1
|
Jiang X, Liu Z, You H, Tang Z, Ma Y, Nie R, Yang Z, Che N, Liu W. Quercetin-primed BMSC-derived extracellular vesicles ameliorate chronic liver damage through miR-136-5p and GNAS/STAT3 signaling pathways. Int Immunopharmacol 2024; 142:113162. [PMID: 39340996 DOI: 10.1016/j.intimp.2024.113162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Chronic liver damage (CLD) is a long-term and progressive liver condition characterized by inflammation, fibrosis, and impaired liver function, which ultimately lead to severe complications such as cirrhosis or liver cancer. Quercetin (Que), a flavonoid in various plants, possesses anti-inflammatory, antiviral, anti-ischemic, and anticancer properties. Recently, extracellular vesicles (EVs) derived from pretreated bone marrow mesenchymal stem cells (BMSCs) have shown immense potential in treating various diseases, including CLD. Thus, this study evaluated the regulatory effects of Que-preconditioned BMSC-derived EVs (Que-EVs) on LPS-stimulated RAW264.7 cells and their therapeutic effects on mice with CLD. METHODS Que-EVs and control-EVs were harvested from the cell culture supernatant of BMSCs. The EVs were characterized using western blot, transmission electron microscopy, and nanoparticle tracking analysis. Further, the DIR labeling of EVs was used to detect in vitro and in vivo uptake. Next, LPS pre-stimulated RAW264.7 cells were treated with Que-EVs and control-EVs for 24 h. The relative expression of inflammatory cytokines and macrophage polarization markers genes was assessed using RT-qPCR, and western blot was conducted to evaluate the GNAS, PI3K, ERK, and STAT3 gene and protein expressions in RAW264.7 cells. Furthermore, transfection techniques were employed to induce miR-136-5p inhibition and GNAS overexpression in RAW264.7 cells to validate the role of miR-136-5p in alleviating inflammation through the GNAS/PI3K/ERK/STAT3 pathway. Subsequently, the outcomes were validated via in vitro experiments. RESULTS Que enhanced miR-136-5p expression in BMSC-EVs. Furthermore, it was shown that EVs delivered miR-136-5p to macrophages, thereby attenuating M1-type macrophage polarisation through the GNAS/PI3K/ERK/STAT3 pathway, reducing liver inflammation, improving liver function and treating CLD.
Collapse
Affiliation(s)
- Xiaodan Jiang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Zhejun Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongjie You
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zuoqing Tang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yun Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ruifang Nie
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zheng Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Niancong Che
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Ling H, Wang XC, Liu ZY, Mao S, Yang JJ, Sha JM, Tao H. Noncoding RNA network crosstalk in organ fibrosis. Cell Signal 2024; 124:111430. [PMID: 39312989 DOI: 10.1016/j.cellsig.2024.111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Fibrosis is a process involving excessive accumulation of extracellular matrix components, the severity of which interferes with the function of the organ in question. With the advances in RNA sequencing and in-depth molecular studies, a large number of current studies have pointed out the irreplaceable role of non-coding RNAs (ncRNAs) in the pathophysiological development of organ fibrosis. Here, by summarizing the results of a large number of studies on the interactions between ncRNAs, some studies have found that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), among others, are able to act as sponges or decoy decoys for microRNAs (miRNAs), act as competing endogenous RNAs (ceRNAs) to regulate the expression of miRNAs, and subsequently act on different mRNA targets, playing a role in the development of fibrosis in a wide variety of organs, including the heart, liver, kidneys, and spleen. parenchymal organs, including heart, liver, kidney, and spleen, play important roles in the development of fibrosis. These findings elucidate the intricate involvement of the lncRNA/circRNA-miRNA-mRNA axis in the pathophysiological processes underpinning organ fibrosis, thereby enhancing our comprehension of the onset and progression of this condition. Furthermore, they introduce novel potential therapeutic targets within the realm of ncRNA-based therapeutics, offering avenues for the development of innovative drugs aimed at mitigating or reversing the effects of organ fibrosis.
Collapse
Affiliation(s)
- Hui Ling
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xian-Chen Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Ji-Ming Sha
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
3
|
Dong J, Luo Y, Gao Y. Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles in Liver Injury. Biomedicines 2024; 12:2489. [PMID: 39595055 PMCID: PMC11591663 DOI: 10.3390/biomedicines12112489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Liver injury caused by various factors significantly impacts human health. Stem cell transplantation has potential for enhancing liver functionality, but safety concerns such as immune rejection, tumorigenesis, and the formation of emboli in the lungs remain. Recent studies have shown that stem cells primarily exert their effects through the secretion of extracellular vesicles (EVs). EVs have been shown to play crucial roles in reducing inflammation, preventing cell death, and promoting liver cell proliferation. Additionally, they can function as carriers to deliver targeted drugs to the liver, thereby exerting specific physiological effects. EVs possess several advantages, including structural stability, low immunogenicity, minimal tumorigenicity targeting capabilities, and convenient collection. Consequently, EVs have garnered significant attention from researchers and are expected to become alternative therapeutic agents to stem cell therapy. This article provides a comprehensive review of the current research progress in the use of stem cell-derived EVs in the treatment of liver injury.
Collapse
Affiliation(s)
- Jingjing Dong
- School of Medicine, Nankai University, Tianjin 300071, China;
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China;
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China;
| |
Collapse
|
4
|
Zhou P, Ding X, Du X, Wang L, Zhang Y. Targeting Reprogrammed Cancer-Associated Fibroblasts with Engineered Mesenchymal Stem Cell Extracellular Vesicles for Pancreatic Cancer Treatment. Biomater Res 2024; 28:0050. [PMID: 39099892 PMCID: PMC11293949 DOI: 10.34133/bmr.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/06/2024] [Indexed: 08/06/2024] Open
Abstract
Background: As one of the most aggressive and lethal cancers, pancreatic cancer is highly associated with cancer-associated fibroblasts (CAFs) that influence the development and progression of cancer. Targeted reprogramming of CAFs may be a promising strategy for pancreatic cancer. This study aims to construct engineered extracellular vesicles (EVs) with surface modification of integrin α5 (ITGA5)-targeting peptide and high internal expression of miR-148a-3p by endogenous modification for targeted reprogramming of pancreatic CAFs. Methods: Bone marrow mesenchymal stem cells (BMSCs) and pancreatic CAFs were cocultured to examine the effect of BMSC-derived EVs on the expression levels of CAF markers. miR-148a-3p was identified as a functional molecule. The mechanism of miR-148a-3p was elucidated using the dual-luciferase reporter assay. BMSCs were infected with TERT-encoding and miR-148a-3p-encoding lentiviruses. Subsequently, BMSCs were modified with ITGA5-specific targeting peptide. The supernatant was ultracentrifuged to obtain the engineered EVs (ITGA5-EVs-148a), which were used to reprogram CAFs. Results: BMSCs modulated CAF marker expressions through EVs. miR-148a-3p was up-regulated in BMSCs. The expression of miR-148a-3p in pancreatic CAFs was down-regulated when compared with that in normal fibroblasts (NFs). Mechanistically, ITGA5-EVs-148a effectively suppressed the proliferation and migration of pancreatic CAFs by targeting ITGA5 through the TGF-β/SMAD pathway. ITGA5-EVs-148a was associated with enhanced cellular uptake and exhibited enhanced in vitro and in vivo targeting ability. Moreover, ITGA5-EVs-148a exerted strong reconfiguration effects in inactivating CAFs and reversing tumor-promoting effects in 3D heterospheroid and xenograft pancreatic cancer models. Conclusions: This targeted CAF reprogramming strategy with genetically engineered ITGA5-EVs-148a holds great promise as a precision therapeutics in clinical settings.
Collapse
Affiliation(s)
- Pengcheng Zhou
- School of Medicine,
Southeast University, Nanjing 210000, China
- Department of General Surgery,
Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xian’guang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xuanlong Du
- School of Medicine,
Southeast University, Nanjing 210000, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yewei Zhang
- Hepatobiliary and Pancreatic Center,
The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
5
|
Shi Q, Xia Y, Wu M, Pan Y, Wu S, Lin J, Kong Y, Yu Z, Zan X, Liu P, Xia J. Mi-BMSCs alleviate inflammation and fibrosis in CCl 4-and TAA-induced liver cirrhosis by inhibiting TGF-β/Smad signaling. Mater Today Bio 2024; 25:100958. [PMID: 38327975 PMCID: PMC10847164 DOI: 10.1016/j.mtbio.2024.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Cirrhosis is an aggressive disease, and over 80 % of liver cancer patients are complicated by cirrhosis, which lacks effective therapies. Transplantation of mesenchymal stem cells (MSCs) is a promising option for treating liver cirrhosis. However, this therapeutic approach is often challenged by the low homing ability and short survival time of transplanted MSCs in vivo. Therefore, a novel and efficient cell delivery system for MSCs is urgently required. This new system can effectively extend the persistence and duration of MSCs in vivo. In this study, we present novel porous microspheres with microfluidic electrospray technology for the encapsulation of bone marrow-derived MSCs (BMSCs) in the treatment of liver cirrhosis. Porous microspheres loaded with BMSCs (Mi-BMSCs) exhibit good biocompatibility and demonstrate better anti-inflammatory properties than BMSCs alone. Mi-BMSCs significantly increase the duration of BMSCs and exert potent anti-inflammatory and anti-fibrosis effects against CCl4 and TAA-induced liver cirrhosis by targeting the TGF-β/Smad signaling pathway to ameliorate cirrhosis, which highlight the potential of Mi-BMSCs as a promising therapeutic approach for early liver cirrhosis.
Collapse
Affiliation(s)
- Qing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Minmin Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yating Pan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shiyi Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiawei Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yifan Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhijie Yu
- Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xingjie Zan
- Wenzhou Institute, Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Pixu Liu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jinglin Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
6
|
Du Y, Zhu S, Zeng H, Wang Z, Huang Y, Zhou Y, Zhang W, Zhu J, Yang C. Research Progress on the Effect of Autophagy and Exosomes on Liver Fibrosis. Curr Stem Cell Res Ther 2024; 19:785-797. [PMID: 37102476 DOI: 10.2174/1574888x18666230427112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 04/28/2023]
Abstract
Chronic liver disease is a known risk factor for the development of liver cancer, and the development of microRNA (miRNA) liver therapies has been hampered by the difficulty of delivering miRNA to damaged tissues. In recent years, numerous studies have shown that hepatic stellate cell (HSC) autophagy and exosomes play an important role in maintaining liver homeostasis and ameliorating liver fibrosis. In addition, the interaction between HSC autophagy and exosomes also affects the progression of liver fibrosis. In this paper, we review the research progress of mesenchymal stem cell-derived exosomes (MSC-EVs) loaded with specific miRNA and autophagy, and their related signaling pathways in liver fibrosis, which will provide a more reliable basis for the use of MSC-EVs for therapeutic delivery of miRNAs targeting the chronic liver disease.
Collapse
Grants
- 2021A1515011580, 2021B1515140012, 2023A1515010083, 2022A1515011696 Natural Science Foundation of Guangdong Province
- 20211800905342, 20221800905572 Dongguan Science and Technology of Social Development Program
- 20211216 Administration of Traditional Chinese Medicine of Guangdong Province
- A2020096, B2021330 Medical Scientific Research Foundation of Guangdong Province
- k202005 Research and Development Fund of Dongguan People's Hospital
- pdjh2021b0224 Special Funds for the Cultivation of Guangdong College Students' Scientific and Technological Innovation (Climbing Program Special Funds)
- 2020ZZDS002, 2020ZYDS005, 2021ZZDS006, 2021ZCDS003, ZYDS003 Guangdong Medical University Students' Innovation Experiment Program
- GDMU2020010, GDMU2020078, GDMU2021003, GDMU2021049 Guangdong Medical University Students' Innovation and Entrepreneurship Training Program
- 202110571010, S202110571078, 202210571008, S202210571075 Provincial and National College Students' Innovation and Entrepreneurship Training Program
- 4SG23033G Guangdong Medical University-Southern Medical University Twinning Research Team Project
- GDMUZ2020009 Scientific Research Fund of Guangdong Medical University
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
| | - Silin Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Haojie Zeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Zhenjie Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Yixing Huang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Yuqi Zhou
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Weichui Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523716, China
| |
Collapse
|
7
|
Yadav P, Singh SK, Rajput S, Allawadhi P, Khurana A, Weiskirchen R, Navik U. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges. Pharmacol Ther 2024; 253:108563. [PMID: 38013053 DOI: 10.1016/j.pharmthera.2023.108563] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The deposition of extracellular matrix and hyperplasia of connective tissue characterizes chronic liver disease called hepatic fibrosis. Progression of hepatic fibrosis may lead to hepatocellular carcinoma. At this stage, only liver transplantation is a viable option. However, the number of possible liver donors is less than the number of patients needing transplantation. Consequently, alternative cell therapies based on non-stem cells (e.g., fibroblasts, chondrocytes, keratinocytes, and hepatocytes) therapy may be able to postpone hepatic disease, but they are often ineffective. Thus, novel stem cell-based therapeutics might be potentially important cutting-edge approaches for treating liver diseases and reducing patient' suffering. Several signaling pathways provide targets for stem cell interventions. These include pathways such as TGF-β, STAT3/BCL-2, NADPH oxidase, Raf/MEK/ERK, Notch, and Wnt/β-catenin. Moreover, mesenchymal stem cells (MSCs) stimulate interleukin (IL)-10, which inhibits T-cells and converts M1 macrophages into M2 macrophages, producing an anti-inflammatory environment. Furthermore, it inhibits the action of CD4+ and CD8+ T cells and reduces the activity of TNF-α and interferon cytokines by enhancing IL-4 synthesis. Consequently, the immunomodulatory and anti-inflammatory capabilities of MSCs make them an attractive therapeutic approach. Importantly, MSCs can inhibit the activation of hepatic stellate cells, causing their apoptosis and subsequent promotion of hepatocyte proliferation, thereby replacing dead hepatocytes and reducing liver fibrosis. This review discusses the multidimensional therapeutic role of stem cells as cell-based therapeutics in liver fibrosis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak, Haryana 124001, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
8
|
Yuan M, Yao L, Chen P, Wang Z, Liu P, Xiong Z, Hu X, Li L, Jiang Y. Human umbilical cord mesenchymal stem cells inhibit liver fibrosis via the microRNA-148a-5p/SLIT3 axis. Int Immunopharmacol 2023; 125:111134. [PMID: 37918086 DOI: 10.1016/j.intimp.2023.111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have garnered considerable attention as prospective modalities of treatment for liver fibrosis (LF). The inhibition of hepatic stellate cell (HSC) activation underlies the anti-fibrotic effects of hUC-MSCs. However, the precise mechanism by which hUC-MSCs impede HSC activation remains unclarified. We aimed to elucidate the intrinsic mechanisms underlying the therapeutic effects of hUC-MSCs in LF patients. METHODS Mice with liver cirrhosis induced by carbon tetrachloride (CCl4) were used as experimental models and administered hUC-MSCs via tail-vein injection. The alterations in inflammation and fibrosis were evaluated through histopathological examinations. RNA sequencing (RNA-seq) and bioinformatics analysis were then conducted to investigate the therapeutic mechanism of hUC-MSCs. Finally, an in-vitro experiment involving the co-cultivation of hUC-MSCs or hUC-MSC-derived exosomes (MSC-Exos) with LX2 cells was performed to validate the potential mechanism underlying the hepatoprotective effects of hUC-MSCs in LF patients. RESULTS hUC-MSC therapy significantly improved liver function and alleviated LF in CCl4-induced mice. High-throughput RNA-Seq analysis identified 1142 differentially expressed genes that were potentially involved in mediating the therapeutic effects of hUC-MSCs. These genes play an important role in regulating the extracellular matrix. miRNA expression data (GSE151098) indicated that the miR-148a-5p level was downregulated in LF samples, but restored following hUC-MSC treatment. miR-148a-5p was delivered to LX2 cells by hUC-MSCs via the exosome pathway, and the upregulated expression of miR-148a-5p significantly suppressed the expression of the activated phenotype of LX2 cells. SLIT3 was identified within the pool of potential target genes regulated by miR-148a-5p. Furthermore, hUC-MSC administration upregulated the expression of miR-148a-5p, which played a crucial role in suppressing the expression of SLIT3, thereby palliating fibrosis. CONCLUSIONS hUC-MSCs inhibit the activation of HSCs through the miR-148a-5p/SLIT3 pathway and are thus capable of alleviating LF.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiyu Xiong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310053, China.
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
9
|
Tan J, Chen M, Liu M, Chen A, Huang M, Chen X, Tian X, Chen W. Exosomal miR-192-5p secreted by bone marrow mesenchymal stem cells inhibits hepatic stellate cell activation and targets PPP2R3A. J Histotechnol 2023; 46:158-169. [PMID: 37226801 DOI: 10.1080/01478885.2023.2215151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Bone marrow mesenchymal stem cell (BSMC)-derived extracellular vehicles (EVs) have a pivotal therapeutic potential in hepatic fibrosis (HF). Activation of hepatic stellate cells (HSCs) is the key mechanism in HF progression. Downregulation of miR-192-5p was previously observed in activated HSCs. Nonetheless, the functions of BSMC-derived exosomal miR-192-5p in activated HSCs remain unclear. In this study, transforming growth factor (TGF)-β1 was used to activate HSC-T6 cells to mimic HF in vitro. Characterization of BMSCs and BMSC-derived EVs was performed. Cell-counting kit-8 assay, flow cytometry, and western blotting revealed that TGF-β1 increased cell viability, promoted cell cycle progression, and induced upregulation of fibrosis markers in HSC-T6 cells. Overexpression of miR-192-5p or BMSC-derived exosomal miR-192-5p suppressed TGF-β1-triggered HSC-T6 cell activation. RT-qPCR revealed that protein phosphatase 2 regulatory subunit B'' alpha (PPP2R3A) was downregulated in miR-192-5p-overexpressed HSC-T6 cells. Luciferase reporter assay was used for verifying the relation between miR-192-5p and PPP2R3A, which showed that miR-192-5p targeted PPP2R3A in activated HSC-T6 cells. Collectively, BMSC-derived exosomal miR-192-5p targets PPP2R3A and inhibits activation of HSC-T6 cells.
Collapse
Affiliation(s)
- Jie Tan
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Mingtao Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Meng Liu
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Aifang Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Zhangdi H, Geng X, Li N, Xu R, Hu Y, Liu J, Zhang X, Qi J, Tian Y, Qiu J, Huang S, Cang X, Jin S. BMSCs alleviate liver cirrhosis by regulating Fstl1/Wnt/β-Catenin signaling pathway. Heliyon 2023; 9:e21010. [PMID: 37920508 PMCID: PMC10618771 DOI: 10.1016/j.heliyon.2023.e21010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Researchers have shown that bone mesenchymal stem cells (BMSCs) can alleviate the progression of liver cirrhosis; however, it is unclear how exactly BMSCs function to cure liver disease. In this study, we used bioinformatics methods to assess differentially expressed genes (DEGs) in liver cirrhosis and found a significantly upregulated gene, Fstl1, in liver cirrhosis. In vivo and in vitro experiments showed that compared with those in the disease model group, the mRNA, and protein expression levels of Fstl1 were significantly reduced after BMSCs treatment, and the β-Catenin protein level was also significantly reduced after BMSCs treatment. Subsequently, we downregulated Fstl1 in activated hepatic stellate cells (HSCs) and found that Wnt and β-Catenin protein expression levels also decreased. Finally, we found that in BMSCs-treated activated HSCs, overexpression of Fstl1 reversed the inhibitory effect of BMSCs on the Wnt/β-Catenin signaling pathway to a certain extent. In summary, our results show that BMSCs can inhibit Wnt/β-Catenin signaling pathway activation by downregulating the protein expression level of Fstl1, thus alleviating cirrhosis. Therefore, targeted regulation of Fstl1 may provide a new therapeutic strategy for the progression of liver cirrhosis.
Collapse
Affiliation(s)
- Hanjing Zhangdi
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinyu Geng
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ning Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ruiling Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Hu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jingyang Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xu Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jihan Qi
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yingying Tian
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiawei Qiu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shiling Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xueyu Cang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Xiong Z, Ma Y, He J, Li Q, Liu L, Yang C, Chen J, Shen Y, Han X. Apoptotic bodies of bone marrow mesenchymal stem cells inhibit endometrial stromal cell fibrosis by mediating the Wnt/β-catenin signaling pathway. Heliyon 2023; 9:e20716. [PMID: 37885720 PMCID: PMC10598495 DOI: 10.1016/j.heliyon.2023.e20716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Background Intrauterine adhesions (IUAs) are a common illness of the uterine cavity. Endometrial fibrosis is the main pathological feature. In addition to a high recurrence rate, patients with severe IUAs have a low pregnancy rate. However, there are few effective treatments for IUAs. This study aims to confirm the influence of apoptotic bodies of bone marrow mesenchymal stem cells (BMSCs) on endometrial stromal cell fibrosis by mediating the Wnt/β-catenin signaling pathway and to provide new insight for the clinical treatment of IUAs. Methods Human endometrial stromal cells (HESCs) were used to establish an IUA cell model by treatment with TGF-β1, and a rat IUA model was established by the double injury method. Apoptosis of BMSCs was detected by TUNEL assays, and cell morphology was observed by the CM-DiI tracer. The morphology of apoptotic vacuoles and apoptotic bodies (ABs) was detected by TEM. We used Western blotting to detect the expression of histone H3.3, histone H2B, C3b, cyclin D1, C1QC, α-SMA, COL1A1, COL5A2, FN, CTGF, Wnt2b, c-MYC, CK-18 and VIM. The expression levels of α-SMA, COL1A1, COL5A2, FN and CTGF were detected by RT‒qPCR. The expression levels of α-SMA, COL1A1, FN and CTGF were detected by immunofluorescence. Immunohistochemistry was used to detect the expression of TGF-β, CK-18 and VIM. Flow cytometry, cell scratch assays, CCK-8 assays, and H & E and Masson staining were used to detect the cell cycle, cell migration, cell proliferation, and endometrial pathology, respectively. Results We found that ultraviolet light (UV) irradiation induced apoptosis of BMSCs and increased the production of ABs. TGF-β1 treatment can induce HESCs to form extracellular matrix (ECM), and aggravate cell fibrosis, and adding ABs or FH535, an inhibitor of the Wnt/β-catenin signaling pathway, can inhibit TGF-β1-induced HESC fibrosis. However, the inhibitory effect of ABs on TGF-β1-induced fibrosis of HESCs was attenuated by the addition of LiCl. In the Wnt/β-catenin signaling pathway, LiCl is an activator after coculture with TGF-β1. In vivo, IUA-induced narrowing of the uterine cavity was accompanied by intrauterine adhesions, increased deposition of collagen fibers, upregulation of TGF-β1, VIM, α-SMA, COL1A1 and COL5A2, and downregulation of CK-18. These changes in expression were reversed after treatment with ABs or FH535. When ABs and LiCl were added at the same time, the inhibitory effect of ABs on IUA fibrosis was weakened. Conclusion BMSC-derived ABs inhibit the fibrosis of HESCs by inhibiting the Wnt/β-catenin signaling pathway. These results provide a new direction for the clinical treatment of IUAs.
Collapse
Affiliation(s)
- Zhenghua Xiong
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yaru Ma
- Department of Gynecology, Women and Children's Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Jia He
- Department of Plastic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qin Li
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Liu Liu
- Department of Plastic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunli Yang
- Department of Gynecology, Baoshan People's Hospital, Baoshan, Yunnan, China
| | - Jia Chen
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yi Shen
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Xuesong Han
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Zhangdi H, Jiang Y, Gao Y, Li S, Xu R, Shao J, Liu J, Hu Y, Zhang X, Zhang X, Zhao L, Qi J, Geng X, Jin S. From Phenomenon to Essence: A Newly Involved lncRNA Kcnq1ot1 Protective Mechanism of Bone Marrow Mesenchymal Stromal Cells in Liver Cirrhosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206758. [PMID: 37282819 PMCID: PMC10375186 DOI: 10.1002/advs.202206758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Bone marrow mesenchymal stromal cells (BMSCs) have a protective effect against liver cirrhosis. Long noncoding RNAs (lncRNAs) play crucial roles in the progression of liver cirrhosis. Therefore, it is aimed to clarify the lncRNA Kcnq1ot1 involved protective mechanism of BMSCs in liver cirrhosis. This study found that BMSCs treatment attenuates CCl4 -induced liver cirrhosis in mice. Additionally, the expression of lncRNA Kcnq1ot1 is upregulated in human and mouse liver cirrhosis tissues, in addition to TGF-β1-treated LX2 cells and JS1 cells. The expression of Kcnq1ot1 in liver cirrhosis is reversed with BMSCs treatment. The knockdown of Kcnq1ot1 alleviated liver cirrhosis both in vivo and in vitro. Fluorescence in situ hybridization (FISH) confirms that Kcnq1ot1 is mainly distributed in the cytoplasm of JS1 cells. It is predicted that miR-374-3p can directly bind with lncRNA Kcnq1ot1 and Fstl1, which is verified via luciferase activity assay. The inhibition of miR-374-3p or the overexpression of Fstl1 can attenuate the effect of Kcnq1ot1 knockdown. In addition, the transcription factor Creb3l1 is upregulated during JS1 cells activation. Moreover, Creb3l1 can directly bind to the Kcnq1ot1 promoter and positively regulate its transcription. In conclusion, BMSCs alleviate liver cirrhosis by modulating the Creb3l1/lncRNA Kcnq1ot1/miR-374-3p/Fstl1 signaling pathway.
Collapse
Affiliation(s)
- Hanjing Zhangdi
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Yanan Jiang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbin150081China
- Translational Medicine Research and Cooperation Center of Northern ChinaHeilongjiang Academy of Medical SciencesHarbin150081China
| | - Yang Gao
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Shuang Li
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Ruiling Xu
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Jing Shao
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Jingyang Liu
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Ying Hu
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Xu Zhang
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Xiaoyu Zhang
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Lei Zhao
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Jihan Qi
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Xinyu Geng
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Shizhu Jin
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| |
Collapse
|
13
|
Cao J, Pan C, Zhang J, Chen Q, Li T, He D, Cheng X. Analysis and verification of the circRNA regulatory network RNO_CIRCpedia_ 4214/RNO-miR-667-5p/Msr1 axis as a potential ceRNA promoting macrophage M2-like polarization in spinal cord injury. BMC Genomics 2023; 24:181. [PMID: 37020267 PMCID: PMC10077679 DOI: 10.1186/s12864-023-09273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND CircRNAs are involved in the pathogenesis of several central nervous system diseases. However, their functions and mechanisms in spinal cord injury (SCI) are still unclear. Therefore, the purpose of this study was to evaluate circRNA and mRNA expression profiles in the pathological setting of SCI and to predict the potential function of circRNA through bioinformatics. METHODS A microarray-based approach was used for the simultaneous measurement of circRNAs and mRNAs, together with qPCR, fluorescence in situ hybridization, western immunoblotting, and dual-luciferase reporter assays to investigate the associated regulatory mechanisms in a rat SCI model. RESULTS SCI was found to be associated with the differential expression of 414 and 5337 circRNAs and mRNAs, respectively. Pathway enrichment analyses were used to predict the primary function of these circRNAs and mRNAs. GSEA analysis showed that differentially expressed mRNAs were primarily associated with inflammatory immune response activity. Further screening of these inflammation-associated genes was used to construct and analyze a competing endogenous RNA network. RNO_CIRCpedia_4214 was knocked down in vitro, resulting in reduced expression of Msr1, while the expression of RNO-miR-667-5p and Arg1 was increased. Dual-luciferase assays demonstrated that RNO_CIRCpedia_4214 bound to RNO-miR-667-5p. The RNO_CIRCpedia_4214/RNO-miR-667-5p/Msr1 axis may be a potential ceRNA that promotes macrophage M2-like polarization in SCI. CONCLUSION Overall, these results highlighted the critical role that circRNAs may play in the pathophysiology of SCI and the discovery of a potential ceRNA mechanism based on novel circRNAs that regulates macrophage polarization, providing new targets for the treatment of SCI.
Collapse
Affiliation(s)
- Jian Cao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chongzhi Pan
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Jian Zhang
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Qi Chen
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Jiangxi, 330006, China
| | - Tao Li
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Dingwen He
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, 330006, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China.
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Jiangxi, 330006, China.
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, East Laker District, Nanchang, Jiangxi, China.
| |
Collapse
|
14
|
Li QY, Gong T, Huang YK, Kang L, Warner CA, Xie H, Chen LM, Duan XQ. Role of noncoding RNAs in liver fibrosis. World J Gastroenterol 2023; 29:1446-1459. [PMID: 36998425 PMCID: PMC10044853 DOI: 10.3748/wjg.v29.i9.1446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Liver fibrosis is a wound-healing response following chronic liver injury caused by hepatitis virus infection, obesity, or excessive alcohol. It is a dynamic and reversible process characterized by the activation of hepatic stellate cells and excess accumulation of extracellular matrix. Advanced fibrosis could lead to cirrhosis and even liver cancer, which has become a significant health burden worldwide. Many studies have revealed that noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, are involved in the pathogenesis and development of liver fibrosis by regulating signaling pathways including transforming growth factor-β pathway, phosphatidylinositol 3-kinase/protein kinase B pathway, and Wnt/β-catenin pathway. NcRNAs in serum or exosomes have been reported to tentatively applied in the diagnosis and staging of liver fibrosis and combined with elastography to improve the accuracy of diagnosis. NcRNAs mimics, ncRNAs in mesenchymal stem cell-derived exosomes, and lipid nanoparticles-encapsulated ncRNAs have become promising therapeutic approaches for the treatment of liver fibrosis. In this review, we update the latest knowledge on ncRNAs in the pathogenesis and progression of liver fibrosis, and discuss the potentials and challenges to use these ncRNAs for diagnosis, staging and treatment of liver fibrosis. All these will help us to develop a comprehensive understanding of the role of ncRNAs in liver fibrosis.
Collapse
Affiliation(s)
- Qing-Yuan Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Tao Gong
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi-Ke Huang
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| | - Lan Kang
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| | - Charlotte A Warner
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - He Xie
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xi’an 710077, Shaanxi Province, China
| | - Li-Min Chen
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xi’an 710077, Shaanxi Province, China
| | - Xiao-Qiong Duan
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| |
Collapse
|