1
|
Wen Y, Li J, Mukama O, Huang R, Deng S, Li Z. New insights on mesenchymal stem cells therapy from the perspective of the pathogenesis of nonalcoholic fatty liver disease. Dig Liver Dis 2025:S1590-8658(25)00286-5. [PMID: 40158892 DOI: 10.1016/j.dld.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) manifests as chronic hepatic steatosis, occurring variably across people due to racial and genetic diversity. It represents a stage in the development of chronic liver disease, marked by fat accumulation, inflammatory responses, oxidative stress in the endoplasmic reticulum, and fibrosis as primary concerns. Understanding its underlying mechanisms remains a challenging and pivotal area of study. In the past, acute liver injury-related diseases were commonly treated with methods such as liver transplantation. However, the emergence of artificial liver has shifted focus to stem cell therapies. Unlike conventional drugs, stem cell therapies are continuously evolving. Despite being classified as drugs, stem cells demonstrated significant efficacy after multiple injections. Mesenchymal stem cells, unlike other types of stem cells, do not have the risk of tumor formation and low immunogenicity, reducing the hypersensitivity reactions associated with liver transplantation. Increasingly, studies suggest that mesenchymal stem cells hold promise in the treatment of chronic liver injury diseases. This review focuses on investigating the role of mesenchymal stem cells in chronic metabolic liver diseases, such as non-alcoholic fatty liver disease, and delves into their specific functions.
Collapse
Affiliation(s)
- Yanxuan Wen
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jiaxing Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China
| | - Sihao Deng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China.
| |
Collapse
|
2
|
Kurniadi A, Zucha MA, Kusumanto A, Salima S, Harsono AB. Application of adult stem cells in obstetrics and gynecology: A scoping review. Eur J Obstet Gynecol Reprod Biol X 2025; 25:100367. [PMID: 39967607 PMCID: PMC11833614 DOI: 10.1016/j.eurox.2025.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Background Advancements in regenerative medicine have led to the applicability of stem cell technology in various diseases. Stem cells that have self-renewable abilities may differentiate into several cell types to provide therapeutic potential. Among different stem cells, adult stem cells are considered as the safest with remarkable potential for therapeutic application. In this review, we provide current available evidence regarding the application of adult stem cells in medicine, especially in the field of obstetrics and gynecology. Objective This scoping review aims to map and describe the current research on adult stem cell application in obstetrics and gynecology. Methods We performed a systematic search on PubMed, Google Scholar, and Cochrane Library in August 2024 to identify research articles involving adult stem cells in the field of obstetrics and gynecology. We used the Deduplicate website to filter articles based on keywords that met our inclusion and exclusion criteria. The results were presented based on recommendations from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews. Results We found 42 articles that met the inclusion criteria. Some studies were clinical studies, whereas the majority were preclinical studies. We categorized the articles into clinical and preclinical studies to understand their applicability in human subjects. Conclusions Adult stem cell therapy is a candidate treatment for several pathologies in obstetrics and gynecology. The promising results of adult stem cell therapy, especially in degenerative gynecologic diseases, may lead to further application of the technology in the near future.
Collapse
Affiliation(s)
- Andi Kurniadi
- Department of Obstetrics and Gynecology, Universitas Padjadjaran – RSUP Hasan Sadikin, Jl. Pasteur No. 38, Bandung, Indonesia
| | - Muhammad Ary Zucha
- Department of Obstetrics and Gynecology, Universitas Padjadjaran – RSUP Hasan Sadikin, Jl. Pasteur No. 38, Bandung, Indonesia
- Department of Obstetrics and Gynecology, Universitas Gadjah Mada – RSUP Sardjito, Jl. Kesehatan No. 1, Sleman, Indonesia
| | - Ardhanu Kusumanto
- Department of Obstetrics and Gynecology, Universitas Gadjah Mada – RSUP Sardjito, Jl. Kesehatan No. 1, Sleman, Indonesia
| | - Siti Salima
- Department of Obstetrics and Gynecology, Universitas Padjadjaran – RSUP Hasan Sadikin, Jl. Pasteur No. 38, Bandung, Indonesia
| | - Ali Budi Harsono
- Department of Obstetrics and Gynecology, Universitas Padjadjaran – RSUP Hasan Sadikin, Jl. Pasteur No. 38, Bandung, Indonesia
| |
Collapse
|
3
|
Li N, Du X, Zhao Y, Zeng Q, Han C, Xiong D, He L, Zhang G, Liu W. Exploring stem cell technology: Pioneering new pathways for female fertility preservation and restoration. Reprod Biol 2024; 24:100958. [PMID: 39393314 DOI: 10.1016/j.repbio.2024.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
The fertility of women is crucial for the well-being of individuals and families. However, various factors such as chemotherapy, lifestyle changes, among others, may lead to a decline in female fertility, thus emphasizing the significance of preserving and restoring fertility. Stem cells, with their unique capacity for self-renewal and pluripotent differentiation, have made significant strides in areas such as ovarian tissue cryopreservation, in vitro culture of frozen-thawed ovarian tissue, and construction of ovarian-like organs. This review aims to summarize the latest findings in these fields, highlighting the pivotal role, mechanisms, and future prospects of stem cell technology in preserving and restoring female fertility. Additionally, the importance of interdisciplinary collaboration is underscored, as personalized stem cell therapy regimens tailored through interdisciplinary cooperation between reproductive medicine and stem cell fields hold promise in providing reliable solutions for the preservation and restoration of female fertility.
Collapse
Affiliation(s)
- Ningjing Li
- School of Medicine and life sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinrong Du
- School of Medicine and life sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuhong Zhao
- College of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Qin Zeng
- Sichuan Provincial Woman's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China
| | - Changli Han
- School of Medicine and life sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dongsheng Xiong
- Sichuan Provincial Woman's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China
| | - Libing He
- Sichuan Provincial Woman's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China
| | - Guohui Zhang
- Sichuan Provincial Woman's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Weixin Liu
- Sichuan Provincial Woman's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| |
Collapse
|
4
|
Chen J, He Z, Xu W, Kang Y, Zhu F, Tang H, Wang J, Zhong F. Human umbilical cord mesenchymal stem cells restore chemotherapy-induced premature ovarian failure by inhibiting ferroptosis in vitro ovarian culture system. Reprod Biol Endocrinol 2024; 22:137. [PMID: 39511578 PMCID: PMC11542367 DOI: 10.1186/s12958-024-01310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown potential in repairing chemotherapy-induced premature ovarian failure (POF). However, challenges such as stem cell loss and immune phagocytosis post-transplantation hinder their application. Due to easy and safe handling, in vitro ovarian culture is widely available for drug screening, pathophysiological research, and in vitro fertilization. MSCs could exhibit therapeutic capacity for ovarian injury, and avoid stem cell loss and immune phagocytosis in vitro tissue culture system. Therefore, this study utilizes an in vitro ovarian culture system to investigate the reparative potential of human umbilical cord mesenchymal stem cells (hUCMSCs) and their mechanism. METHODS In this study, a chemotherapy-induced POF model was established by introducing cisplatin in vitro ovarian culture system. The reparative effects of hUCMSCs on damaged ovarian tissue were validated through Transwell chambers. Tissue histology examination, immunohistochemical staining, Western blotting, and RT-PCR were employed to evaluate the expression effects of hUCMSCs on ferroptosis and fibrosis-related genes during the process of repairing cisplatin-induced POF. RESULTS Cisplatin was found to activate ovarian follicles in vitro POF model. Transcriptomic sequencing analysis revealed that cisplatin could activate genes associated with ferroptosis. hUCMSCs alleviated cisplatin-induced POF by suppressing the expression of ferroptosis. Moreover, inhibiting ferroptosis by hUCMSCs also ameliorated ovarian hormone levels and reduced the expression of fibrosis-related factors α-SMA and COL-I in the ovaries. CONCLUSIONS This study confirms that cisplatin-induced ovarian damage via ferroptosis in vitro POF model, and hUCMSCs repair ovarian injury by inhibiting the ferroptosis pathway and suppressing fibrosis. This research contributes to evaluating the effectiveness of hUCMSCs in treating chemotherapy-induced POF by inhibiting ferroptosis in an in vitro ovarian culture system and provides a potential therapeutic strategy for chemotherapy-induced POF.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Zhuoying He
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Wenjuan Xu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Yumiao Kang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Fengyu Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Suzhou, Anhui Province, 234011, China.
| | - Jianye Wang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
5
|
Zuo N, Wang RT, Bian WM, Liu X, Han BQ, Wang JJ, Shen W, Li L. Vigor King mitigates spermatogenic disorders caused by environmental estrogen zearalenone exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116757. [PMID: 39047363 DOI: 10.1016/j.ecoenv.2024.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Zearalenone (ZEN) has been shown to cause reproductive damage by inducing oxidative stress. Astaxanthin and L-carnitine are widely used to alleviate oxidative stress and promote sperm maturation. However, it remains uncertain whether they are effective in mitigating spermatogenesis disorders induced by ZEN. This study aimed to investigate the therapeutic efficacy and potential mechanisms of Vigor King (Vig), a compound preparation primarily consisting of astaxanthin and L-carnitine, in alleviating ZEN-induced spermatogenesis disorders. In the experiment, mice received continuous oral gavage of ZEN (80 μg/kg) for 35 days, accompanied by a rescue strategy with Vig (200 mg/kg). The results showed that Vig effectively reduced the negative impact on semen quality and improved the structural and functional abnormalities of the seminiferous epithelium caused by ZEN. Additionally, the accumulation of reactive oxygen species (ROS), DNA double-strand breaks, apoptosis, and autophagy abnormalities were all significantly ameliorated. Intriguingly, the GSK3β-dependent BTRC-NRF2 signaling pathway was found to play an important role in this process. Furthermore, testing of offspring indicated that Vig could extend its protective effects to the next generation, effectively combating the transgenerational toxic effects of ZEN. In summary, our research suggests that Vig supplementation holds considerable promise in alleviating spermatogenesis disorders induced by zearalenone.
Collapse
Affiliation(s)
- Ning Zuo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui Ting Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wen Meng Bian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuan Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Bao Quan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Jun Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Zaninović L, Bašković M, Ježek D, Habek D, Pogorelić Z, Katušić Bojanac A, Elveđi Gašparović V, Škrgatić L. Enhancement of Vascularization and Ovarian Follicle Survival Using Stem Cells in Cryopreserved Ovarian Tissue Transplantation-A Systematic Review. BIOLOGY 2024; 13:342. [PMID: 38785824 PMCID: PMC11117700 DOI: 10.3390/biology13050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The increase in cancer survival rates has put a focus on ensuring fertility preservation procedures for cancer patients. Ovarian tissue cryopreservation presents the only option for prepubertal girls and patients who require immediate start of treatment and, therefore, cannot undergo controlled ovarian stimulation. We aimed to provide an assessment of stem cells' impact on cryopreserved ovarian tissue grafts in regard to the expression of growth factors, angiogenesis promotion, tissue oxygenation, ovarian follicle survival and restoration of endocrine function. For this systematic review, we searched the Scopus and PubMed databases and included reports of trials using murine and/or human cryopreserved ovarian tissue for transplantation or in vitro culture in combination with mesenchymal stem cell administration to the grafting site. Of the 1201 articles identified, 10 met the criteria. The application of stem cells to the grafting site has been proven to support vascular promotion and thereby shorten the period of tissue hypoxia, which is reflected in the increased number of remaining viable follicles and faster recovery of ovarian endocrine function. Further research is needed before implementing the use of stem cells in OT cryopreservation and transplantation procedures in clinical practice. Complex ethical dilemmas make this process more difficult.
Collapse
Affiliation(s)
- Luca Zaninović
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, Petrova ulica 13, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Marko Bašković
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Pediatric Surgery, Children’s Hospital Zagreb, Ulica Vjekoslava Klaića 16, 10 000 Zagreb, Croatia
- Croatian Academy of Medical Sciences, Kaptol 15, 10 000 Zagreb, Croatia
| | - Davor Ježek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kišpatićeva ulica 12, 10 000 Zagreb, Croatia
| | - Dubravko Habek
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Croatian Academy of Medical Sciences, Kaptol 15, 10 000 Zagreb, Croatia
- Department of Obstetrics and Gynecology, Clinical Hospital Merkur, Zajčeva ulica 19, 10 000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10 000 Zagreb, Croatia
| | - Zenon Pogorelić
- Department of Pediatric Surgery, University Hospital of Split, Spinčićeva ulica 1, 21 000 Split, Croatia;
- School of Medicine, University of Split, Šoltanska ulica 2a, 21 000 Split, Croatia
| | - Ana Katušić Bojanac
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Vesna Elveđi Gašparović
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, Petrova ulica 13, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Lana Škrgatić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, Petrova ulica 13, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
7
|
Chen J, Hu Q, Zhou C, Jin D. CCT2 prevented β-catenin proteasomal degradation to sustain cancer stem cell traits and promote tumor progression in epithelial ovarian cancer. Mol Biol Rep 2024; 51:54. [PMID: 38165547 DOI: 10.1007/s11033-023-09047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/25/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is featured by rapid progression and dismal outcomes clinically. Chaperonin Containing TCP1 Subunit 2 (CCT2) was identified as a crucial regulator for tumor progression, however, its exact role in EOC remained largely unknown. METHODS CCT2 expression and prognostic value in EOC samples were assessed according to TCGA dataset. Proliferation and mobility potentials were assessed by CCK8, colony-formation, wound healing, and Transwell assays. Cancer stem cell (CSC) traits were evaluated by RT-PCR, WB assays, sphere-forming assay and chemoresistance analysis. Bioinformatic analysis, co-IP assays and ubiquitin assays were performed to explore the mechanisms of CCT2 on EOC cells. RESULTS CCT2 highly expressed in EOC tissues and predicted poor prognosis of EOC patients by TCGA analysis. Silencing CCT2 significantly restrained cell proliferation, migration, and invasion. Moreover, CCT2 could effectively trigger epithelial-mesenchymal transition to confer extensive invasion potentials to EOC cells, Importantly, CCT2 positively correlated with CSC markers in EOC, and CCT2 knockdown impaired CSC traits and sensitize EOC cells to conventional chemotherapy regimens. Contrarily, overexpressing CCT2 achieved opposite results. Mechanistically, CCT2 exerted its pro-oncogene function by triggering Wnt/β-catenin signaling. Specifically, CCT2 could recruit HSP105-PP2A complex, a well-established dephosphorylation complex, to β-catenin via direct physical interaction to prevent phosphorylation-induced proteasomal degradation of β-catenin, resulting in intracellular accumulation of active β-catenin and increased signaling activity. CONCLUSIONS CCT2 was a novel promotor for EOC progression and a crucial sustainer for CSC traits mainly by preventing β-catenin degradation. Targeting CCT2 may represent a promising therapeutic strategy for EOC.
Collapse
Affiliation(s)
- Jiayao Chen
- Department of Laboratory Medicine, Zhoushan Hospital of Zhejiang Province, Zhoushan, 316021, Zhejiang, China.
| | - Qiong Hu
- Department of Laboratory Medicine, Zhoushan Hospital of Zhejiang Province, Zhoushan, 316021, Zhejiang, China
| | - Chenhao Zhou
- Department of Laboratory Medicine, Zhoushan Hospital of Zhejiang Province, Zhoushan, 316021, Zhejiang, China
| | - Danwen Jin
- Pathological Diagnosis Center, Zhoushan Hospital of Zhejiang Province, Zhoushan, 316021, Zhejiang, China
| |
Collapse
|
8
|
Zhou C, Guo Q, Lin J, Wang M, Zeng Z, Li Y, Li X, Xiang Y, Liang Q, Liu J, Wu T, Zeng Y, He S, Wang S, Zeng H, Liang X. Single-Cell Atlas of Human Ovaries Reveals The Role Of The Pyroptotic Macrophage in Ovarian Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305175. [PMID: 38036420 PMCID: PMC10811476 DOI: 10.1002/advs.202305175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Indexed: 12/02/2023]
Abstract
Female fecundity declines in a nonlinear manner with age during the reproductive years, even as ovulatory cycles continue, which reduces female fertility, disrupts metabolic homeostasis, and eventually induces various chronic diseases. Despite this, the aging-related cellular and molecular changes in human ovaries that occur during these reproductive years have not been elucidated. Here, single-cell RNA sequencing (scRNA-seq) of human ovaries is performed from different childbearing ages and reveals that the activation of the pyroptosis pathway increased with age, mainly in macrophages. The enrichment of pyroptotic macrophages leads to a switch from a tissue-resident macrophage (TRM)-involve immunoregulatory microenvironment in young ovaries to a pyroptotic monocyte-derived macrophage (MDM)-involved proinflammatory microenvironment in middle-aged ovaries. This remolded ovarian immuno-microenvironment further promotes stromal cell senescence and accelerated reproductive decline. This hypothesis is validated in a series of cell and animal experiments using GSDMD-KO mice. In conclusion, the work expands the current understanding of the ovarian aging process by illustrating a pyroptotic macrophage-involved immune mechanism, which has important implications for the development of novel strategies to delay senescence and promote reproductive health.
Collapse
Affiliation(s)
- Chuanchuan Zhou
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- GuangDong Engineering Technology Research Center of Fertility PreservationGuangzhouGuangdong510080China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Qi Guo
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- GuangDong Engineering Technology Research Center of Fertility PreservationGuangzhouGuangdong510080China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Jiayu Lin
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Obstetrics and GynaecologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.999077China
| | - Meng Wang
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Reproductive Medicine CenterThe First People's Hospital of FoshanFoshan528000China
| | - Zhi Zeng
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- GuangDong Engineering Technology Research Center of Fertility PreservationGuangzhouGuangdong510080China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Yujie Li
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- GuangDong Engineering Technology Research Center of Fertility PreservationGuangzhouGuangdong510080China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiaolan Li
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- GuangDong Engineering Technology Research Center of Fertility PreservationGuangzhouGuangdong510080China
| | - Yuting Xiang
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Obstetrics and GynecologyAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523795China
| | - Qiqi Liang
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- GuangDong Engineering Technology Research Center of Fertility PreservationGuangzhouGuangdong510080China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Jiawen Liu
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- GuangDong Engineering Technology Research Center of Fertility PreservationGuangzhouGuangdong510080China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Taibao Wu
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- GuangDong Engineering Technology Research Center of Fertility PreservationGuangzhouGuangdong510080China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Yanyan Zeng
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- GuangDong Engineering Technology Research Center of Fertility PreservationGuangzhouGuangdong510080China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Shanyang He
- Department of GynecologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou519041China
| | - Sanfeng Wang
- Department of GynecologyGuangdong Women and Children Hospital521 Xing Nan RoadGuangzhouGuangdong511400China
| | - Haitao Zeng
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- GuangDong Engineering Technology Research Center of Fertility PreservationGuangzhouGuangdong510080China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiaoyan Liang
- Center of Reproductive MedicineThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- GuangDong Engineering Technology Research Center of Fertility PreservationGuangzhouGuangdong510080China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| |
Collapse
|
9
|
Sun Y, Liu X, Tong H, Yin H, Li T, Zhu J, Chen J, Wu L, Zhang X, Gou X, He W. SIRT1 Promotes Cisplatin Resistance in Bladder Cancer via Beclin1 Deacetylation-Mediated Autophagy. Cancers (Basel) 2023; 16:125. [PMID: 38201552 PMCID: PMC10778480 DOI: 10.3390/cancers16010125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Autophagy-dependent cisplatin resistance poses a challenge in bladder cancer treatment. SIRT1, a protein deacetylase, is involved in autophagy regulation. However, the precise mechanism through which SIRT1 mediates cisplatin resistance in bladder cancer via autophagy remains unclear. In this study, we developed a cisplatin-resistant T24/DDP cell line to investigate this mechanism. The apoptosis rate and cell viability were assessed using flow cytometry and the CCK8 method. The expression levels of the relevant RNA and protein were determined using RT-qPCR and a Western blot analysis, respectively. Immunoprecipitation was utilized to validate the interaction between SIRT1 and Beclin1, as well as to determine the acetylation level of Beclin1. The findings indicated the successful construction of the T24/DDP cell line, which exhibited autophagy-dependent cisplatin resistance. Inhibiting autophagy significantly reduced the drug resistance index of these cells. The T24/DDP cell line showed a high SIRT1 expression level. The overexpression of SIRT1 activated autophagy, thereby further promoting cisplatin resistance in the T24/DDP cell line. Conversely, inhibiting autophagy counteracted the cisplatin-resistance-promoting effects of SIRT1. Silencing SIRT1 led to increased acetylation of Beclin1, the inhibition of autophagy, and a reduction in the cisplatin resistance of the T24/DDP cell line. Introducing a double mutation (lysine 430 and 437 to arginine, 2KR) in Beclin-1 inhibited acetylation and activated autophagy, effectively reversing the decreased cisplatin resistance resulting from SIRT1 silencing. In summary, our study elucidated that SIRT1 promotes cisplatin resistance in human bladder cancer T24 cells through Beclin1-deacetylation-mediated autophagy activation. These findings suggest a potential new strategy for reversing cisplatin resistance in bladder cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (Y.S.); (X.L.); (H.T.); (H.Y.); (T.L.); (J.Z.); (J.C.); (L.W.); (X.Z.); (X.G.)
| |
Collapse
|
10
|
Mankuzhy P, Dharmarajan A, Perumalsamy LR, Sharun K, Samji P, Dilley RJ. The role of Wnt signaling in mesenchymal stromal cell-driven angiogenesis. Tissue Cell 2023; 85:102240. [PMID: 37879288 DOI: 10.1016/j.tice.2023.102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Development, growth, and remodeling of blood vessels occur through an intricate process involving cell differentiation, proliferation, and rearrangement by cell migration under the direction of various signaling pathways. Recent reports highlight that resident and exogenous mesenchymal stromal cells (MSCs) have the potential to regulate the neovascularization process through paracrine secretion of proangiogenic factors. Recent research has established that the vasculogenic potential of MSCs is regulated by several signaling pathways, including the Wnt signaling pathway, and their interplay. These findings emphasize the complex nature of the vasculogenic process and underscore the importance of understanding the underlying molecular mechanisms for the development of effective cell-based therapies in regenerative medicine. This review provides an updated briefing on the canonical and non-canonical Wnt signaling pathways and summarizes the recent reports of both in vitro and in vivo studies with the involvement of MSCs of various sources in the vasculogenic process mediated by Wnt signaling pathways. Here we outline the current understanding of the plausible role of the Wnt signaling pathway, specifically in MSC-regulated angiogenesis.
Collapse
Affiliation(s)
- Pratheesh Mankuzhy
- Department of Surgery and Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, 6009 Perth, Australia; College of Veterinary and Animal Sciences - Mannuthy, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala 673576 India.
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India; School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Perth, Western Australia, Australia; School of Human Sciences, Faculty of Life Sciences, University of Western Australia, 6009 Perth, Australia
| | - Lakshmi R Perumalsamy
- Department of Biomedical Sciences, Sri Ramachandra faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Priyanka Samji
- Department of Biomedical Sciences, Sri Ramachandra faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Rodney J Dilley
- Department of Surgery and Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, 6009 Perth, Australia
| |
Collapse
|