O.)
| | - Rocio Olivera-Salazar
- New Therapy Laboratory, Health Research Institute Fundación Jiménez Díaz, 28033 Madrid, Spain; (L.V.-C.); (R.O.-S.); (H.G.); (D.G.-O.)
| | - Juan Felipe Vélez Pinto
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - María Fernández-García
- Biomedical Innovation Unit, Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain; (M.F.-G.); (R.Y.)
| | - Héctor Guadalajara
- New Therapy Laboratory, Health Research Institute Fundación Jiménez Díaz, 28033 Madrid, Spain; (L.V.-C.); (R.O.-S.); (H.G.); (D.G.-O.)
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033 Madrid, Spain
| | - Rosa Yáñez
- Biomedical Innovation Unit, Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain; (M.F.-G.); (R.Y.)
| | - Damian Garcia-Olmo
- New Therapy Laboratory, Health Research Institute Fundación Jiménez Díaz, 28033 Madrid, Spain; (L.V.-C.); (R.O.-S.); (H.G.); (D.G.-O.)
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033 Madrid, Spain
| |
Collapse
|