1
|
Huffman A, Ong E, Hur J, D’Mello A, Tettelin H, He Y. COVID-19 vaccine design using reverse and structural vaccinology, ontology-based literature mining and machine learning. Brief Bioinform 2022; 23:bbac190. [PMID: 35649389 PMCID: PMC9294427 DOI: 10.1093/bib/bbac190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Rational vaccine design, especially vaccine antigen identification and optimization, is critical to successful and efficient vaccine development against various infectious diseases including coronavirus disease 2019 (COVID-19). In general, computational vaccine design includes three major stages: (i) identification and annotation of experimentally verified gold standard protective antigens through literature mining, (ii) rational vaccine design using reverse vaccinology (RV) and structural vaccinology (SV) and (iii) post-licensure vaccine success and adverse event surveillance and its usage for vaccine design. Protegen is a database of experimentally verified protective antigens, which can be used as gold standard data for rational vaccine design. RV predicts protective antigen targets primarily from genome sequence analysis. SV refines antigens through structural engineering. Recently, RV and SV approaches, with the support of various machine learning methods, have been applied to COVID-19 vaccine design. The analysis of post-licensure vaccine adverse event report data also provides valuable results in terms of vaccine safety and how vaccines should be used or paused. Ontology standardizes and incorporates heterogeneous data and knowledge in a human- and computer-interpretable manner, further supporting machine learning and vaccine design. Future directions on rational vaccine design are discussed.
Collapse
Affiliation(s)
- Anthony Huffman
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Edison Ong
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA
| | - Adonis D’Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yongqun He
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
Shukkoor MSA, Baharuldin MTH, Raja K. A Text Mining Protocol for Extracting Drug-Drug Interaction and Adverse Drug Reactions Specific to Patient Population, Pharmacokinetics, Pharmacodynamics, and Disease. Methods Mol Biol 2022; 2496:259-282. [PMID: 35713869 DOI: 10.1007/978-1-0716-2305-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug-drug interactions (DDIs) and adverse drug reactions (ADR) are experienced by many patients, especially by elderly population due to their multiple comorbidities and polypharmacy. Databases such as PubMed contain hundreds of abstracts with DDI and ADR information. PubMed is being updated every day with thousands of abstracts. Therefore, manually retrieving the data and extracting the relevant information is tedious task. Hence, automated text mining approaches are required to retrieve DDI and ADR information from PubMed. Recently we developed a hybrid approach for predicting DDI and ADR information from PubMed. There are many other existing approaches for retrieving DDI and ADR information from PubMed. However, none of the approaches are meant for retrieving DDI and ADR specific to patient population, gender, pharmacokinetics, and pharmacodynamics. Here, we present a text mining protocol which is based on our recent work for retrieving DDI and ADR information specific to patient population, gender, pharmacokinetics, and pharmacodynamics from PubMed.
Collapse
Affiliation(s)
| | - Mohamad Taufik Hidayat Baharuldin
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Unit of Physiology, Department of Preclinical, Faculty of Medicine and Defence Health, National Defence University of Malaysia,, Kuala Lumpur, Malaysia
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
3
|
Shukkoor MSA, Raja K, Baharuldin MTH. A Text Mining Protocol for Predicting Drug-Drug Interaction and Adverse Drug Reactions from PubMed Articles. Methods Mol Biol 2022; 2496:237-258. [PMID: 35713868 DOI: 10.1007/978-1-0716-2305-3_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug-drug interactions (DDIs) and adverse drug reactions (ADRs) occur during the pharmacotherapy of multiple comorbidities and in susceptible individuals. DDIs and ADRs limit the therapeutic outcomes in pharmacotherapy. DDIs and ADRs have significant impact on patients' life and health care cost. Hence, knowledge of DDI and ADRs is required for providing better clinical outcomes to patients. Various approaches are developed by the scientific community to document and report the occurrences of DDIs and ADRs through scientific publications. Due to the enormously increasing number of publications and the requirement of updated information on DDIs and ADRs, manual retrieval of data is time consuming and laborious. Various automated techniques are developed to get information on DDIs and ADRs. One such technique is text mining of DDIs and ADRs from published biomedical literature in PubMed. Here, we present a recently developed text mining protocol for predicting DDIs and ADRs from PubMed abstracts.
Collapse
Affiliation(s)
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Mohamad Taufik Hidayat Baharuldin
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Unit of Physiology, Department of Preclinical, Faculty of Medicine and Defence Health, National Defence University of Malaysia,, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Yang Y, Wybrow M, Li YF, Czauderna T, He Y. OntoPlot: A Novel Visualisation for Non-hierarchical Associations in Large Ontologies. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1140-1150. [PMID: 31442991 DOI: 10.1109/tvcg.2019.2934557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ontologies are formal representations of concepts and complex relationships among them. They have been widely used to capture comprehensive domain knowledge in areas such as biology and medicine, where large and complex ontologies can contain hundreds of thousands of concepts. Especially due to the large size of ontologies, visualisation is useful for authoring, exploring and understanding their underlying data. Existing ontology visualisation tools generally focus on the hierarchical structure, giving much less emphasis to non-hierarchical associations. In this paper we present OntoPlot, a novel visualisation specifically designed to facilitate the exploration of all concept associations whilst still showing an ontology's large hierarchical structure. This hybrid visualisation combines icicle plots, visual compression techniques and interactivity, improving space-efficiency and reducing visual structural complexity. We conducted a user study with domain experts to evaluate the usability of OntoPlot, comparing it with the de facto ontology editor Protégé. The results confirm that OntoPlot attains our design goals for association-related tasks and is strongly favoured by domain experts.
Collapse
|
5
|
Abstract
This Editorial first introduces the background of the vaccine and drug relations and how biomedical terminologies and ontologies have been used to support their studies. The history of the seven workshops, initially named VDOSME, and then named VDOS, is also summarized and introduced. Then the 7th International Workshop on Vaccine and Drug Ontology Studies (VDOS 2018), held on August 10th, 2018, Corvallis, Oregon, USA, is introduced in detail. These VDOS workshops have greatly supported the development, applications, and discussion of vaccine- and drug-related terminology and drug studies.
Collapse
Affiliation(s)
- Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND USA
| | - Cui Tao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI USA
| |
Collapse
|
6
|
Tiftikci M, Özgür A, He Y, Hur J. Machine learning-based identification and rule-based normalization of adverse drug reactions in drug labels. BMC Bioinformatics 2019; 20:707. [PMID: 31865904 PMCID: PMC6927101 DOI: 10.1186/s12859-019-3195-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Use of medication can cause adverse drug reactions (ADRs), unwanted or unexpected events, which are a major safety concern. Drug labels, or prescribing information or package inserts, describe ADRs. Therefore, systematically identifying ADR information from drug labels is critical in multiple aspects; however, this task is challenging due to the nature of the natural language of drug labels. Results In this paper, we present a machine learning- and rule-based system for the identification of ADR entity mentions in the text of drug labels and their normalization through the Medical Dictionary for Regulatory Activities (MedDRA) dictionary. The machine learning approach is based on a recently proposed deep learning architecture, which integrates bi-directional Long Short-Term Memory (Bi-LSTM), Convolutional Neural Network (CNN), and Conditional Random Fields (CRF) for entity recognition. The rule-based approach, used for normalizing the identified ADR mentions to MedDRA terms, is based on an extension of our in-house text-mining system, SciMiner. We evaluated our system on the Text Analysis Conference (TAC) Adverse Drug Reaction 2017 challenge test data set, consisting of 200 manually curated US FDA drug labels. Our ML-based system achieved 77.0% F1 score on the task of ADR mention recognition and 82.6% micro-averaged F1 score on the task of ADR normalization, while rule-based system achieved 67.4 and 77.6% F1 scores, respectively. Conclusion Our study demonstrates that a system composed of a deep learning architecture for entity recognition and a rule-based model for entity normalization is a promising approach for ADR extraction from drug labels.
Collapse
Affiliation(s)
- Mert Tiftikci
- Department of Computer Engineering, Boğaziçi University, İstanbul, 34342, Turkey
| | - Arzucan Özgür
- Department of Computer Engineering, Boğaziçi University, İstanbul, 34342, Turkey
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Rd, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|