1
|
Scott MC, Bourgeois A, Yu Y, Burk DH, Smith BJ, Floyd ZE. Extract of Artemisia dracunculus L. Modulates Osteoblast Proliferation and Mineralization. Int J Mol Sci 2023; 24:13423. [PMID: 37686232 PMCID: PMC10487575 DOI: 10.3390/ijms241713423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Thiazolidinediones (TZD) significantly improve insulin sensitivity via action on adipocytes. Unfortunately, TZDs also degrade bone by inhibiting osteoblasts. An extract of Artemisia dracunculus L., termed PMI5011, improves blood glucose and insulin sensitivity via skeletal muscle, rather than fat, and may therefore spare bone. Here, we examine the effects of PMI5011 and an identified active compound within PMI5011 (2',4'-dihydroxy-4-methoxydihydrochalcone, DMC-2) on pre-osteoblasts. We hypothesized that PMI5011 and DMC-2 will not inhibit osteogenesis. To test our hypothesis, MC3T3-E1 cells were induced in osteogenic media with and without PMI5011 or DMC-2. Cell lysates were probed for osteogenic gene expression and protein content and were stained for osteogenic endpoints. Neither compound had an effect on early stain outcomes for alkaline phosphatase or collagen. Contrary to our hypothesis, PMI5011 at 30 µg/mL significantly increases osteogenic gene expression as early as day 1. Further, osteogenic proteins and cell culture mineralization trend higher for PMI5011-treated wells. Treatment with DMC-2 at 1 µg/mL similarly increased osteogenic gene expression and significantly increased mineralization, although protein content did not trend higher. Our data suggest that PMI5011 and DMC-2 have the potential to promote bone health via improved osteoblast maturation and activity.
Collapse
Affiliation(s)
- Matthew C. Scott
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - Aleah Bourgeois
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - Yongmei Yu
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - David H. Burk
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - Brenda J. Smith
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Z. Elizabeth Floyd
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| |
Collapse
|
2
|
Floyd ZE, Ribnicky DM, Raskin I, Hsia DS, Rood JC, Gurley BJ. Designing a Clinical Study With Dietary Supplements: It's All in the Details. Front Nutr 2022; 8:779486. [PMID: 35118104 PMCID: PMC8804374 DOI: 10.3389/fnut.2021.779486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
A successful randomized clinical trial of the effect of dietary supplements on a chosen endpoint begins with developing supporting data in preclinical studies while paying attention to easily overlooked details when planning the related clinical trial. In this perspective, we draw on our experience studying the effect of an ethanolic extract from Artemisia dracunculus L. (termed PMI-5011) on glucose homeostasis as a potential therapeutic option in providing resilience to metabolic syndrome (MetS). Decisions on experimental design related to issues ranging from choice of mouse model to dosing levels and route of administration in the preclinical studies will be discussed in terms of translation to the eventual human studies. The more complex considerations in planning the clinical studies present different challenges as these studies progress from testing the safety of the dietary supplement to assessing the effect of the dietary supplement on a predetermined clinical outcome. From the vantage point of hindsight, we will outline potential pitfalls when translating preclinical studies to clinical studies and point out details to address when designing clinical studies of dietary supplements.
Collapse
Affiliation(s)
- Z. Elizabeth Floyd
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
- *Correspondence: Z. Elizabeth Floyd
| | - David M. Ribnicky
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Ilya Raskin
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Daniel S. Hsia
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Jennifer C. Rood
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Bill J. Gurley
- National Center for Natural Products Research, University of Mississippi, University, MS, United States
- Bill J. Gurley
| |
Collapse
|
3
|
Vandanmagsar B, Yu Y, Simmler C, Dang TN, Kuhn P, Poulev A, Ribnicky DM, Pauli GF, Floyd ZE. Bioactive compounds from Artemisia dracunculus L. activate AMPK signaling in skeletal muscle. Biomed Pharmacother 2021; 143:112188. [PMID: 34563947 PMCID: PMC8516709 DOI: 10.1016/j.biopha.2021.112188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
An extract from Artemisia dracunculus L. (termed PMI-5011) improves glucose homeostasis by enhancing insulin action and reducing ectopic lipid accumulation, while increasing fat oxidation in skeletal muscle tissue in obese insulin resistant male mice. A chalcone, DMC-2, in PMI-5011 is the major bioactive that enhances insulin signaling and activation of AKT. However, the mechanism by which PMI-5011 improves lipid metabolism is unknown. AMPK is the cellular energy and metabolic sensor and a key regulator of lipid metabolism in muscle. This study examined PMI-5011 activation of AMPK signaling using murine C2C12 muscle cell culture and skeletal muscle tissue. Findings show that PMI-5011 increases Thr172-phosphorylation of AMPK in muscle cells and skeletal muscle tissue, while hepatic AMPK activation by PMI-5011 was not observed. Increased AMPK activity by PMI-5011 affects downstream signaling of AMPK, resulting in inhibition of ACC and increased SIRT1 protein levels. Selective deletion of DMC-2 from PMI-5011 demonstrates that compounds other than DMC-2 in a "DMC-2 knock out extract" (KOE) are responsible for AMPK activation and its downstream effects. Compared to 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and metformin, the phytochemical mixture characterizing the KOE appears to more efficiently activate AMPK in muscle cells. KOE-mediated AMPK activation was LKB-1 independent, suggesting KOE does not activate AMPK via LKB-1 stimulation. Through AMPK activation, compounds in PMI-5011 may regulate lipid metabolism in skeletal muscle. Thus, the AMPK-activating potential of the KOE adds therapeutic value to PMI-5011 and its constituents in treating insulin resistance or type 2 diabetes.
Collapse
Affiliation(s)
- B Vandanmagsar
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Y Yu
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - C Simmler
- Center for Natural Product Technologies, Pharmacognosy Institute and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - T N Dang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - P Kuhn
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - A Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - D M Ribnicky
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - G F Pauli
- Center for Natural Product Technologies, Pharmacognosy Institute and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Z E Floyd
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
4
|
Allerton TD, Kowalski GM, Stampley J, Irving BA, Lighton JRB, Floyd ZE, Stephens JM. An Ethanolic Extract of Artemisia dracunculus L. Enhances the Metabolic Benefits of Exercise in Diet-induced Obese Mice. Med Sci Sports Exerc 2021; 53:712-723. [PMID: 33105388 PMCID: PMC9045727 DOI: 10.1249/mss.0000000000002516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this study was to determine the effect of an ethanolic extract of Artemisia dracunculus L. (5011) combined with exercise on in vivo glucose and fat metabolism in diet-induced obese male mice. METHODS After 8 wk of high-fat diet (HFD) feeding, 52 mice were randomly allocated to a voluntary wheel running group (HFD Ex), a 5011 + HFD sedentary group (5011 Sed), a 5011 + HFD Ex (5011 Ex), or an HFD sedentary group (HFD Sed) for 4 wk. Real-time energy expenditure and substrate utilization were measured by indirect calorimetry. A stable isotope glucose tolerance test was performed before and after the 4-wk wheel running period to determine changes in endogenous glucose production and glucose disposal. We also performed an analysis of genes and proteins associated with the early response to exercise and exercise adaptations in skeletal muscle and liver. RESULTS When compared with HFD Ex mice, 5011 Ex mice had increased fat oxidation during speed- and distance-matched wheel running bouts. Both HFD Ex and 5011 Ex mice had reduced endogenous glucose during the glucose tolerance test, whereas only the 5011 Sed and the 5011 Ex mice had improved glucose disposal after the 4-wk experimental period when compared with HFD Sed and HFD Ex mice. 5011 Ex mice had increased Pgc1-α and Tfam expression in skeletal muscle when compared with HFD Ex mice, whereas Pdk4 expression was reduced in the liver of HFD Ex and 5011 Ex mice. CONCLUSIONS Our study demonstrates that 5011, an ethanolic extract of A. dracunculus L., with a history of medicinal use, enhances the metabolic benefits of exercise to improve in vivo fat and glucose metabolism.
Collapse
Affiliation(s)
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, AUSTRALIA
| | - James Stampley
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA
| | - Brian A Irving
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA
| | | | | | | |
Collapse
|
5
|
Fuller S, Yu Y, Allerton TD, Mendoza T, Ribnicky DM, Floyd ZE. Adaptive Fat Oxidation Is Coupled with Increased Lipid Storage in Adipose Tissue of Female Mice Fed High Dietary Fat and Sucrose. Nutrients 2020; 12:E2233. [PMID: 32726932 PMCID: PMC7469071 DOI: 10.3390/nu12082233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Western diets high in fat and sucrose are associated with metabolic syndrome (MetS). Although the prevalence of MetS in women is comparable to that in men, metabolic adaptations in females to Western diet have not been reported in preclinical studies. This study investigates the effects of Western diet on risk factors for MetS in female mice. Based on our earlier studies in male mice, we hypothesized that dietary supplementation with extracts of Artemisia dracunculus L. (PMI5011) and Momordica charantia (bitter melon) could affect MetS risk factors in females. Eight-week-old female mice were fed a 10% kcal fat, 17% kcal sucrose diet (LFD); high-fat, high-sucrose diet (HFS; 45% kcal fat, 30% kcal sucrose); or HFS diet with PMI5011 or bitter melon for three months. Body weight and adiposity in all HFS groups were greater than the LFD. Total cholesterol level was elevated with the HFS diets along with LDL cholesterol, but triglycerides and free fatty acids were unchanged from the LFD. Over the three month period, female mice responded to the HFS diet by adaptive increases in fat oxidation energy in muscle and liver. This was coupled with increased fat storage in white and brown adipose tissue depots. These responses were enhanced with botanical supplementation and confer protection from ectopic lipid accumulation associated with MetS in female mice fed an HFS diet.
Collapse
Affiliation(s)
- Scott Fuller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (S.F.); (Y.Y.); (T.D.A.); (T.M.)
- Department of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70506, USA
| | - Yongmei Yu
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (S.F.); (Y.Y.); (T.D.A.); (T.M.)
| | - Timothy D. Allerton
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (S.F.); (Y.Y.); (T.D.A.); (T.M.)
| | - Tamra Mendoza
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (S.F.); (Y.Y.); (T.D.A.); (T.M.)
| | - David M. Ribnicky
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Z. Elizabeth Floyd
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (S.F.); (Y.Y.); (T.D.A.); (T.M.)
| |
Collapse
|