1
|
Perepletchikova D, Kuchur P, Basovich L, Khvorova I, Lobov A, Azarkina K, Aksenov N, Bozhkova S, Karelkin V, Malashicheva A. Endothelial-mesenchymal crosstalk drives osteogenic differentiation of human osteoblasts through Notch signaling. Cell Commun Signal 2025; 23:100. [PMID: 39972367 PMCID: PMC11841332 DOI: 10.1186/s12964-025-02096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Angiogenesis and osteogenesis are closely interrelated. The interaction between endothelial and bone-forming cells, such as osteoblasts, is crucial for normal bone development and repair. Juxtacrine and paracrine mechanisms play key roles in cell differentiation towards the osteogenic direction, assuming the direct effect of endothelium on osteogenic differentiation. However, the mechanisms of this interplay have yet to be thoroughly studied. METHODS Isolated endothelial cells (EC) from human umbilical vein and human osteoblasts (OB) from the epiphysis of the femur or tibia were cultured in direct and indirect (separated by membrane) contact in vitro under the osteogenic differentiation conditions. Osteogenic differentiation was verified by RT-PCR, and alizarin red staining. Shotgun proteomics and RNA-sequencing were used to compare both EC and OB under different co-culture conditions to assess the mechanisms of EC-OB interplay. To verify the role of Notch signaling, experiments with Notch modulation in EC were performed by EC lentiviral transduction with further co-cultivation with OB. Additionally, the effect of Notch modulation in EC was assessed by RNA-sequencing. RESULTS EC have opposite effects on osteogenic differentiation depending on the co-culture conditions with OB. In direct contact, EC enhance osteogenic differentiation, but in indirect cultures, EC suppress it. Our proteotranscriptomic analysis revealed that the osteosuppressive effect is related to the action of paracrine factors secreted by EC, while the osteoinductive properties of EC are mediated by the Notch signaling pathway, which can be activated only upon a physical contact of EC with OB. Indeed, in the direct co-culture, the knockdown of Notch1 and Notch3 receptors in EC has an inhibitory effect on the OB osteogenic differentiation, whereas activation of Notch by intracellular domain of either Notch1 or Notch3 in EC has an inductive effect on the OB osteogenic differentiation. CONCLUSION The data indicate the dual role of the endothelium in regulating osteogenic differentiation and highlight the unique role of the Notch signaling pathway in inducing osteogenic differentiation during cell-to-cell interactions. The findings of the study emphasize the importance of intercellular communication in the regulation of osteoblast differentiation during bone development and maintenance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Svetlana Bozhkova
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint- Petersburg, Russia
| | - Vitaliy Karelkin
- Vreden National Medical Research Center of Traumatology and Orthopedics, Saint- Petersburg, Russia
| | | |
Collapse
|
2
|
Cen X, Deng J, Pan X, Wei R, Huang Z, Tang R, Lu S, Wang R, Zhao Z, Huang X. An "All-in-One" Strategy to Reconstruct Temporomandibular Joint Osteoarthritic Microenvironment Using γ-Fe 2O 3@TA@ALN Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403561. [PMID: 39344168 DOI: 10.1002/smll.202403561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Current clinical strategies for the treatment of temporomandibular joint osteoarthritis (TMJOA) primarily target cartilage biology, overlooking the synergetic effect of various cells and inorganic components in shaping the arthritic microenvironment, thereby impeding the effectiveness of existing therapeutic options for TMJOA. Here, γ-Fe2O3@TA@ALN magnetic nanoparticles (γ-Fe2O3@TA@ALN MNPs) composed of γ-Fe2O3, tannic acid (TA), and alendronate sodium (ALN) are engineered to reconstruct the osteoarthritic microenvironment and mitigate TMJOA progression. γ-Fe2O3@TA@ALN MNPs can promote chondrocytes' proliferation, facilitate chondrogenesis and anisotropic organization, enhance lubrication and reduce cartilage wear, and encourage cell movement. Magnetic-responsive γ-Fe2O3@TA@ALN MNPs also exhibit pH sensitivity, which undergoes decomposition within acidic environment to release ALN on demand. Under a 0.2 T static magnetic field, γ-Fe2O3@TA@ALN MNPs accelerate the synthesis of cartilage-specific proteins, and suppress catabolic-related genes expression and reactive oxygen species generation, affording additional protection to TMJ cartilage. In TMJOA mouse models, articular injection of γ-Fe2O3@TA@ALN MNPs effectively alleviates cartilage degeneration and subchondral bone loss in short and long terms, offering promising avenues for the development of therapeutic interventions for TMJOA.
Collapse
Affiliation(s)
- Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junjie Deng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, 325035, P. R. China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rufang Wei
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, 325035, P. R. China
| | - Zhimao Huang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
| | - Rong Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shengkai Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Nishiguchi Y, Ueda M, Kubo H, Jo JI, Hashimoto Y, Takenobu T. Optimized human dedifferentiated fat cells from the buccal fat pad-derived osteoinductive extracellular vesicles promote osteoblast differentiation. J Dent Sci 2025; 20:278-285. [PMID: 39873097 PMCID: PMC11763207 DOI: 10.1016/j.jds.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs). Materials and methods DFATs were isolated from human buccal fat pads, cultured to confluency, and placed in either a standard or osteogenic induction medium. After culturing for 3 days, the conditioned medium was used to generate EVs using the size-exclusion chromatography and concentration filter method. Results Characterization of DFAT-EVs revealed typical EV morphology and positive markers (CD9 and CD63), with no differences between the two groups. In vitro assays demonstrated that EVs derived from the osteogenic induction medium (OI-EVs) significantly increased alkaline phosphatase activity and osteogenesis-related genes (Runx2 and collagen type I) compared to control EVs. Next-generation sequencing identified differentially expressed miRNAs, and gene ontology analysis suggested pathways involved in osteoblast differentiation. Conclusion Isolating DFATs from buccal fat pads under osteogenic induction conditions offers a procedure confined to the oral cavity, eliminating the need for harvesting from other sites. Thus, DFAT-EVs hold promise for promoting bone regeneration in maxillofacial applications.
Collapse
Affiliation(s)
- Yusuke Nishiguchi
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| | - Mamoru Ueda
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| | - Hirohito Kubo
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| | - Jun-Ichiro Jo
- Department of Biomaterials, Osaka Dental University, Osaka, Japan
| | | | - Toshihiko Takenobu
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| |
Collapse
|
4
|
Liu F, Wu Q, Liu Q, Chen B, Liu X, Pathak JL, Watanabe N, Li J. Dental pulp stem cells-derived cannabidiol-treated organoid-like microspheroids show robust osteogenic potential via upregulation of WNT6. Commun Biol 2024; 7:972. [PMID: 39122786 PMCID: PMC11315977 DOI: 10.1038/s42003-024-06655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Dental pulp stem cells (DPSC) have shown osteogenic and bone regenerative potential. Improving the in situ bone regeneration potential of DPSC is crucial for their application as seed cells during bone defect reconstruction in clinics. This study aimed to develop DPSC-derived organoid-like microspheroids as effective seeds for bone tissue engineering applications. DPSC osteogenic microspheroids (70 μm diameter) were cultured in a polydimethylsiloxane-mold-based agarose-gel microwell-culture-system with or without cannabidiol (CBD)-treatment. Results of in vitro studies showed higher osteogenic differentiation potential of microspheroids compared with 2D-cultured-DPSC. CBD treatment further improved the osteogenic differentiation potential of microspheroids. The effect of CBD treatment in the osteogenic differentiation of microspheroids was more pronounced compared with that of CBD-treated 2D-cultured-DPSC. Microspheroids showed a higher degree of bone regeneration in nude mice calvarial bone defect compared to 2D-cultured-DPSC. CBD-treated microspheroids showed the most robust in situ bone regenerative potential compared with microspheroids or CBD-treated 2D-cultured-DPSC. According to mRNA sequencing, bioinformatic analysis, and confirmation study, the higher osteogenic potential of CBD-treated microspheroids was mainly attributed to WNT6 upregulation. Taken together, DPSC microspheroids have robust osteogenic potential and can effectively translate the effect of in vitro osteoinductive stimulation during in situ bone regeneration, indicating their application potential during bone defect reconstruction in clinics.
Collapse
Affiliation(s)
- Fangqi Liu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Qingqing Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Qianwen Liu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Bo Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xintong Liu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
- Bio-Active Compounds Discovery Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| | - Nobumoto Watanabe
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
- Bio-Active Compounds Discovery Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Jiang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| |
Collapse
|
5
|
Nie M, Tian Y, Xiao Y, Lei S, Wu D. Enhancing high-quality fat survival: A novel strategy using cell-free fat extract. FASEB J 2024; 38:e23733. [PMID: 38995329 DOI: 10.1096/fj.202400523rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024]
Abstract
High-quality fat (HQF) improves the survival rate of fat and volumetric filling compared to traditional Coleman fat. However, this HQF strategy inevitably leads to a significant amount of unused fat being wasted. "CEFFE" (cell-free fat extract) is an acellular aqueous-phase liquid, rich in bioactive proteins. The remaining fat from preparing HQF can be further processed into CEFFE to promote the survival of HQF. HQF was obtained and the remaining fat was processed into CEFFE, then HQF was transplanted subcutaneously in nude mice. Animal studies showed that CEFFE significantly improved the survival rate of HQF. Histological analysis revealed that CEFFE improved the survival rate of HQF, by enhancing cell proliferation activity, reducing apoptosis, increasing angiogenesis, and improving the inflammatory state. Under simulated anaerobic conditions, CEFFE also improved the viability of HQF. In vitro, studies demonstrated that CEFFE enhanced the survival rate of HQF through multiple mechanisms. Transcriptomic analysis and qPCR showed that CEFFE increased the expression of angiogenesis-related genes in ADSCs while enhancing their proliferation-related gene expression and suppressing the expression of three differentiation-related genes. Moreover, functional experiments demonstrated that CEFFE-induced ADSCs exhibited stronger proliferation and adipogenic differentiation abilities. Tube formation and migration assays revealed that CEFFE promoted tube formation and migration of HUVECs, indicating its inherent pro-angiogenic properties. CEFFE facilitated the development of M0 to M2 macrophages, suggesting its role in improving the inflammatory state. This innovative clinical strategy optimizes HQF transplantation strategy, minimizing fat wastage and enhancing the efficiency of fat utilization.
Collapse
Affiliation(s)
- Mengqi Nie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| | - Yi Tian
- Department of Plastic and Aesthetic (Burn) Surgery, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yutian Xiao
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| | - Dingyu Wu
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P.R. China
| |
Collapse
|
6
|
Wang H, Liu Z, Niu D, Li H, Han Y, Peng J, Qian Q. Carbamazepine regulates USP10 through miR-20a-5p to affect the deubiquitination of SKP2 and inhibit osteogenic differentiation. J Orthop Surg Res 2023; 18:820. [PMID: 37915040 PMCID: PMC10619296 DOI: 10.1186/s13018-023-04169-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/07/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Antiepileptic drugs (AEDs) harm bone health and are significantly associated with osteoporosis development. In this study, we aimed to explore the mechanisms involved in carbamazepine (CBZ) and microRNA (miR)-20a-5p/ubiquitin-specific peptidase 10 (USP10)/S-phase kinase-associated protein 2 (SKP2) axis in osteoporosis. METHODS Human bone marrow mesenchymal stem cells (BMSCs) were treated with different concentrations of CBZ. Knocking down or overexpressing miR-20a-5p, USP10, and SKP2 cell lines were constructed. The expressions of miR-20a-5p, USP10, SKP2, runt-related transcription factor 2 (Runx2), Alkaline phosphatase (ALP), Osterix (Osx), osteocalcin (OCN) and Collagen I were detected with western blot (WB) and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Alizarin Red S (ARS) staining was performed to measure calcium deposition. Dual-luciferase assay and RNA immunoprecipitation (RIP) were applied to verify the binding relationship between miR-20a-5p and USP10. USP10 and SKP2 combination was verified by Co-Immunopurification (Co-IP). The stability of the SKP2 protein was verified by Cycloheximide chase assay. RESULTS CBZ could reduce cell activity. ALP activity and ARS staining were enhanced in the osteogenic induction (OM) group. The expressions of Runx2, ALP, Osx, OCN and Collagen I were increased. CBZ reduced miR-20a-5p expressions. Verification experiments showed miR-20a-5p could target USP10. USP10 increased SKP2 stability and promoted SKP2 expression. CBZ regulated miR-20a-5p/USP10/SPK2 and inhibited BMSCs osteogenic differentiation. CONCLUSIONS CBZ regulated USP10 through miR-20a-5p to affect the deubiquitination of SKP2 and inhibit osteogenic differentiation, which provided a new idea for osteoporosis treatment.
Collapse
Affiliation(s)
- Huan Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Ziye Liu
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Dawei Niu
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
- Department of Orthopedics, No. 971 Hospital of the PLA Navy, Qingdao, 266071, People's Republic of China
| | - Haobo Li
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Yaguang Han
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Jinhui Peng
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| | - Qirong Qian
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
7
|
Gueguen J, Girard D, Rival B, Fernandez J, Goriot ME, Banzet S. Spinal cord injury dysregulates fibro-adipogenic progenitors miRNAs signaling to promote neurogenic heterotopic ossifications. Commun Biol 2023; 6:932. [PMID: 37700159 PMCID: PMC10497574 DOI: 10.1038/s42003-023-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Neurogenic heterotopic ossifications are intramuscular bone formations developing following central nervous system injury. The pathophysiology is poorly understood and current treatments for this debilitating condition remain unsatisfying. Here we explored the role of miRNAs in a clinically relevant mouse model that combines muscle and spinal cord injury, and in patients' cells. We found an osteo-suppressive miRNAs response in injured muscle that was hindered when the spinal cord injury was associated. In isolated fibro-adipogenic progenitors from damaged muscle (cells at the origin of ossification), spinal cord injury induced a downregulation of osteo-suppressive miRNAs while osteogenic markers were overexpressed. The overexpression of selected miRNAs in patient's fibro-adipogenic progenitors inhibited mineralization and osteo-chondrogenic markers in vitro. Altogether, we highlighted an osteo-suppressive mechanism involving multiple miRNAs in response to muscle injury that prevents osteogenic commitment which is ablated by the neurologic lesion in heterotopic ossification pathogenesis. This provides new research hypotheses for preventive treatments.
Collapse
Affiliation(s)
- Jules Gueguen
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Bastien Rival
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Juliette Fernandez
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Marie-Emmanuelle Goriot
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France.
- INSERM UMR-MD-1197, 92140, Clamart, France.
| |
Collapse
|
8
|
Soheilifar MH, Nobari S, Hakimi M, Adel B, Masoudi-Khoram N, Reyhani E, Neghab HK. Current concepts of microRNA-mediated regulatory mechanisms in human pulp tissue-derived stem cells: a snapshot in the regenerative dentistry. Cell Tissue Res 2023:10.1007/s00441-023-03792-4. [PMID: 37247032 DOI: 10.1007/s00441-023-03792-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
One of the most studied class of non-coding RNAs is microRNAs (miRNAs) which regulate more than 60% of human genes. A network of miRNA gene interactions participates in stem cell self-renewal, proliferation, migration, apoptosis, immunomodulation, and differentiation. Human pulp tissue-derived stem cells (PSCs) are an attractive source of dental mesenchymal stem cells (MSCs) which comprise human dental pulp stem cells (hDPSCs) obtained from the dental pulp of permanent teeth and stem cells isolated from exfoliated deciduous teeth (SHEDs) that would be a therapeutic opportunity in stomatognathic system reconstruction and repair of other damaged tissues. The regenerative capacity of hDPSCs and SHEDs is mediated by osteogenic, odontogenic, myogenic, neurogenic, angiogenic differentiation, and immunomodulatory function. Multi-lineage differentiation of PSCs can be induced or inhibited by the interaction of miRNAs with their target genes. Manipulating the expression of functional miRNAs in PSCs by mimicking miRNAs or inhibiting miRNAs emerged as a therapeutic tool in the clinical translation. However, the effectiveness and safety of miRNA-based therapeutics, besides higher stability, biocompatibility, less off-target effects, and immunologic reactions, have received particular attention. This review aimed to comprehensively overview the molecular mechanisms underlying miRNA-modified PSCs as a futuristic therapeutic option in regenerative dentistry.
Collapse
Affiliation(s)
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hakimi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Reyhani
- Faculty of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
10
|
Wang YX, Peng ZL, Sun ZW, Pan YJ, Ai H, Mai ZH. MiR-20a promotes osteogenic differentiation in bone marrow-derived mesenchymal stem/stromal cells and bone repair of the maxillary sinus defect model in rabbits. Front Bioeng Biotechnol 2023; 11:1127908. [PMID: 37091341 PMCID: PMC10113429 DOI: 10.3389/fbioe.2023.1127908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction: This study aimed to determine whether miR-20 promoted osteogenic differentiation in bone marrow-derived mesenchymal stem/stromal cells (BMSCs) and accelerated bone formation in the maxillary sinus bone defect model in rabbits. Methods: BMSCs were transfected with miR-20a or anti-miR-20a for 12 h, followed by detection of RUNX2, Sp7 mRNA, bone morphogenetic protein 2 (BMP2), and RUNX2 protein expression. Alkaline phosphatase (ALP) activity and Alizarin Red S staining were used to detect calcified nodule deposition. In the rabbit maxillary sinus bone defect model, miR-20a loaded with AAV and BMP2 protein were mixed with Bio-Oss bone powder for filling the bone defect. At 4 weeks and 8 weeks, bone density was detected by cone beam computed tomography (CBCT), and new bone, osteoblasts, and collagen type 1 were evaluated by hematoxylin and eosin (HE) staining and immunohistochemical (IHC) staining. Results: Overexpression of miR-20a enhanced the mRNA and protein levels of BMP2, RUNX2, and SP7, the activity of ALP, and the levels of matrix mineralization, whereas the levels and activity of the aforementioned factors were decreased by anti-miR-20a treatment of BMSCs. Furthermore, miR-20a significantly increased the bone density, the number of osteoblasts, and the secretion of collagen type 1 in bone defects compared with Bio-Oss bone powder in the rabbit maxillary sinus bone defect model. Conclusion: Overall, miR-20a can induce osteogenic differentiation in BMSCs and accelerate bone formation of maxillary sinus defects in rabbits.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Orthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhu-Li Peng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Wen Sun
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yan-Jun Pan
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Hui Mai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhi-Hui Mai,
| |
Collapse
|
11
|
Luo X, Jiang Q, Liu L, Liao Q, Yu J, Xiang Z, Gong Y. METTL3-mediated m6A modification promotes processing and maturation of pri-miRNA-19a to facilitate nasopharyngeal carcinoma cell proliferation and invasion. Physiol Genomics 2022; 54:337-349. [PMID: 35759451 DOI: 10.1152/physiolgenomics.00007.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interplay between N6-methyladenosine (m6A) modification and microRNAs (miRs) participates in cancer progression. This study is conducted to explore the role of miR-19a-3p in nasopharyngeal carcinoma (NPC) cell proliferation and invasion. RT-qPCR and western blot showed that miR-19a-3p was upregulated in NPC tissues and cells and related to poor prognosis, methyltransferase-like 3 (METTL3) was highly expressed while BMP and activin membrane-bound inhibitor (BAMBI) was weakly expressed in NPC tissues and cells. miR-19a-3p downregulation inhibited cell proliferation and invasion while miR-19a-3p overexpression played an opposite role. m6A quantification and m6A RNA immunoprecipitation assays showed that METTL3-mediated m6A modification promoted the processing and maturation of pri-miR-19a via DGCR8. Dual-luciferase assay showed that BAMBI was a target of miR-19a-3p. The rescue experiments showed that BAMBI downregulation reversed the role of miR-19a-3p inhibition in NPC cells. A xenograft tumor model showed that METTL3 downregulation inhibited tumor growth via the miR-19a-3p/BAMBI in vivo. Overall, our findings elicited that METTL3-mediated m6A modification facilitated the processing and maturation of pri-miR-19a via DGCR8 to upregulate miR-19a-3p, and miR-19a-3p inhibited BAMBI expression to promote NPC cell proliferation and invasion, thus driving NPC progression.
Collapse
Affiliation(s)
- Xinggu Luo
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qingshan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lijun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qingyun Liao
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jing Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zheng Xiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongqian Gong
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
12
|
Liu J, Tang G, Liu W, Zhou Y, Fan C, Zhang W. MiR-20a-5p facilitates cartilage repair in osteoarthritis via suppressing mitogen-activated protein kinase kinase kinase 2. Bioengineered 2022; 13:13801-13814. [PMID: 35707845 PMCID: PMC9276018 DOI: 10.1080/21655979.2022.2084270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC) chondrogenic differentiation contributes to the treatment of osteoarthritis (OA). Numerous studies have indicated that microRNAs (miRNAs) regulate the pathogenesis and development of multiple disorders, including OA. Nevertheless, the role of miR-20a-5p in OA remains obscure. Forty male C57BL/6 mice were divided into four groups and were surgically induced OA or underwent sham surgery in the presence or absence of miR-20a-5p. Flow cytometry was implemented to detect surface markers of BMSCs. Reverse transcription quantitative polymerase chain reaction revealed the upregulation of miR-20a-5p during BMSC chondrogenic differentiation. Western blotting displayed that miR-20a-5p inhibition decreased protein levels of cartilage matrix markers but enhanced those of catabolic and hypertrophic chondrocyte markers in BMSCs. Alcian blue staining, hematoxylin‑eosin staining and micro-CT revealed that miR-20a-5p inhibition restrained chondrogenic differentiation and miR-20a-5p overexpression promoted the repair of damaged cartilage and subchondral bone, respectively. Luciferase reporter assay identified that mitogen activated protein kinase kinase kinase 2 (Map3k2) was a target of miR-20a-5p in BMSCs. Moreover, the expression of miR-20a-5p and Map3k2 was negatively correlated in murine cartilage tissues. Knocking down Map3k2 could rescue the suppressive influence of miR-20a-5p inhibition on chondrogenic differentiation of BMSCs. In conclusion, miR-20a-5p facilitates BMSC chondrogenic differentiation and contributes to cartilage repair in OA by suppressing Map3k2.
Collapse
Affiliation(s)
- Jiazhi Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guo Tang
- Department of Orthopaedics, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Wenjun Liu
- Department of Orthopaedics, South Hospital of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Zhou
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Cen X, Pan X, Zhang B, Huang W, Pei F, Luo T, Huang X, Liu J, Zhao Z. Correction: miR-20a-5p contributes to osteogenic differentiation of human dental pulp stem cells by regulating BAMBI and activating the phosphorylation of Smad5 and p38. Stem Cell Res Ther 2022; 13:173. [PMID: 35488296 PMCID: PMC9055762 DOI: 10.1186/s13287-022-02870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Fang Pei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Tao Luo
- Department of Stomatology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
14
|
Zeng B, Huang J. Progress in the Study of Non-Coding RNAs in Multidifferentiation Potential of Dental-Derived Mesenchymal Stem Cells. Front Genet 2022; 13:854285. [PMID: 35480302 PMCID: PMC9037064 DOI: 10.3389/fgene.2022.854285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/17/2022] [Indexed: 12/28/2022] Open
Abstract
For decades, the desire for tissue regeneration has never been quenched. Dental-derived mesenchymal stem cells (DMSCs), with the potential of self-renewal and multi-directional differentiation, have attracted much attention in this topic. Growing evidence suggests that non-coding RNAs (ncRNAs) can activate various regulatory processes. Even with a slight decrease or increase in expression, ncRNAs can weaken or even subvert cellular fate. Therefore, a systematic interpretation of ncRNAs that guide the differentiation of DMSCs into cells of other tissue types is urgently needed. In this review, we introduce the roles of ncRNAs in the differentiation of DMSCs, such as osteogenic differentiation, odontogenic differentiation, neurogenic differentiation, angiogenic differentiation and myogenic differentiation. Additionally, we illustrate the regulatory mechanisms of ncRNAs in the differentiation of DMSCs, such as epigenetic regulation, transcriptional regulation, mRNA modulation, miRNA sponges and signalling. Finally, we summarize the types and mechanisms of ncRNAs in the differentiation of DMSCs, such as let-7 family, miR-17∼92 family, miR-21, lncRNA H19, lncRNA ANCR, lncRNA MEG3, circRNA CDR1as and CircRNA SIPA1L1. If revealing the intricate relationship between ncRNAs and pluripotency of DMSCs 1 day, the application of DMSCs in regenerative medicine and tissue engineering will be improved. Our work could be an important stepping stone towards this future.
Collapse
Affiliation(s)
- Biyun Zeng
- Department of Oral Pathology, Xiangya Stomatological Hospital & Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha, China
| | - Junhui Huang
- Department of Oral Pathology, Xiangya Stomatological Hospital & Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha, China
| |
Collapse
|