1
|
Chi J, Wang S, Ju R, Li S, Liu C, Zou M, Xu T, Wang Y, Jiang Z, Yang C, Han B. Repair effects of thermosensitive hydrogels combined with iPSC-derived corneal endothelial cells on rabbit corneal endothelial dysfunction. Acta Biomater 2025; 191:216-232. [PMID: 39551331 DOI: 10.1016/j.actbio.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Considering the limitations of human corneal endothelial cell proliferation as well as the severe shortage of corneal donations, it is imperative to develop improved methods of corneal endothelial cell transplantation. The purpose of this study was to construct a modified corneal endothelial cell transplantation approach using thermosensitive hydrogels combined with induced pluripotent stem cells (iPSCs)-derived human corneal endothelial cells (hCECs). In this study, thermosensitive hydrogels hydroxypropyl chitin/carboxymethyl chitosan (HPCH/CMCS) were fabricated, and their hydrogels properties and biocompatibility were investigated. Our results demonstrated that HPCH/CMCS hydrogels exhibited superior transparency, appropriate mechanical properties and favorable biocompatibility. A two-step induction method of small molecule compounds was employed, by which iPSCs were differentiated into hCECs via neural crest cells (NCCs). Additionally, a rabbit corneal endothelial dysfunction model was established in vivo, aiming to evaluate the safety and effectiveness of the combined method. Slit lamp microscope results indicated that significant transparency improvement could be noted in HPCH/CMCS/hCECs group (P = 0.006), whereas the corneal transparency was not homogeneous in different areas. Moreover, histological examinations and immunofluorescence analysis revealed that HPCH/CMCS/hCECs group showed a higher density of corneal endothelial cells and positive expressions of related markers. This study may provide ideas and experimental basis for the combined application of hydrogels and iPSC-derived corneal endothelial cells for corneal endothelial dysfunction. STATEMENT OF SIGNIFICANCE: Corneal transplantation is the most effective treatment for corneal endothelial dysfunction, which is challenged by issues such as corneal donor shortages and immune rejection. In this study, we proposed a combined transplantation method of cells and hydrogels for corneal endothelial dysfunction. We modified the protocols to obtain corneal endothelial cells from iPSCs by a two-step induction method. Besides, thermosensitive hydrogels with satisfactory biocompatibility and degradability were fabricated as fixation and support carriers of iPSC-derived corneal endothelial cells for in vivo transplantation. Experimental results demonstrated that this method could locally repair corneal endothelial dysfunction in rabbits, with the repaired corneas expressing relevant markers. This study presented a preliminary attempt to combine hydrogels and cells for corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ruibao Ju
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shanshan Li
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chenqi Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mingyu Zou
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Xu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yanting Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chaozhong Yang
- School of Medicine, Heze Medical College, Heze 274046, China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Siska S, Wiratnaya IGE, Bakta IM, Jawi IM, Widiana IGR, Yuliawati P, Saraswati MR, Suroto H. The Role of Mesenchymal Stem Cells for Corneal Endothelial Regeneration: A Systematic Review. Rambam Maimonides Med J 2024; 15:RMMJ.10531. [PMID: 39503547 PMCID: PMC11524423 DOI: 10.5041/rmmj.10531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVE A single layer of tightly spaced cells, known as the endothelium, rests on the posterior side of the cornea. This endothelium regulates the stroma's relative dehydration, which is essential for corneal clarity. Cell therapy is an innovative method being used to repair various corneal abnormalities. Mesenchymal stem cells (MSCs) are now one of the most significant types of stem cells scientists have studied. This study aimed to evaluate the role of MSCs for corneal endothelial regeneration. METHODS A systematic review was performed by searching for articles from reputable databases with many study-type references, including PubMed, Cochrane Library, Science Direct, and Google Scholar, up to January 2024. The resulting data were displayed using the 2020 PRISMA flowchart and evaluated using the PRISMA 2020 checklist. Most of the included studies were in vivo and used topical application and anterior chamber injection as the administration routes. RESULTS Based on the findings of this review, MSCs increased corneal endothelial cell density, improved the defect area and corneal transparency, facilitated endothelial cell regeneration and wound healing, and decreased neovascularization and corneal pro-inflammatory cytokines as compared to controls. CONCLUSION Administration of MSCs into the anterior chamber could increase regeneration and proliferation of corneal endothelial tissue.
Collapse
Affiliation(s)
- Siska Siska
- Department of Ophthalmology, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| | - I. Gede Eka Wiratnaya
- Department of Orthopedics and Traumatology, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| | - I. Made Bakta
- Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| | - I. Made Jawi
- Department of Pharmacology, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| | - I. Gde Raka Widiana
- Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| | - Putu Yuliawati
- Department of Ophthalmology, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| | - Made Ratna Saraswati
- Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| | - Heri Suroto
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
3
|
Kaufman R, Jun AS. Emerging alternatives to keratoplasty for corneal endothelial cell dysfunction. Curr Opin Ophthalmol 2024; 35:415-422. [PMID: 38941153 DOI: 10.1097/icu.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
PURPOSE OF REVIEW While effective for treating endothelial dysfunction, keratoplasty has shortcomings including limited access to donor tissue for much of the world. Thus, alternative strategies are under development. This review explores the main advancements achieved in this field during 2022-2023. RECENT FINDINGS Recent publications further support the validity of intracameral cultivated allogeneic endothelial cell injection and Descemet stripping only, while emphasizing the benefits of adjunctive Rho-associated kinase inhibitor (ROCKi) therapy. New donor-independent artificial implants, such as EndoArt, show favorable results. Multiple pharmacologic agents, especially ROCKi, show promise as monotherapies, yet none are currently approved for human treatment. Multiple regenerative and genetic therapies are being investigated but all are still in preclinical stages. SUMMARY A plethora of innovative alternatives to keratoplasty for endothelial disease is in development. Among these, surgical methods are still the mainstay of treatment and closest to clinical application, though further studies to establish their benefits over keratoplasty are needed. Albeit promising, pharmacologic, regenerative, and genetic approaches require validation and are farther from clinical application.
Collapse
Affiliation(s)
- Ron Kaufman
- Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Fang Y, Li J, Yang K, Li Z, Chen X, Long Y, Huang Y, Du Y, Wang L. Potential of an Amphiphilic Artificial Corneal Endothelial Layer as a Replacement Option for Damaged Corneal Endothelium. Adv Healthc Mater 2024:e2401563. [PMID: 39086039 DOI: 10.1002/adhm.202401563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Bullous keratopathy, a condition severely impacting vision and potentially leading to corneal blindness, necessitates corneal transplantation. However, the shortage of donor corneas and complex surgical procedures drive the exploration of tissue-engineered corneal endothelial layers. This study develops a transparent, amphiphilic, and cell-free membrane for corneal endothelial replacement. The membrane, securely attached to the posterior surface of the cornea, is created by mixing hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethylacrylate (EGDMA) in a 10:1 ratio. A 50 µL volume is used to obtain a 60 µm hydrophobic membrane on both sides, with one side treated with a polyvinylpyrrolidone (PVP) solution. The resulting membrane is transparent, foldable, biocompatible, amphiphilic, and easily handled. When exposed to 20% sulfur hexafluoride (SF6), the hydrophilic side of the membrane adheres tightly to the corneal Descemet's membrane, preventing water absorption into the corneal stroma, and thus treating bullous keratopathy. Histological test confirms its effectiveness, showing normal corneal structure and low inflammation when implanted in rabbits for up to 100 d. This study showcases the potential of this membrane as a viable option for corneal endothelial replacement, offering a novel approach to address donor tissue scarcity in corneal transplantation.
Collapse
Affiliation(s)
- Yifan Fang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- The Air Force Hospital of Southern Theater Command, Guangzhou, Guangdong, 510050, China
| | - Junyang Li
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Kunkun Yang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhao Li
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- The School of Medicine, Nankai University, Tianjin, 300350, China
| | - Xiaoke Chen
- Department of Biomedical Engineering, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yi Long
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yanan Du
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| |
Collapse
|
5
|
Fan W, Yuan H, Chang L, Li Q, Gao J, Ma L, Chen L, Dai Y, Pan X, Zhu X. Role of the TGF-β signaling pathway in induced pluripotent stem cells reprogramming. Chin Med J (Engl) 2024:00029330-990000000-01157. [PMID: 39039625 PMCID: PMC11407801 DOI: 10.1097/cm9.0000000000003229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Indexed: 07/24/2024] Open
Affiliation(s)
- Weiwen Fan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan 650032, China
| | - Heling Yuan
- The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, Kunming, Yunnan 650032, China
| | - Le Chang
- The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, Yunnan 650032, China
| | - Qiang Li
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan 650032, China
| | - Jing Gao
- The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, Yunnan 650032, China
| | - Lihua Ma
- The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, Kunming, Yunnan 650032, China
| | - Lvzhe Chen
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan 650032, China
| | - Ying Dai
- The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, Kunming, Yunnan 650032, China
| | - Xinghua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan 650032, China
- The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, Kunming, Yunnan 650032, China
- The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, Yunnan 650032, China
| | - Xiangqing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan 650032, China
- The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, Kunming, Yunnan 650032, China
- The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, Yunnan 650032, China
| |
Collapse
|
6
|
Xie ZJ, Yuan BW, Chi MM, Hong J. Focus on seed cells: stem cells in 3D bioprinting of corneal grafts. Front Bioeng Biotechnol 2024; 12:1423864. [PMID: 39050685 PMCID: PMC11267584 DOI: 10.3389/fbioe.2024.1423864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Corneal opacity is one of the leading causes of severe vision impairment. Corneal transplantation is the dominant therapy for irreversible corneal blindness. However, there is a worldwide shortage of donor grafts and consequently an urgent demand for alternatives. Three-dimensional (3D) bioprinting is an innovative additive manufacturing technology for high-resolution distribution of bioink to construct human tissues. The technology has shown great promise in the field of bone, cartilage and skin tissue construction. 3D bioprinting allows precise structural construction and functional cell printing, which makes it possible to print personalized full-thickness or lamellar corneal layers. Seed cells play an important role in producing corneal biological functions. And stem cells are potential seed cells for corneal tissue construction. In this review, the basic anatomy and physiology of the natural human cornea and the grafts for keratoplasties are introduced. Then, the applications of 3D bioprinting techniques and bioinks for corneal tissue construction and their interaction with seed cells are reviewed, and both the application and promising future of stem cells in corneal tissue engineering is discussed. Finally, the development trends requirements and challenges of using stem cells as seed cells in corneal graft construction are summarized, and future development directions are suggested.
Collapse
Affiliation(s)
- Zi-jun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bo-wei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Miao-miao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Liu H, Qi B, Liu G, Duan H, Li Z, Shi Z, Chen Y, Chu WK, Zhou Q, Zhang BN. RAD21 deficiency drives corneal to scleral differentiation fate switching via upregulating WNT9B. iScience 2024; 27:109875. [PMID: 38774716 PMCID: PMC11107359 DOI: 10.1016/j.isci.2024.109875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/28/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
The cornea and sclera are distinct adjacent tissues, yet their stromal cells originate from common neural crest cells (NCCs). Sclerocornea is a disease characterized by an indistinguishable boundary between the cornea and sclera. Previously, we identified a RAD21 mutation in a sclerocornea pedigree. Here, we investigated the impacts of RAD21 on NCC activities during eye development. RAD21 deficiency caused upregulation of PCDHGC3. Both RAD21 knockdown and PCDHGC3 upregulation disrupted the migration of NCCs. Transcriptome analysis indicated that WNT9B had 190.9-fold higher expression in scleral stroma than in corneal stroma. WNT9B was also significantly upregulated by both RAD21 knockdown and PCDHGC3 overexpression, and knock down of WNT9B rescued the differentiation and migration of NCCs with RAD21 deficiency. Consistently, overexpressing wnt9b in Xenopus tropicalis led to ocular developmental abnormalities. In summary, WNT9B is a determinant factor during NCC differentiation into corneal keratocytes or scleral stromal cells and is affected by RAD21 expression.
Collapse
Affiliation(s)
- Hongyan Liu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Benxiang Qi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Guanghui Liu
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Haoyun Duan
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Zongyi Li
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Zhaoying Shi
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yonglong Chen
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Bi Ning Zhang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| |
Collapse
|
8
|
Zou D, Wang T, Li W, Wang X, Ma B, Hu X, Zhou Q, Li Z, Shi W, Duan H. Nicotinamide promotes the differentiation of functional corneal endothelial cells from human embryonic stem cells. Exp Eye Res 2024; 242:109883. [PMID: 38561106 DOI: 10.1016/j.exer.2024.109883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Corneal transplantation represents the primary therapeutic approach for managing corneal endothelial dysfunction, but corneal donors remain scarce. Anterior chamber cell injection emerges as a highly promising alternative strategy for corneal transplantation, with pluripotent stem cells (PSC) demonstrating considerable potential as an optimal cell source. Nevertheless, only a few studies have explored the differentiation of functional corneal endothelial-like cells originating from PSC. In this investigation, a chemical-defined protocol was successfully developed for the differentiation of functional corneal endothelial-like cells derived from human embryonic stem cells (hESC). The application of nicotinamide (NAM) exhibited a remarkable capability in suppressing the fibrotic phenotype, leading to the generation of more homogeneous and well-distinctive differentiated cells. Furthermore, NAM effectively suppressed the expression of genes implicated in endothelial cell migration and extracellular matrix synthesis. Notably, NAM also facilitated the upregulation of surface marker genes specific to functional corneal endothelial cells (CEC), including CD26 (-) CD44 (-∼+-) CD105 (-) CD133 (-) CD166 (+) CD200 (-). Moreover, in vitro functional assays were performed, revealing intact barrier properties and Na+/K+-ATP pump functionality in the differentiated cells treated with NAM. Consequently, our findings provide robust evidence supporting the capacity of NAM to enhance the differentiation of functional CEC originating from hESC, offering potential seed cells for therapeutic interventions of corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Dulei Zou
- Department of Medicine, Qingdao University, Qingdao, 266071, China; Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Wenjing Li
- Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, 266000, China
| | - Xin Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Bochao Ma
- Capital Medical University, Beijing, 100070, China
| | - Xiangyue Hu
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Zongyi Li
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China
| | - Haoyun Duan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000, China.
| |
Collapse
|
9
|
Ajgaonkar BS, Kumaran A, Kumar S, Jain RD, Dandekar PP. Cell-based Therapies for Corneal and Retinal Disorders. Stem Cell Rev Rep 2023; 19:2650-2682. [PMID: 37704835 DOI: 10.1007/s12015-023-10623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Maintenance of the visual function is the desired outcome of ophthalmologic therapies. The shortcomings of the current treatment options, like partial recovery, post-operation failure, rigorous post-operative care, complications, etc., which are usually encountered with the conventional treatment options has warranted newer treatment options that may eliminate the root cause of diseases and minimize the side effects. Cell therapies, a class of regenerative medicines, have emerged as cutting-edge treatment option. The corneal and retinal dystrophies during the ocular disorders are the major cause of blindness, worldwide. Corneal disorders are mainly categorized mainly into corneal epithelial, stromal, and endothelial disorders. On the other hand, glaucoma, retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, Stargardt Disease, choroideremia, Leber congenital amaurosis are then major retinal degenerative disorders. In this manuscript, we have presented a detailed overview of the development of cell-based therapies, using embryonic stem cells, bone marrow stem cells, mesenchymal stem cells, dental pulp stem cells, induced pluripotent stem cells, limbal stem cells, corneal epithelial, stromal and endothelial, embryonic stem cell-derived differentiated cells (like retinal pigment epithelium or RPE), neural progenitor cells, photoreceptor precursors, and bone marrow-derived hematopoietic stem/progenitor cells etc. The manuscript highlights their efficiency, drawbacks and the strategies that have been explored to regain visual function in the preclinical and clinical state associated with them which can be considered for their potential application in the development of treatment.
Collapse
Affiliation(s)
- Bhargavi Suryakant Ajgaonkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Akash Kumaran
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Salil Kumar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Ratnesh D Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Prajakta P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
10
|
Liu N, Liu D, Li Y, Zhang X, He J, Jiang Y, Wang Y, Ma Y, Jin H, Shen L. Effects and mechanisms of substance P on the proliferation and angiogenic differentiation of bone marrow mesenchymal stem cells: Bioinformatics and in vitro experiments. Genomics 2023; 115:110679. [PMID: 37423397 DOI: 10.1016/j.ygeno.2023.110679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The slight release of substance P (SP) from the end of peripheral nerve fibers causes a neurogenic inflammatory reaction, promotes vascular dilation and increases vascular permeability. However, whether SP can promote the angiogenesis of bone marrow mesenchymal stem cells (BMSCs) under high glucose conditions has not been reported. This study analyzed the targets, biological processes and molecular mechanisms underlying the effects of SP on BMSCs. BMSCs cultured in vitro were divided into a normal control group, high glucose control group, high glucose SP group and high glucose Akt inhibitor group to verify the effects of SP on BMSCs proliferation, migration and angiogenic differentiation. SP was found to act on 28 targets of BMSCs and participate in angiogenesis. Thirty-six core proteins, including AKT1, APP, BRCA1, CREBBP and EGFR, were identified. In a high glucose environment, SP increased the BMSCs proliferation optical density value and cell migration number and reduced the BMSCs apoptosis rate. In addition, SP induced BMSCs to highly express the CD31 protein, maintain the wall structure integrity of the matrix glue mesh and promote increases in the number of matrix glue meshes. These experiments showed that in a high glucose environment, SP acts on 28 targets of BMSCs that encode core proteins, such as AKT1, APP and BRCA1, and improves BMSCs proliferation, migration and angiogenic differentiation through the Akt signaling pathway.
Collapse
Affiliation(s)
- Na Liu
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Danyang Liu
- Department of Histology & Embryology, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yongtao Li
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Xiaodong Zhang
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Jun He
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yang Jiang
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yang Wang
- Department of physiology, Qiqihar Medical University, No. 333, Basic Medical Research Center, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yong Ma
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Haifeng Jin
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China; Basic Medical Research Center, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China.
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China; Basic Medical Research Center, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China.
| |
Collapse
|
11
|
Dong C, Zou D, Duan H, Hu X, Zhou Q, Shi W, Li Z. Ex vivo cultivated retinal pigment epithelial cell transplantation for the treatment of rabbit corneal endothelial dysfunction. EYE AND VISION (LONDON, ENGLAND) 2023; 10:34. [PMID: 37528478 PMCID: PMC10394777 DOI: 10.1186/s40662-023-00351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Stem cell therapy is a promising strategy for the treatment of corneal endothelial dysfunction, and the need to find functional alternative seed cells of corneal endothelial cells (CECs) is urgent. Here, we determined the feasibility of using the retinal pigment epithelium (RPE) as an equivalent substitute for the treatment of corneal endothelial dysfunction. METHODS RPE cells and CECs in situ were obtained from healthy New Zealand male rabbits, and the similarities and differences between them were analyzed by electron microscopy, immunofluorescent staining, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Rabbit primary RPE cells and CECs were isolated and cultivated ex vivo, and Na+/K+-ATPase activity and cellular permeability were detected at passage 2. The injection of cultivated rabbit primary RPE cells, CECs and human embryonic stem cell (hESC)-derived RPE cells was performed on rabbits with corneal endothelial dysfunction. Then, the therapeutic effects were evaluated by corneal transparency, central corneal thickness, enzyme linked immunosorbent assay (ELISA), qRT-PCR and immunofluorescent staining. RESULTS The rabbit RPE cells were similar in form to CECs in situ and ex vivo, showing a larger regular hexagonal shape and a lower cell density, with numerous tightly formed cell junctions and hemidesmosomes. Moreover, RPE cells presented a stronger barrier and ionic pumping capacity than CECs. When intracamerally injected into the rabbits, the transplanted primary RPE cells could dissolve corneal edema and decrease corneal thickness, with effects similar to those of CECs. In addition, the transplantation of hESC-derived RPE cells exhibited a similar therapeutic effect and restored corneal transparency and thickness within seven days. qRT-PCR results showed that the expressions of CEC markers, like CD200 and S100A4, increased, and the RPE markers OTX2, BEST1 and MITF significantly decreased in the transplanted RPE cells. Furthermore, we have demonstrated that rabbits transplanted with hESC-derived RPE cells maintained normal corneal thickness and exhibited slight pigmentation in the central cornea one month after surgery. Immunostaining results showed that the HuNu-positive transplanted cells survived and expressed ZO1, ATP1A1 and MITF. CONCLUSION RPE cells and CECs showed high structural and functional similarities in barrier and pump characteristics. Intracameral injection of primary RPE cells and hESC-derived RPE cells can effectively restore rabbit corneal clarity and thickness and maintain normal corneal function. This study is the first to report the effectiveness of RPE cells for corneal endothelial dysfunction, suggesting the feasibility of hESC-derived RPE cells as an equivalent substitute for CECs.
Collapse
Affiliation(s)
- Chunxiao Dong
- Department of Medicine, Qingdao University, Qingdao, 266071, China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Dulei Zou
- Department of Medicine, Qingdao University, Qingdao, 266071, China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Haoyun Duan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Xiangyue Hu
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China
| | - Zongyi Li
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China.
- School of Ophthalmology, Shandong First Medical University, Jinan, 250000, China.
| |
Collapse
|
12
|
Cadenas-Martin M, Arnalich-Montiel F, Miguel MPD. Derivation of Limbal Stem Cells from Human Adult Mesenchymal Stem Cells for the Treatment of Limbal Stem Cell Deficiency. Int J Mol Sci 2023; 24:ijms24032350. [PMID: 36768672 PMCID: PMC9916480 DOI: 10.3390/ijms24032350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Approximately 10 million individuals have blindness due to limbal stem cell (LSCs) deficiency, one of the most challenging problems in ophthalmology. To replenish the LSC pool, an autologous extraocular cell source is appropriate, thereby avoiding the risk of immune rejection, the need for immunosuppression and the risk of damaging the contralateral eye. In recent years, adipose-derived mesenchymal stem cells (ADSCs) have been a key element in ocular regenerative medicine. In this study, we developed a protocol for deriving human LSCs from ADSCs compatible with the standard carrier human amniotic membrane, helping provide a stem cell pool capable of maintaining proper corneal epithelial homeostasis. The best protocol included an ectodermal induction step by culturing ADSCs with media containing fetal bovine serum, transforming growth factor-β inhibitor SB-505124, Wnt inhibitor IWP-2 and FGF2 for 7 days, followed by an LSC induction step of culture in modified supplemental hormonal epithelial medium supplemented with pigment epithelium-derived factor and keratinocyte growth factor for 10 additional days. The optimal differentiation efficiency was achieved when cells were cultured in this manner over vitronectin coating, resulting in up to 50% double-positive αp63/BMI-1 cells. The results of this project will benefit patients with LSC deficiency, aiding the restoration of vision.
Collapse
Affiliation(s)
- Marta Cadenas-Martin
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain
| | - Francisco Arnalich-Montiel
- Ophthalmology Department, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain
| | - Maria P De Miguel
- Ophthalmology Department, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-912-071458
| |
Collapse
|
13
|
So S, Park Y, Kang SS, Han J, Sunwoo JH, Lee W, Kim J, Ye EA, Kim JY, Tchah H, Kang E, Lee H. Therapeutic Potency of Induced Pluripotent Stem-Cell-Derived Corneal Endothelial-like Cells for Corneal Endothelial Dysfunction. Int J Mol Sci 2022; 24:701. [PMID: 36614165 PMCID: PMC9821383 DOI: 10.3390/ijms24010701] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Corneal endothelial cells (CECs) do not proliferate or recover after illness or injury, resulting in decreased cell density and loss of pump/barrier function. Considering the shortage of donor cornea, it is vital to establish robust methods to generate CECs from induced pluripotent stem cells (iPSCs). We investigated the efficacy and safety of transplantation of iPSC-derived CECs into a corneal endothelial dysfunction (CED) rabbit model. iPSCs were generated from human fibroblasts. We characterized iPSCs by demonstrating the gene expression of the PSC markers OCT4, SOX2, TRA-1-60, and NANOG, teratoma formation, and differentiation into three germ layers. Differentiation of iPSCs into CECs was induced via neural crest cell (NCC) induction. CEC markers were detected using immunofluorescence and gene expression was analyzed using quantitative real-time PCR (qRT-PCR). After culturing iPSC-derived NCCs, we found the expression of zona occludens-1 (ZO-1) and Na+/K+ ATPase and a hexagonal morphology. ATP1A1, COL8A1, and AQP1 mRNA expression was higher in iPSC-derived CECs than in iPSCs and NCCs. We performed an injection of iPSC-derived CECs into the anterior chamber of a CED rabbit model and found improved levels of corneal transparency. We also found increased numbers of ZO-1- and ATP1A1-positive cells in rabbit corneas in the iPSC-derived CEC transplantation group. Usage of the coating material vitronectin (VTN) and fasudil resulted in good levels of CEC marker expression, demonstrated with Western blotting and immunocytochemistry. Combination of the VTN coating material and fasudil, instead of FNC mixture and Y27632, afforded the best results in terms of CEC differentiation's in vitro and in vivo efficacy. Successful transplantation of CEC-like cells into a CED animal model confirms the therapeutic efficacy of these cells, demonstrated by the restoration of corneal clarity. Our results suggest that iPSC-derived CECs can be a promising cellular resource for the treatment of CED.
Collapse
Affiliation(s)
- Seongjun So
- Department of Biomedical Science, CHA Advanced Research Institute, College of Life Science and Center for Embryo and Stem Cell Research, CHA University, Seongnam 13488, Republic of Korea
| | - Yoonkyung Park
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Soon Suk Kang
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jongsuk Han
- Department of Biomedical Science, CHA Advanced Research Institute, College of Life Science and Center for Embryo and Stem Cell Research, CHA University, Seongnam 13488, Republic of Korea
| | - Jeong Hye Sunwoo
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Whanseo Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jin Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eun Ah Ye
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jae Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hungwon Tchah
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eunju Kang
- Department of Biomedical Science, CHA Advanced Research Institute, College of Life Science and Center for Embryo and Stem Cell Research, CHA University, Seongnam 13488, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
14
|
Corneal Regeneration Using Adipose-Derived Mesenchymal Stem Cells. Cells 2022; 11:cells11162549. [PMID: 36010626 PMCID: PMC9406486 DOI: 10.3390/cells11162549] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Adipose-derived stem cells are a subtype of mesenchymal stem cell that offers the important advantage of being easily obtained (in an autologous manner) from low invasive procedures, rendering a high number of multipotent stem cells with the potential to differentiate into several cellular lineages, to show immunomodulatory properties, and to promote tissue regeneration by a paracrine action through the secretion of extracellular vesicles containing trophic factors. This secretome is currently being investigated as a potential source for a cell-free based regenerative therapy for human tissues, which would significantly reduce the involved costs, risks and law regulations, allowing for a broader application in real clinical practice. In the current article, we will review the existing preclinical and human clinical evidence regarding the use of such adipose-derived mesenchymal stem cells for the regeneration of the three main layers of the human cornea: the epithelium (derived from the surface ectoderm), the stroma (derived from the neural crest mesenchyme), and the endothelium (derived from the neural crest cells).
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Endothelial keratoplasty is the current gold standard for treating corneal endothelial diseases, achieving excellent visual outcomes and rapid rehabilitation. There are, however, severe limitations to donor tissue supply and uneven access to surgical teams and facilities across the globe. Cell therapy is an exciting approach that has shown promising early results. Herein, we review the latest developments in cell therapy for corneal endothelial disease. RECENT FINDINGS We highlight the work of several groups that have reported successful functional outcomes of cell therapy in animal models, with the utilization of human embryonic stem cells, human-induced pluripotent stem cells and cadaveric human corneal endothelial cells (CECs) to generate populations of CECs for intracameral injection. The use of corneal endothelial progenitors, viability of cryopreserved cells and efficacy of simple noncultured cells, in treating corneal decompensation is of particular interest. Further additions to the collective understanding of CEC physiology, and the process of cultivating and administering effective cell therapy are reviewed as well. SUMMARY The latest developments in cell therapy for corneal endothelial disease are presented. The continuous growth in this field gives rise to the hope that a viable solution to the large numbers of corneal blind around the world will one day be reality.
Collapse
Affiliation(s)
- Evan N Wong
- Corneal and External Diseases Department, Singapore National Eye Centre
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute
| | - Jodhbir S Mehta
- Corneal and External Diseases Department, Singapore National Eye Centre
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School
- School of Material Science & Engineering and School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
16
|
Ying LY, Qiu WY, Wang BH, Zhou P, Zhang B, Yao YF. Corneal endothelial regeneration in human eyes using endothelium-free grafts. BMC Ophthalmol 2022; 22:32. [PMID: 35062892 PMCID: PMC8783470 DOI: 10.1186/s12886-022-02260-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Background To report on corneal endothelial regeneration, graft clarity, and vision recovery when using endothelium-free grafts. Methods We evaluated the donor’s cell viability using trypan blue staining and dual staining with calcein acetoxy methyl ester and ethidium homodimer-1. To preserve eyeball integrity, we performed therapeutic penetrating keratoplasty using cryopreserved donor tissue without endothelium on 195 consecutive patients who suffered from corneal perforation due to progressive primary corneal disease such as herpes simplex keratitis, fungal keratitis, ocular thermal burns, keratoconus, and phlyctenular keratoconjunctivitis. Of these, 18 eyes recovered corneal graft clarity and underwent periodic slit-lamp microscopy, A-scan pachymetry, and in vivo confocal microscopy to observe the clinical manifestations, variations in corneal thickness, and repopulation of the corneal endothelial cells on the donor grafts. Results No viable cells were detected in the cryopreserved corneas. After the therapeutic penetrating keratoplasty, notable corneal graft edema was observed in all 18 eyes for 1–4 months, and no corneal endothelial cells were detected on the grafts during this period. Thereafter, we observed gradual and progressive regression and final resolution of the stromal edema, with complete recovery of corneal graft clarity. Through periodic confocal microscopy, we observed the corneal endothelium’s regenerating process, along with single cells bearing multiple nuclei and cell division-like morphology. The regenerated endothelium on the grafts reached a mean cell density of 991 cells/mm2. Remarkable vision rehabilitation was achieved in all 18 patients. Conclusions We obtained conclusive evidence that host-derived endothelial cells can regenerate a new endothelium over the endothelium-free graft, which possesses normal functions for corneal clarity and vision recovery.
Collapse
|
17
|
Li Z, Duan H, Jia Y, Zhao C, Li W, Wang X, Gong Y, Dong C, Ma B, Dou S, Zhang B, Li D, Cao Y, Xie L, Zhou Q, Shi W. Long-term corneal recovery by simultaneous delivery of hPSC-derived corneal endothelial precursors and nicotinamide. J Clin Invest 2022; 132:146658. [PMID: 34981789 PMCID: PMC8718141 DOI: 10.1172/jci146658] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) hold great promise for the treatment of various human diseases. However, their therapeutic benefits and mechanisms for treating corneal endothelial dysfunction remain undefined. Here, we developed a therapeutic regimen consisting of the combination of hPSC-derived corneal endothelial precursors (CEPs) with nicotinamide (NAM) for effective treatment of corneal endothelial dysfunction. In rabbit and nonhuman primate models, intracameral injection of CEPs and NAM achieved long-term recovery of corneal clarity and thickness, similar with the therapeutic outcome of cultured human corneal endothelial cells (CECs). The transplanted human CEPs exhibited structural and functional integration with host resident CECs. However, the long-term recovery relied on the stimulation of endogenous endothelial regeneration in rabbits, but predominantly on the replacing function of transplanted cells during the 3-year follow-up in nonhuman primates, which resemble human corneal endothelium with limited regenerative capacity. Mechanistically, NAM ensured in vivo proper maturation of transplanted CEPs into functional CECs by preventing premature senescence and endothelial-mesenchymal transition within the TGF-β–enriched aqueous humor. Together, we provide compelling experimental evidence and mechanistic insights of simultaneous delivery of CEPs and NAM as a potential approach for treating corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Yanni Jia
- Eye Hospital of Shandong First Medical University, Jinan, China
| | - Can Zhao
- Eye Hospital of Shandong First Medical University, Jinan, China
| | - Wenjing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University, Jinan, China
| | - Yajie Gong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Chunxiao Dong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University, Jinan, China
| | - Bochao Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Dongfang Li
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Yihai Cao
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
18
|
Smeringaiova I, Paaske Utheim T, Jirsova K. Ex vivo expansion and characterization of human corneal endothelium for transplantation: a review. Stem Cell Res Ther 2021; 12:554. [PMID: 34717745 PMCID: PMC8556978 DOI: 10.1186/s13287-021-02611-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium plays a key role in maintaining corneal transparency. Its dysfunction is currently treated with penetrating or lamellar keratoplasty. Advanced cell therapy methods seek to address the persistent global deficiency of donor corneas by enabling the renewal of the endothelial monolayer with tissue-engineered grafts. This review provides an overview of recently published literature on the preparation of endothelial grafts for transplantation derived from cadaveric corneas that have developed over the last decade (2010–2021). Factors such as the most suitable donor parameters, culture substrates and media, endothelial graft storage conditions, and transplantation methods are discussed. Despite efforts to utilize alternative cellular sources, such as induced pluripotent cells, cadaveric corneas appear to be the best source of cells for graft preparation to date. However, native endothelial cells have a limited natural proliferative capacity, and they often undergo rapid phenotype changes in ex vivo culture. This is the main reason why no culture protocol for a clinical-grade endothelial graft prepared from cadaveric corneas has been standardized so far. Currently, the most established ex vivo culture protocol involves the peel-and-digest method of cell isolation and cell culture by the dual media method, including the repeated alternation of high and low mitogenic conditions. Culture media are enriched by additional substances, such as signaling pathway (Rho-associated protein kinase, TGF-β, etc.) inhibitors, to stimulate proliferation and inhibit unwanted morphological changes, particularly the endothelial-to-mesenchymal transition. To date, this promising approach has led to the development of endothelial grafts for the first in-human clinical trial in Japan. In addition to the lack of a standard culture protocol, endothelial-specific markers are still missing to confirm the endothelial phenotype in a graft ready for clinical use. Because the corneal endothelium appears to comprise phenotypically heterogeneous populations of cells, the genomic and proteomic expression of recently proposed endothelial-specific markers, such as Cadherin-2, CD166, or SLC4A11, must be confirmed by additional studies. The preparation of endothelial grafts is still challenging today, but advances in tissue engineering and surgery over the past decade hold promise for the successful treatment of endothelial dysfunctions in more patients worldwide.
Collapse
Affiliation(s)
- Ingrida Smeringaiova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic.
| |
Collapse
|