1
|
Wu J, Xu J, Zhang M, Zhong J, Gao W, Wu M. Chondrocyte Mitochondrial Quality Control: A Novel Insight into Osteoarthritis and Cartilage Regeneration. Adv Wound Care (New Rochelle) 2025. [PMID: 40248893 DOI: 10.1089/wound.2024.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Significance: Osteoarthritis (OA), one of the most prevalent joint diseases affecting more than 240 million people, strongly influences human health and reduces life quality. This review aims to fill the current research gap regarding the application and potential of mitochondrial quality control (MQC) based therapies in the treatment of OA, thereby providing guidance for future research and clinical practice. Recent Advances: Chondrocytes respond to the inflammatory microenvironment via an array of signaling pathways and thus are critical in cartilage degeneration and OA progression. Mitochondria, as an important metabolic center in chondrocytes, play a vital role in responding to inflammatory stimuli. Multiple MQC mechanisms, including mitochondrial antioxidant defense, mitochondrial protein quality control, mitochondrial DNA repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis, sustain mitochondrial homeostasis under pathological conditions. Critical Issues: Despite extensive OA research, effective therapies remain limited. Elucidating MQC mechanisms in disease progression and post-traumatic cartilage repair is crucial. While preclinical studies demonstrate potential, clinical translation requires addressing protocol standardization, patient stratification, and long-term efficacy, as well as safety validation. Future Directions: Future research should focus on developing personalized MQC-based OA therapies guided by biomarker profiling and signaling pathway modulation. However, translational challenges persist, particularly regarding pervasive off-target effects, inadequate OA-specific targeting capacity, interpatient heterogeneity, and reliable evaluation of long-term therapeutic efficacy. Strategic prioritization of OA-specific MQC targets coupled with delivery system optimization may significantly improve both clinical translatability and therapeutic outcomes.
Collapse
Affiliation(s)
- Jinni Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Jiawen Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Menghan Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Jiahui Zhong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Weijin Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
| | - Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Komemi O, Orbuch E, Jarchowsky-Dolberg O, Brin YS, Tartakover-Matalon S, Pasmanik-Chor M, Lishner M, Drucker L. Myeloma mesenchymal stem cells' bioenergetics afford a novel selective therapeutic target. Oncogenesis 2025; 14:9. [PMID: 40216736 PMCID: PMC11992228 DOI: 10.1038/s41389-025-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Bone-marrow mesenchymal stem cells (BM-MSCs) rely on glycolysis, yet their trafficked mitochondria benefit recipient cells' bioenergetics in regenerative and cancerous settings, most relevant to BM-resident multiple myeloma (MM) cells. Fission/fusion dynamics regulate mitochondria function. Proteomics demonstrates excessive mitochondrial processes in BM-MSCs from MM patients compared to normal donors (ND). Thus, we aimed to characterize BM-MSCs (ND, MM) mitochondrial fitness, bioenergetics and dynamics with a focus on therapeutics. MM-MSCs displayed compromised mitochondria evidenced by decreased mitochondrial membrane potential (ΔΨm) and elevated proton leak. This was accompanied by stimulation of stress-coping mechanisms: spare respiratory capacity (SRC), mitochondrial fusion and UPRmt. Interfering with BM-MSCs mitochondrial dynamics equilibrium demonstrated their significance to bioenergetics and fitness according to the source. While ND-MSCs depended on fission, reducing MM-MSCs fusion attenuated glycolysis, OXPHOS and mtROS. Interestingly, optimization of mtROS levels is central to ΔΨm preservation in MM-MSCs only. MM-MSCs also demonstrated STAT3 activation, which regulates their OXPHOS and SRC. Targeting MM-MSC' SRC with Venetoclax diminished their pro-MM support and sensitized co-cultured MM cells to Bortezomib. Overall, MM-MSCs distinct mitochondrial bioenergetics are integral to their robustness. Repurposing Venetoclax as anti-SRC treatment in combination with conventional anti-MM drugs presents a potential selective way to target MM-MSCs conferred drug resistance.
Collapse
Affiliation(s)
- Oded Komemi
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elina Orbuch
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Jarchowsky-Dolberg
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Internal Medicine A, Meir Medical Center, Kfar Saba, Israel
- Hematology Unit, Meir Medical Center, Kfar Saba, Israel
| | | | - Shelly Tartakover-Matalon
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Autoimmunity Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S.W., Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Hematology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Yan W, Saqirile, Li K, Li K, Wang C. The Role of N6-Methyladenosine in Mitochondrial Dysfunction and Pathology. Int J Mol Sci 2025; 26:3624. [PMID: 40332101 PMCID: PMC12026702 DOI: 10.3390/ijms26083624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Mitochondria are indispensable in cells and play crucial roles in maintaining cellular homeostasis, energy production, and regulating cell death. Mitochondrial dysfunction has various manifestations, causing different diseases by affecting the diverse functions of mitochondria in the body. Previous studies have mainly focused on mitochondrial-related diseases caused by nuclear gene mutations or mitochondrial gene mutations, or mitochondrial dysfunction resulting from epigenetic regulation, such as DNA and histone modification. In recent years, as a popular research area, m6A has been involved in a variety of important processes under physiological and pathological conditions. However, there are few summaries on how RNA methylation, especially m6A RNA methylation, affects mitochondrial function. Additionally, the role of m6A in pathology through influencing mitochondrial function may provide us with a new perspective on disease treatment. In this review, we summarize several manifestations of mitochondrial dysfunction and compile examples from recent years of how m6A affects mitochondrial function and its role in some diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (W.Y.); (S.); (K.L.); (K.L.)
| |
Collapse
|
4
|
Zhang Z, Zhou F, Lu M, Zhang D, Zhang X, Xu S, He Y. WTAP-mediated m 6A modification of TRIM22 promotes diabetic nephropathy by inducing mitochondrial dysfunction via ubiquitination of OPA1. Redox Rep 2024; 29:2404794. [PMID: 39314036 PMCID: PMC11423538 DOI: 10.1080/13510002.2024.2404794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes and is the most common cause of end-stage renal disease. Tripartite motif-containing (TRIM) proteins are a large family of E3 ubiquitin ligases that contribute to protein quality control by regulating the ubiquitin - proteasome system. However, the detailed mechanisms through which various TRIM proteins regulate downstream events have not yet been fully elucidated. The current research aimed to determine the function and mechanism of TRIM22 in DN. METHODS DN models were established by inducing HK-2 cells using high glucose (HG) and diabetic mice (db/db mice). Cell viability, apoptosis, mitochondrial reactive oxygen species, and mitochondrial membrane potential were detected by Cell Counting Kit-8 and flow cytometry, respectively. Pathological changes were evaluated using hematoxylin and eosin, periodic acid schiff and Masson staining. The binding between TRIM22 and optic atrophy 1 (OPA1) was analyzed using co-immunoprecipitation. The m6A level of TRIM22 5'UTR was detected using RNA immunoprecipitation. RESULTS TRIM22 was highly expressed in patients with DN. TRIM22 silencing inhibited HG-induced apoptosis and mitochondrial dysfunction in HK-2 cells. Promoting mitochondrial fusion alleviated TRIM22 overexpression-induced cell apoptosis, mitochondrial dysfunction in HK-2 cells, and kidney damage in mice. Mechanistically, TRIM22 interacted with OPA1 and induced its ubiquitination. Wilms tumor 1-associating protein (WTAP) promoted m6A modification of TRIM22 through the m6A reader insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). DISCUSSION TRIM22 silencing inhibited the progression of DN by interacting with OPA1 and inducing its ubiquitination. Furthermore, WTAP promoted m6A modification of TRIM22 via IGF2BP1.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Fengzhu Zhou
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Min Lu
- Department of Paediatrics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, People’s Republic of China
| | - Duanchun Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xinyi Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Siyu Xu
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yanming He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Tang X, He J, Hao Y. Extracellular Vesicles Derived Ectonucleoside Triphosphate Diphosphohydrolase 3 Alleviates Mitochondrial Dysfunction of Osteoarthritis Chondrocytes via Ectonucleotide Pyrophosphatase/Phosphodiesterase 1-Induced Suppression of the AKT/Notch2 Pathway. J Biochem Mol Toxicol 2024; 38:e70064. [PMID: 39569601 DOI: 10.1002/jbt.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
Osteoarthritis (OA) is the most common joint disease that usually starts from joint cartilage injury. Notch2, a versatile signaling in human development and diseases, was recently uncovered to be an important regulator in chondrocyte damage. However, in OA chondrocytes, how Notch2 activation is dysregulated is largely unknown. Here, integrated bioinformatic analysis was performed on GEO datasets (GSE199193 and GSE224255) to search potential extracellular vesicles (EVs) derived regulators of Notch2 in OA chondrocytes. Ectonucleoside triphosphate diphosphohydrolase 3 (Entpd3), a most differentially expressed gene both in LPS-induced macrophage EV and Notch2 mutant chondrocytes, was screened as the candidate regulator of Notch2 in OA chondrocytes. Gain-of-function experiments in cultured human chondrocytes revealed that recombinant Entpd3 protein and macrophage EV both had a protective effect on LPS-induced inflammation, oxidative stress, apoptosis, and collagen loss in chondrocytes. In terms of mechanism, Entpd3 directly interacted with ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and suppressed AKT/Notch2-mediated mitochondrial dysfunction. Finally, we verified that either macrophage EV administration or Entpd3 overexpression was able to alleviate osteoarthritis in mice in vivo. In conclusion, Entpd3 is identified as a new regulator in OA, which alleviates mitochondrial dysfunction induced chondrocyte damage via ENPP1-induced suppression of the AKT/Notch2 pathway.
Collapse
Affiliation(s)
- Xin Tang
- Department of Orthopedic Joint Surgery, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| | - Jingsheng He
- Department of Orthopedic Joint Surgery, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| | - Ye Hao
- Department of Orthopedic Joint Surgery, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| |
Collapse
|
6
|
Feng L, Li B, Yong SS, Wen X, Tian Z. The emerging role of exercise in Alzheimer's disease: Focus on mitochondrial function. Ageing Res Rev 2024; 101:102486. [PMID: 39243893 DOI: 10.1016/j.arr.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory impairment and cognitive dysfunction, which eventually leads to the disability and mortality of older adults. Although the precise mechanisms by which age promotes the development of AD remains poorly understood, mitochondrial dysfunction plays a central role in the development of AD. Currently, there is no effective treatment for this debilitating disease. It is well accepted that exercise exerts neuroprotective effects by ameliorating mitochondrial dysfunction in the neurons of AD, which involves multiple mechanisms, including mitochondrial dynamics, biogenesis, mitophagy, transport, and signal transduction. In addition, exercise promotes mitochondria communication with other organelles in AD neurons, which should receive more attentions in the future.
Collapse
Affiliation(s)
- Lili Feng
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Bowen Li
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Su Sean Yong
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Xu Wen
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
7
|
Court AC, Vega-Letter AM, Parra-Crisóstomo E, Velarde F, García C, Ortloff A, Vernal R, Pradenas C, Luz-Crawford P, Khoury M, Figueroa FE. Mitochondrial transfer balances cell redox, energy and metabolic homeostasis in the osteoarthritic chondrocyte preserving cartilage integrity. Theranostics 2024; 14:6471-6486. [PMID: 39479450 PMCID: PMC11519804 DOI: 10.7150/thno.96723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/22/2024] [Indexed: 11/02/2024] Open
Abstract
Osteoarthrosis (OA) is a leading cause of disability and early mortality, with no disease modifying treatment. Mitochondrial (MT) dysfunction and changes in energy metabolism, leading to oxidative stress and apoptosis, are main drivers of disease. In reaction to stress, mesenchymal stromal/stem cells (MSCs) donate their MT to damaged tissues. Methods: To evaluate the capacity of clinically validated MSCs to spontaneously transfer their MT to human OA chondrocytes (OA-Ch), primary cultured Ch isolated from the articular cartilage of OA patients were co-cultured with MT-labeled MSCs. MT transfer (MitoT) was evidenced by flow cytometry and confocal microscopy of MitoTracker-stained and YFP-tagged MT protein. MT persistence and metabolic analysis on target cells were assessed by direct transfer of MSC-derived MT to OA-Chs (Mitoception), through SNP-qPCR analysis, ATP measurements and Seahorse technology. The effects of MitoT on MT dynamics, oxidative stress and cell viability were gauged by western blot of fusion/fission proteins, confocal image analysis, ROS levels, Annexin V/7AAD and TUNEL assays. Intra-articular injection of MSC-derived MT was tested in a collagenase-induced murine model of OA. Results: Dose-dependent cell-to-cell MitoT from MSCs to cultured OA-Chs was detected starting at 4 hours of co-culture, with increasing MT-fluorescence levels at higher MSC:Ch ratios. PCR analysis confirmed the presence of exogenous MSC-MT within MitoT+ OA-Chs up to 9 days post Mitoception. MitoT from MSCs to OA-Ch restores energetic status, with a higher ATP production and metabolic OXPHOS/Glycolisis ratio. Significant changes in the expression of MT network regulators, increased MFN2 and decreased p-DRP1, reveal that MitoT promotes MT fusion restoring the MT dynamics in the OA-Ch. Additionally, MitoT increases SOD2 transcripts, protein, and activity levels, and reduces ROS levels, confering resistance to oxidative stress and enhancing resistance to apoptosis. Intra-articular injection of MSC-derived MT improves histologic scores and bone density of the affected joints in the OA mouse model, demonstrating a protective effect of MT transplantation on cartilage degradation. Conclusion: The Mitochondria transfer of MSC-derived MT induced reversal of the metabolic dysfunction by restoring the energetic status and mitochondrial dynamics in the OA chondrocyte, while conferring resistance to oxidative stress and apoptosis. Intra-articular injection of MT improved the disease in collagenase-induced OA mouse model. The restoration of the cellular homeostasis and the preclinical benefit of the intra-articular MT treatment offer a new approach for the treatment of OA.
Collapse
Affiliation(s)
- Angela C. Court
- Cell for Cells, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliseo Parra-Crisóstomo
- Cell for Cells, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francesca Velarde
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Rolando Vernal
- Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carolina Pradenas
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Maroun Khoury
- Cell for Cells, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Fernando E. Figueroa
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
8
|
Liu ZY, Lin LC, Liu ZY, Song K, Tu B, Sun H, Zhou Y, Mao S, Zhang Y, Li R, Yang JJ, Zhao JY, Tao H. N 6-Methyladenosine-mediated phase separation suppresses NOTCH1 expression and promotes mitochondrial fission in diabetic cardiac fibrosis. Cardiovasc Diabetol 2024; 23:347. [PMID: 39342271 PMCID: PMC11439301 DOI: 10.1186/s12933-024-02444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is crucial for liquid-liquid phase separation in mammals. Increasing evidence indicates that liquid-liquid phase separation in proteins and RNAs affects diabetic cardiomyopathy. However, the molecular mechanism by which m6A-mediated phase separation regulates diabetic cardiac fibrosis remains elusive. METHODS Leptin receptor-deficient mice (db/db), cardiac fibroblast-specific Notch1 conditional knockout (POSTN-Cre × Notch1flox/flox) mice, and Cre mice were used to induce diabetic cardiac fibrosis. Adeno-associated virus 9 carrying cardiac fibroblast-specific periostin (Postn) promoter-driven small hairpin RNA targeting Alkbh5, Ythdf2, or Notch1, and the phase separation inhibitor 1,6-hexanediol were administered to investigate their roles in diabetic cardiac fibrosis. Histological and biochemical analyses were performed to determine how Alkbh5 and Ythdf2 regulate Notch1 expression in diabetic cardiac fibrosis. NOTCH1 was reconstituted in ALKBH5- and YTHDF2-deficient cardiac fibroblasts and mouse hearts to study its effects on mitochondrial fission and diabetic cardiac fibrosis. Heart tissue samples from patients with diabetic cardiomyopathy were used to validate our findings. RESULTS In mice with diabetic cardiac fibrosis, decreased Notch1 expression was accompanied by high m6A mRNA levels and mitochondrial fission. Fibroblast-specific deletion of Notch1 enhanced mitochondrial fission and cardiac fibroblast proliferation and induced diabetic cardiac fibrosis in mice. Notch1 downregulation was associated with Alkbh5-mediated m6A demethylation in the 3'UTR of Notch1 mRNA and elevated m6A mRNA levels. These elevated m6A levels in Notch1 mRNA markedly enhanced YTHDF2 phase separation, increased the recognition of m6A residues in Notch1 mRNA by YTHDF2, and induced Notch1 degradation. Conversely, epitranscriptomic downregulation rescues Notch1 expression, resulting in the opposite effects. Human heart tissues from patients with diabetic cardiomyopathy were used to validate the findings in mice with diabetic cardiac fibrosis. CONCLUSIONS We identified a novel epitranscriptomic mechanism by which m6A-mediated phase separation suppresses Notch1 expression, thereby promoting mitochondrial fission in diabetic cardiac fibrosis. Our findings provide new insights for the development of novel treatment approaches for patients with diabetic cardiac fibrosis.
Collapse
MESH Headings
- Animals
- Mitochondrial Dynamics
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Humans
- Fibrosis
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/etiology
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Mice, Knockout
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Signal Transduction
- Male
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- Cells, Cultured
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Disease Models, Animal
- Mice, Inbred C57BL
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Mice
- RNA Processing, Post-Transcriptional
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phase Separation
- Cell Adhesion Molecules
- Receptors, Leptin
Collapse
Affiliation(s)
- Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China.
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China.
| |
Collapse
|
9
|
Liu Y, Wang L, Ai J, Li K. Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential. Stem Cell Rev Rep 2024; 20:617-636. [PMID: 38265576 DOI: 10.1007/s12015-024-10681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Mesenchymal stem cells (MSCs) have become popular tool cells in the field of transformation and regenerative medicine due to their function of cell rescue and cell replacement. The dynamically changing mitochondria serve as an energy metabolism factory and signal transduction platform, adapting to different cell states and maintaining normal cell activities. Therefore, a clear understanding of the regulatory mechanism of mitochondria in MSCs is profit for more efficient clinical transformation of stem cells. This review highlights the cutting-edge knowledge regarding mitochondrial biology from the following aspects: mitochondrial morphological dynamics, energy metabolism and signal transduction. The manuscript mainly focuses on mitochondrial mechanistic insights in the whole life course of MSCs, as well as the potential roles played by mitochondria in MSCs treatment of transplantation, for seeking pivotal targets of stem cell fate regulation and stem cell therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Ai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
11
|
Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 2023; 168:372-387. [PMID: 37481194 DOI: 10.1016/j.actbio.2023.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Osteoarthritis (OA) is a widespread clinical disease characterized by cartilage degeneration in middle-aged and elderly people. Currently, there is no effective treatment for OA apart from total joint replacement in advanced stages. Mesenchymal stem cells (MSCs) are a type of adult stem cell with diverse differentiation capabilities and immunomodulatory potentials. MSCs are known to effectively regulate the cartilage microenvironment, promote cartilage regeneration, and alleviate OA symptoms. As a result, they are promising sources of cells for OA therapy. Recent studies have revealed the presence of resident MSCs in synovial fluid, synovial membrane, and articular cartilage, which can be collected as knee joint-derived MSCs (KJD-MSC). Several preclinical and clinical studies have demonstrated that KJD-MSCs have great potential for OA treatment, whether applied alone, in combination with biomaterials, or as exocrine MSCs. In this article, we will review the characteristics of MSCs in the joints, including their cytological characteristics, such as proliferation, cartilage differentiation, and immunomodulatory abilities, as well as the biological function of MSC exosomes. We will also discuss the use of tissue engineering in OA treatment and introduce the concept of a new generation of stem cell-based tissue engineering therapy, including the use of engineering, gene therapy, and gene editing techniques to create KJD-MSCs or KJD-MSC derivative exosomes with improved functionality and targeted delivery. These advances aim to maximize the efficiency of cartilage tissue engineering and provide new strategies to overcome the bottleneck of OA therapy. STATEMENT OF SIGNIFICANCE: This research will provide new insights into the medicinal benefit of Joint resident Mesenchymal Stem Cells (MSCs), specifically on its cartilage tissue engineering ability. Through this review, the community will further realize promoting joint resident mesenchymal stem cells, especially cartilage progenitor/MSC-like progenitor cells (CPSC), as a preventive measure against osteoarthritis and cartilage injury. People and medical institutions may also consider cartilage derived MSC as an alternative approach against cartilage degeneration. Moreover, the discussion presented in this study will convey valuable information for future research that will explore the medicinal benefits of cartilage derived MSC.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
12
|
Multiple Genetic Loci Associated with Pug Dog Thoracolumbar Myelopathy. Genes (Basel) 2023; 14:genes14020385. [PMID: 36833311 PMCID: PMC9957375 DOI: 10.3390/genes14020385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Pug dogs with thoracolumbar myelopathy (PDM) present with a specific clinical phenotype that includes progressive pelvic limb ataxia and paresis, commonly accompanied by incontinence. Vertebral column malformations and lesions, excessive scar tissue of the meninges, and central nervous system inflammation have been described. PDM has a late onset and affects more male than female dogs. The breed-specific presentation of the disorder suggests that genetic risk factors are involved in the disease development. To perform a genome-wide search for PDM-associated loci, we applied a Bayesian model adapted for mapping complex traits (BayesR) and a cross-population extended haplotype homozygosity test (XP-EHH) in 51 affected and 38 control pugs. Nineteen associated loci (harboring 67 genes in total, including 34 potential candidate genes) and three candidate regions under selection (with four genes within or next to the signal) were identified. The multiple candidate genes identified have implicated functions in bone homeostasis, fibrotic scar tissue, inflammatory responses, or the formation, regulation, and differentiation of cartilage, suggesting the potential relevance of these processes to the pathogenesis of PDM.
Collapse
|
13
|
Lin Z, Wang H, Song J, Xu G, Lu F, Ma X, Xia X, Jiang J, Zou F. The role of mitochondrial fission in intervertebral disc degeneration. Osteoarthritis Cartilage 2023; 31:158-166. [PMID: 36375758 DOI: 10.1016/j.joca.2022.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Low back pain (LBP) is an extremely common disorder and is a major cause of disability globally. Intervertebral disc degeneration (IVDD) is the main contributor to LBP. Nevertheless, the specific mechanisms underlying the pathogenesis of IVDD remain unclear. Mitochondria are highly dynamic organelles that continuously undergo fusion and fission, known as mitochondrial dynamics. Accumulating evidence has revealed that aberrantly activated mitochondrial fission leads to mitochondrial fragmentation and dysfunction, which are involved in the development and progression of IVDD. To date, research into mitochondrial dynamics in IVDD is at an early stage. The present narrative review aims to summarize the most recent findings about the role of mitochondrial fission in the pathogenesis of IVDD.
Collapse
Affiliation(s)
- Z Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - H Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - J Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - G Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - F Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - X Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - X Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - J Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - F Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|