1
|
Zhang S, Hu J, Liu Y, Shen X, Liu C, Cheng L, Li M, Zhao G. Taurine drives body protein renewal and accretion in beef steers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:1-12. [PMID: 39524079 PMCID: PMC11541941 DOI: 10.1016/j.aninu.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 11/16/2024]
Abstract
The aims of the present study were to investigate the effects of dietary supplementation with rumen-protected taurine (RPT) on the whole-body protein turnover, the plasma metabolomics, and the whole blood cell transcriptomics in steers. Eight steers, averaging 220 ± 3.26 kg of liveweight, were allocated in a replicate 4 × 4 Latin square design. The experimental treatments consisted of four levels of RPT supplementation: 0, 25, 50, and 75 g RPT per day, added to a basal diet. The results showed that supplementation with RPT linearly decreased the fecal nitrogen (N) excretion (P = 0.001) and the 15N fractional recovery rate (P = 0.047), while it linearly increased the urinary excretion of taurine (P = 0.045) as well as the average daily weight gain (P = 0.003), the protein synthesis (P < 0.001), the protein degradation (P < 0.001) and the whole-body protein turnover (P < 0.001). Supplementation with RPT linearly increased the plasma concentrations of growth hormone (P = 0.005) and quadratically affected the plasma concentration of insulin-like growth factor-1 (P = 0.013), and it linearly decreased the plasma concentration of albumin (P = 0.022). Supplementation with RPT altered the whole blood cell mRNA expression and upregulated the expressions of the marker genes, including RPS6KB1, PRSS42, COL1A2, ENSBTAG00000013055 and ENSBTAG00000038159 which are related to protein metabolism. The plasma metabolomics profiling indicated that supplementation with RPT upregulated the plasma concentrations of taurine, lysine and methionine. The experiment revealed the impact and the mechanisms of taurine on driving whole-body protein turnover and protein accretion in steers. Two novel marker genes which could be related to body protein degradation in steers were identified.
Collapse
Affiliation(s)
| | | | - Yufeng Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xu Shen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cheng Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Long Cheng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Saxena G, Gallagher S, Law TD, Maschari D, Walsh E, Dudley C, Brault JJ, Consitt LA. Sex-specific increases in myostatin and SMAD3 contribute to obesity-related insulin resistance in human skeletal muscle and primary human myotubes. Am J Physiol Endocrinol Metab 2024; 326:E352-E365. [PMID: 38088865 PMCID: PMC11193514 DOI: 10.1152/ajpendo.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
The purpose of the present study was to determine the effects of obesity and biological sex on myostatin expression in humans and to examine the direct effects of myostatin, SMAD2, and SMAD3 on insulin signaling in primary human skeletal muscle cells (HSkMCs). For cohort 1, 15 lean [body mass index (BMI): 22.1 ± 0.5 kg/m2; n = 8 males; n = 7 females] and 14 obese (BMI: 40.6 ± 1.4 kg/m2; n = 7 males; n = 7 females) individuals underwent skeletal muscle biopsies and an oral glucose tolerance test. For cohort 2, 14 young lean (BMI: 22.4 ± 1.9 kg/m2; n = 6 males; n = 8 females) and 14 obese (BMI: 39.3 ± 7.9 kg/m2; n = 6 males; n = 8 females) individuals underwent muscle biopsies for primary HSkMC experiments. Plasma mature myostatin (P = 0.041), skeletal muscle precursor myostatin (P = 0.048), and skeletal muscle SMAD3 (P = 0.029) were elevated in obese females compared to lean females, and plasma mature myostatin (r = 0.58, P = 0.029) and skeletal muscle SMAD3 (r = 0.56, P = 0.037) were associated with insulin resistance in females but not males. Twenty-four hours of myostatin treatment impaired insulin signaling in primary HSkMCs derived from females (P < 0.024) but not males. Overexpression of SMAD3, but not SMAD2, impaired insulin-stimulated AS160 phosphorylation in HSkMCs derived from lean females (-27%, P = 0.040), whereas silencing SMAD3 improved insulin-stimulated AS160 phosphorylation and insulin-stimulated glucose uptake (25%, P < 0.014) in HSkMCs derived from obese females. These results suggest for the first time that myostatin-induced impairments in skeletal muscle insulin signaling are sex specific and that increased body fat in females is associated with detrimental elevations in myostatin and SMAD3, which contribute to obesity-related insulin resistance.NEW & NOTEWORTHY Obesity is considered a main risk factor for the development of insulin resistance and type 2 diabetes. The present study utilizes in vivo and in vitro experiments in human skeletal muscle to demonstrate for the first time that females are inherently more susceptible to myostatin-induced insulin resistance, which is further enhanced with obesity due to increased myostatin and SMAD3 expression.
Collapse
Affiliation(s)
- Gunjan Saxena
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
| | - Sean Gallagher
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
| | - Timothy D Law
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, United States
| | - Dominic Maschari
- College of Health Sciences and Professions, Ohio University, Athens, Ohio, United States
| | - Erin Walsh
- Biological Sciences Department, Ohio University, Athens, Ohio, United States
| | - Courtney Dudley
- Biological Sciences Department, Ohio University, Athens, Ohio, United States
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, United States
| | - Leslie A Consitt
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, United States
- Diabetes Institute, Ohio University, Athens, Ohio, United States
| |
Collapse
|
3
|
Arlien-Søborg MC, Dal J, Madsen MA, Høgild ML, Pedersen SB, Jessen N, Jørgensen JOL, Møller N. Whole-Body and Forearm Muscle Protein Metabolism in Patients With Acromegaly Before and After Treatment. J Clin Endocrinol Metab 2023; 108:e671-e678. [PMID: 37036819 DOI: 10.1210/clinem/dgad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Active acromegaly is characterized by increased lean body mass, but the mechanisms underlying the protein anabolic effect are unclear. AIM To study if active acromegaly induces reversible changes in whole-body and skeletal muscle protein kinetics. PATIENTS AND METHODS Eighteen patients with acromegaly were investigated before and 47 ± 10 weeks after disease control by surgery (n = 8) and/or medical treatment (n = 10). Labeled phenylalanine and tyrosine tracers were employed to assess whole-body and regional forearm muscle protein kinetics. Intramyocellular protein signaling was assessed in skeletal muscle biopsies, and whole-body dual-energy X-ray absorptiometry scan and indirect calorimetry assessed lean body mass (LBM) and resting energy expenditure, respectively. RESULTS Disease control induced a 7% decrease in lean body mass (P < .000) and a 14% decrease in LBM-adjusted energy expenditure. Whole-body phenylalanine breakdown decreased after disease control (P = .005) accompanied by a decrease in the degradation of phenylalanine to tyrosine (P = .005) and a decrease in whole-body phenylalanine synthesis (P = .030). Skeletal muscle protein synthesis tended to decrease after disease control (P = .122), whereas the muscle protein breakdown (P = .437) and muscle protein loss were unaltered (P = .371). Unc-51 like autophagy activating kinase 1 phosphorylation, an activator of protein breakdown, increased after disease control (P = .042). CONCLUSIONS Active acromegaly represents a reversible high flux state in which both whole-body protein breakdown and synthesis are increased, whereas forearm muscle protein kinetics are unaltered. Future studies are needed to decipher the link between protein kinetics and the structure and function of the associated growth hormone-induced increase in lean body mass.
Collapse
Affiliation(s)
- Mai C Arlien-Søborg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jakob Dal
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg 9000, Denmark
- Steno Diabetes Centre North, Aalborg University Hospital, Aalborg 9000, Denmark
| | - Michael Alle Madsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Morten Lyng Høgild
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Steen B Pedersen
- Steno Diabetes Centre, Department of endocrinology and Internal Medicine, Aarhus 8200, Denmark
| | - Niels Jessen
- Steno Diabetes Centre, Department of endocrinology and Internal Medicine, Aarhus 8200, Denmark
- Department of Clinical Pharmacology, University of Aarhus, Aarhus 8200, Denmark
- Department of Biomedicine, Aarhus University, Aarhus 8200, Denmark
| | - Jens O L Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Møller
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| |
Collapse
|
4
|
Swarbrick MM, Cox CL, Graham JL, Knudsen LB, Stanhope K, Raun K, Havel PJ. Growth hormone treatment does not augment the anti-diabetic effects of liraglutide in UCD-T2DM rats. Endocrinol Diabetes Metab 2022; 6:e392. [PMID: 36480511 PMCID: PMC9836246 DOI: 10.1002/edm2.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The incretin hormone glucagon-like peptide-1 (GLP-1) slows gastric emptying, increases satiety and enhances insulin secretion. GLP-1 receptor agonists, such as liraglutide, are used therapeutically in humans to improve glycaemic control and delay the onset of type 2 diabetes mellitus (T2DM). In UCD-T2DM rats, a model of polygenic obesity and insulin resistance, we have previously reported that daily liraglutide administration delayed diabetes onset by >4 months. Growth hormone (GH) may exert anti-diabetic effects, including increasing β-cell mass and insulin secretion, while disrupting GH signalling in mice reduces both the size and number of pancreatic islets. We therefore hypothesized that GH supplementation would augment liraglutide's anti-diabetic effects. METHODS Male UCD-T2DM rats were treated daily with GH (0.3 mg/kg) and/or liraglutide (0.2 mg/kg) from 2 months of age. Control (vehicle) and food-restricted (with food intake matched to liraglutide-treated rats) groups were also studied. The effects of treatment on diabetes onset and weight gain were assessed, as well as measures of glucose tolerance, lipids and islet morphology. RESULTS Liraglutide treatment significantly reduced food intake and body weight and improved glucose tolerance and insulin sensitivity, relative to controls. After 4.5 months, none of the liraglutide-treated rats had developed T2DM (overall p = .019). Liraglutide-treated rats also displayed lower fasting triglyceride (TG) concentrations and lower hepatic TG content, compared to control rats. Islet morphology was improved in liraglutide-treated rats, with significantly increased pancreatic insulin content (p < .05 vs. controls). Although GH treatment tended to increase body weight (and gastrocnemius muscle weight), there were no obvious effects on diabetes onset or other diabetes-related outcomes. CONCLUSION GH supplementation did not augment the anti-diabetic effects of liraglutide.
Collapse
Affiliation(s)
- Michael M. Swarbrick
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA,Present address:
Bone Research Program, ANZAC Research InstituteThe University of SydneyConcordNew South WalesAustralia,Present address:
Concord Clinical School, Faculty of Medicine and HealthThe University of SydneyAustralia
| | - Chad L. Cox
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| | - James L. Graham
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| | | | - Kimber Stanhope
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| | | | - Peter J. Havel
- Departments of Nutrition and Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisOne Shielad AvenueDavisCaliforniaUSA
| |
Collapse
|
5
|
Maschari D, Saxena G, Law TD, Walsh E, Campbell MC, Consitt LA. Lactate-induced lactylation in skeletal muscle is associated with insulin resistance in humans. Front Physiol 2022; 13:951390. [PMID: 36111162 PMCID: PMC9468271 DOI: 10.3389/fphys.2022.951390] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Elevated circulating lactate has been associated with obesity and insulin resistance. The aim of the current study was to determine if lactate-induced lysine lactylation (kla), a post-translational modification, was present in human skeletal muscle and related to insulin resistance. Fifteen lean (Body Mass Index: 22.1 ± 0.5 kg/m2) and fourteen obese (40.6 ± 1.4 kg/m2) adults underwent a muscle biopsy and 2-h oral glucose tolerance test. Skeletal muscle lactylation was increased in obese compared to lean females (19%, p < 0.05) and associated with insulin resistance (r = 0.37, p < 0.05) in the whole group. Skeletal muscle lactylation levels were significantly associated with markers of anaerobic metabolism (plasma lactate and skeletal muscle lactate dehydrogenase [LDH], p < 0.05) and negatively associated with markers of oxidative metabolism (skeletal muscle cytochrome c oxidase subunit 4 and Complex I [pyruvate] OXPHOS capacity, p < 0.05). Treatment of primary human skeletal muscle cells (HSkMC) with sodium lactate for 24 h increased protein lactylation and IRS-1 serine 636 phosphorylation in a similar dose-dependent manner (p < 0.05). Inhibition of glycolysis (with 2-deoxy-d-glucose) or LDH-A (with sodium oxamate or LDH-A siRNA) for 24 h reduced HSkMC lactylation which paralleled reductions in culture media lactate accumulation. This study identified the existence of a lactate-derived post-translational modification in human skeletal muscle and suggests skeletal muscle lactylation could provide additional insight into the regulation of skeletal muscle metabolism, including insulin resistance.
Collapse
Affiliation(s)
- Dominic Maschari
- College of Health Sciences and Professions, Ohio University, Athens, OH, United States
| | - Gunjan Saxena
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Timothy D. Law
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, United States
| | - Erin Walsh
- Biological Sciences Department, Ohio University, Athens, OH, United States
| | - Mason C. Campbell
- Biological Sciences Department, Ohio University, Athens, OH, United States
| | - Leslie A Consitt
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, United States
- Diabetes Institute, Ohio University, Athens, OH, United States
| |
Collapse
|
6
|
Young JA, Zhu S, List EO, Duran-Ortiz S, Slama Y, Berryman DE. Musculoskeletal Effects of Altered GH Action. Front Physiol 2022; 13:867921. [PMID: 35665221 PMCID: PMC9160929 DOI: 10.3389/fphys.2022.867921] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Growth hormone (GH) is a peptide hormone that can signal directly through its receptor or indirectly through insulin-like growth factor 1 (IGF-1) stimulation. GH draws its name from its anabolic effects on muscle and bone but also has distinct metabolic effects in multiple tissues. In addition to its metabolic and musculoskeletal effects, GH is closely associated with aging, with levels declining as individuals age but GH action negatively correlating with lifespan. GH’s effects have been studied in human conditions of GH alteration, such as acromegaly and Laron syndrome, and GH therapies have been suggested to combat aging-related musculoskeletal diseases, in part, because of the decline in GH levels with advanced age. While clinical data are inconclusive, animal models have been indispensable in understanding the underlying molecular mechanisms of GH action. This review will provide a brief overview of the musculoskeletal effects of GH, focusing on clinical and animal models.
Collapse
Affiliation(s)
- Jonathan A. Young
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Shouan Zhu
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Athens, OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Edward O. List
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | | | - Yosri Slama
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Darlene E. Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- *Correspondence: Darlene E. Berryman,
| |
Collapse
|
7
|
Cespiati A, Meroni M, Lombardi R, Oberti G, Dongiovanni P, Fracanzani AL. Impact of Sarcopenia and Myosteatosis in Non-Cirrhotic Stages of Liver Diseases: Similarities and Differences across Aetiologies and Possible Therapeutic Strategies. Biomedicines 2022; 10:biomedicines10010182. [PMID: 35052859 PMCID: PMC8773740 DOI: 10.3390/biomedicines10010182] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia is defined as a loss of muscle strength, mass and function and it is a predictor of mortality. Sarcopenia is not only a geriatric disease, but it is related to several chronic conditions, including liver diseases in both its early and advanced stages. Despite the increasing number of studies exploring the role of sarcopenia in the early stages of chronic liver disease (CLD), its prevalence and the relationship between these two clinical entities are still controversial. Myosteatosis is characterized by fat accumulation in the muscles and it is related to advanced liver disease, although its role in the early stages is still under researched. Therefore, in this narrative review, we firstly aimed to evaluate the prevalence and the pathogenetic mechanisms underlying sarcopenia and myosteatosis in the early stage of CLD across different aetiologies (mainly non-alcoholic fatty liver disease, alcohol-related liver disease and viral hepatitis). Secondly, due to the increasing prevalence of sarcopenia worldwide, we aimed to revise the current and the future therapeutic approaches for the management of sarcopenia in CLD.
Collapse
Affiliation(s)
- Annalisa Cespiati
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
| | - Rosa Lombardi
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5503-4192; Fax: +39-02-5503-3509
| | - Giovanna Oberti
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (A.C.); (M.M.); (G.O.); (P.D.); (A.L.F.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
8
|
Gharahdaghi N, Phillips BE, Szewczyk NJ, Smith K, Wilkinson DJ, Atherton PJ. Links Between Testosterone, Oestrogen, and the Growth Hormone/Insulin-Like Growth Factor Axis and Resistance Exercise Muscle Adaptations. Front Physiol 2021; 11:621226. [PMID: 33519525 PMCID: PMC7844366 DOI: 10.3389/fphys.2020.621226] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of skeletal muscle mass throughout the life course is key for the regulation of health, with physical activity a critical component of this, in part, due to its influence upon key hormones such as testosterone, estrogen, growth hormone (GH), and insulin-like growth factor (IGF). Despite the importance of these hormones for the regulation of skeletal muscle mass in response to different types of exercise, their interaction with the processes controlling muscle mass remain unclear. This review presents evidence on the importance of these hormones in the regulation of skeletal muscle mass and their responses, and involvement in muscle adaptation to resistance exercise. Highlighting the key role testosterone plays as a primary anabolic hormone in muscle adaptation following exercise training, through its interaction with anabolic signaling pathways and other hormones via the androgen receptor (AR), this review also describes the potential importance of fluctuations in other hormones such as GH and IGF-1 in concert with dietary amino acid availability; and the role of estrogen, under the influence of the menstrual cycle and menopause, being especially important in adaptive exercise responses in women. Finally, the downstream mechanisms by which these hormones impact regulation of muscle protein turnover (synthesis and breakdown), and thus muscle mass are discussed. Advances in our understanding of hormones that impact protein turnover throughout life offers great relevance, not just for athletes, but also for the general and clinical populations alike.
Collapse
Affiliation(s)
| | | | | | | | - Daniel J. Wilkinson
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Philip J. Atherton
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
9
|
Janssen JAMJL. Mechanisms of putative IGF-I receptor resistance in active acromegaly. Growth Horm IGF Res 2020; 52:101319. [PMID: 32339897 DOI: 10.1016/j.ghir.2020.101319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Acromegaly is a disease characterized by overproduction of growth hormone (GH). As a consequence of excessive GH secretion, circulating insulin-like growth factor-I (IGF-I) is elevated in active (untreated) acromegaly. IGF-I is often used as a marker of disease activity and growth hormone status in acromegaly. Although IGF-I can directly improve insulin sensitivity and glucose uptake in muscles, the excessive GH secretion in active acromegaly frequently leads to insulin resistance, glucose intolerance and even diabetes. In this review evidence will be discussed that in active acromegaly chronically elevated IGF-I, insulin and soluble Klotho (S-Klotho) levels play a pathophysiological role in the development of IGF-I receptor (IGF-IR) resistance. It is postulated that as soon as circulating IGF-I, insulin and S-Klotho rise above a certain level the IGF-IR becomes relatively resistant to actions of IGF-I. The development of a degree of IGF-IR resistance for metabolic actions may help to explain why in active acromegaly diabetogenic effects of GH predominate and are not completely counteracted and neutralized by elevated circulating levels of IGF-I. Further studies are necessary in order to support this hypothesis.
Collapse
Affiliation(s)
- Joseph A M J L Janssen
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Paul RG, McMahon CD, Elston MS, Conaglen JV. GH replacement titrated to serum IGF-1 does not reduce concentrations of myostatin in blood or skeletal muscle. Growth Horm IGF Res 2019; 44:11-16. [PMID: 30543929 DOI: 10.1016/j.ghir.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Traditional weight-based regimens of GH replacement are more effective at reversing the loss of skeletal muscle in GH-deficient adults than currently recommended regimens, where the dose of GH is increased to restore serum concentrations of IGF-1. While weight-based regimens increase concentrations of IGF-1 and decrease concentrations of myostatin, it is not known whether the reduced effectiveness of individually titrated GH regimens is due to ongoing hypersecretion of myostatin. Consequently, the aims of this study were to determine whether concentrations of myostatin in blood and skeletal muscle are increased in GH-deficient adults, and whether these concentrations are decreased by GH replacement regimens titrated to restore serum IGF-1. DESIGN Twenty-six GH deficient adults (18 men and 8 women) were treated with individualised regimens of recombinant human GH aiming to achieve serum concentrations of IGF-1 within one standard deviation of the age- and gender-adjusted mean. Plasma concentrations of myostatin were measured at baseline and after 6 months of treatment were compared to fifteen healthy controls (9 men and 6 women). Skeletal muscle biopsies were performed in 19 of these GH-deficient adults (15 men and 4 women) and 10 of the healthy controls (6 men and 4 women). Expression of IGF-1 and myostatin mRNA was determined by qPCR. RESULTS Concentrations of IGF-1 in serum and mRNA in skeletal muscle were reduced, and concentrations of myostatin in plasma and mRNA in skeletal muscle were increased in GH-deficient adults at baseline (P < .05 versus healthy controls). Despite restoring concentrations of IGF-1, GH replacement did not reduce concentrations of myostatin in either blood or skeletal muscle. Concentrations of IGF-1 and myostatin in both blood and skeletal muscle were positively correlated in GH-deficient adults at baseline (P < .05), but not in GH-replete adults. CONCLUSIONS Concentrations of myostatin in blood and skeletal muscle are increased in GH-deficient adults. Despite normalising concentrations of IGF-1, individualised regimens of GH replacement do not reduce concentrations of myostatin in blood or skeletal muscle. Ongoing hypersecretion of myostatin may explain why individually titrated GH replacement regimens are less effective than higher weight-based regimens in increasing skeletal muscle mass.
Collapse
Affiliation(s)
- Ryan G Paul
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand; Waikato Clinical Campus, University of Auckland, Private Bag 3200, Hamilton 3240, New Zealand.
| | - Chris D McMahon
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| | - Marianne S Elston
- Waikato Clinical Campus, University of Auckland, Private Bag 3200, Hamilton 3240, New Zealand
| | - John V Conaglen
- Waikato Clinical Campus, University of Auckland, Private Bag 3200, Hamilton 3240, New Zealand
| |
Collapse
|
11
|
Lozier NR, Kopchick JJ, de Lacalle S. Relative Contributions of Myostatin and the GH/IGF-1 Axis in Body Composition and Muscle Strength. Front Physiol 2018; 9:1418. [PMID: 30443216 PMCID: PMC6221906 DOI: 10.3389/fphys.2018.01418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Myostatin, a negative regulator of muscle growth, is considered a potential therapeutic agent for individuals suffering from various muscle wasting and strength declining diseases because inhibiting Mstn signaling leads to muscular hypertrophy. In this study we investigate the interaction between myostatin and the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis in muscle function and strength. To this end, we measured hind limb grip strength and myostatin levels in two mouse models of GH gene manipulation; GH receptor knockout (GHR-/-) mice which have reduced GH/IGF-1 action, and bovine GH transgenic (bGH) mice which have excess GH/IGF-1 action. We found that specific muscle force was significantly reduced in bGH mice, and significantly increased in GHR-/- mice, compared to their respective littermate wild type controls. The expression of the mature form of myostatin was significantly increased in bGH mice, and unchanged in GHR-/- mice. In the bGH mice, the high levels of mature myostatin were accompanied by increase body weight and lean mass, consistent with other published results indicating that the IGF-1 signaling pathway is dominant over that of Mstn. Our results also suggest that in these mouse models there is an inverse relationship between muscle strength and levels of myostatin and GH, since constitutive overexpression of GH resulted in elevated levels of mature myostatin in muscle, accompanied by a reduction in strength. By contrast, in the GHR-/- mice with reduced levels of IGF-1, mature myostatin levels were unchanged and muscle strength was increased.
Collapse
Affiliation(s)
- Nicholas R Lozier
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Sonsoles de Lacalle
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
12
|
Cabrera D, Cabello-Verrugio C, Solís N, San Martín D, Cofré C, Pizarro M, Arab JP, Abrigo J, Campos F, Irigoyen B, Carrasco-Avino G, Bezares K, Riquelme V, Riquelme A, Arrese M, Barrera F. Somatotropic Axis Dysfunction in Non-Alcoholic Fatty Liver Disease: Beneficial Hepatic and Systemic Effects of Hormone Supplementation. Int J Mol Sci 2018; 19:ijms19051339. [PMID: 29724029 PMCID: PMC5983806 DOI: 10.3390/ijms19051339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Somatotropic axis dysfunction associated with non-alcoholic fatty liver disease (NAFLD) has potential multisystemic detrimental effects. Here, we analysed the effects of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) supplementation on liver histology, adipokine profile and muscle function in an NAFLD model. Methods: C57BL/6 mice were fed with a high fat diet (HFD) for 12 weeks and were separated into three groups treated for 4 weeks with: (1) High fat diet (HFD) (n = 10); (2) HFD + GH 9 μg/g/d (n = 10); (3) HFD + IGF-1 0.02 µg/g/d (n = 9). A control group fed a chow diet was included (n = 6). Liver histology, liver triglycerides content, serum alanine aminotransferase (ALT) activity, adiponectin and leptin serum levels, in vivo muscle strength, tetanic force and muscle fibre cross-sectional area (CSA) were measured. Results: HFD + GH and HFD + IGF-1 groups showed significantly lower ALT activity compared to HFD (p < 0.01). Liver triglyceride content in HFD + GH was decreased compared to HFD (p < 0.01). Histologic steatosis score was increased in HFD and HFD + GH group (p < 0.01), whereas HFD + IGF-1 presented no difference compared to the chow group (p = 0.3). HFD + GH group presented lower serum leptin and adiponectin levels compared to HFD. GH and IGF-1 supplementation therapy reverted HFD-induced reduction in muscle strength and CSA (sarcopenia). Conclusions: GH and IGF-1 supplementation induced significant improvement in liver steatosis, aminotransferases and sarcopenia in a diet-induced NAFLD model.
Collapse
Affiliation(s)
- Daniel Cabrera
- Departament of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | | | - Nancy Solís
- Departament of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Diego San Martín
- Departament of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Catalina Cofré
- Departament of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Margarita Pizarro
- Departament of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Juan Pablo Arab
- Departament of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Johanna Abrigo
- Faculty of Biological Sciences, Universidad Andrés Bello, Santiago 8320000, Chile.
| | - Fabián Campos
- Faculty of Biological Sciences, Universidad Andrés Bello, Santiago 8320000, Chile.
| | - Betzabé Irigoyen
- Faculty of Biological Sciences, Universidad Andrés Bello, Santiago 8320000, Chile.
| | - Gonzalo Carrasco-Avino
- Departament of Pathotology, Clínica Las Condes, Santiago 8320000, Chile.
- Department of Pathology, Hospital Clínico Universidad de Chile, Santiago 8320000, Chile.
| | - Katiuska Bezares
- Department of Pathology, Hospital Clínico San Juan de Dios, Santiago 8320000, Chile.
| | - Valentina Riquelme
- Faculty of Arts, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Arnoldo Riquelme
- Departament of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
- Department of Health Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Marco Arrese
- Departament of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Francisco Barrera
- Departament of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| |
Collapse
|
13
|
Basu R, Qian Y, Kopchick JJ. MECHANISMS IN ENDOCRINOLOGY: Lessons from growth hormone receptor gene-disrupted mice: are there benefits of endocrine defects? Eur J Endocrinol 2018; 178:R155-R181. [PMID: 29459441 DOI: 10.1530/eje-18-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
14
|
Lakhdar R, Rabinovich RA. Can muscle protein metabolism be specifically targeted by nutritional support and exercise training in chronic obstructive pulmonary disease? J Thorac Dis 2018; 10:S1377-S1389. [PMID: 29928520 PMCID: PMC5989103 DOI: 10.21037/jtd.2018.05.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) associates with several extra-pulmonary effects. Muscle dysfunction and wasting is one of the most prominent extra-pulmonary effects and contributes to exercise limitation and health related quality of life (HRQoL), morbidity as well as mortality. The loss of muscle mass is characterised by an impaired balance between protein synthesis (anabolism) and protein breakdown (catabolism) which relates to nutritional disturbances, muscle disuse and the presence of a systemic inflammation, among other factors. Current approaches to reverse skeletal muscle dysfunction and wasting attain only modest improvements. The development of new therapeutic strategies aiming at improving skeletal muscle dysfunction and wasting are needed. This requires a better understanding of the underlying molecular pathways responsible for these abnormalities. In this review we update recent research on protein metabolism, nutritional depletion as well as physical (in)activity in relation to muscle wasting and dysfunction in patients with COPD. We also discuss the role of nutritional supplementation and exercise training as strategies to re-establish the disrupted balance of protein metabolism in the muscle of patients with COPD. Future areas of research and clinical practice directions are also addressed.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- ELEGI Colt Laboratory, MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Roberto A. Rabinovich
- ELEGI Colt Laboratory, MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Scotland, UK
- Respiratory Medicine Department, Royal Infirmary of Edinburgh, Scotland, UK
| |
Collapse
|
15
|
Consitt LA, Saxena G, Slyvka Y, Clark BC, Friedlander M, Zhang Y, Nowak FV. Paternal high-fat diet enhances offspring whole-body insulin sensitivity and skeletal muscle insulin signaling early in life. Physiol Rep 2018; 6:e13583. [PMID: 29484855 PMCID: PMC5827533 DOI: 10.14814/phy2.13583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 02/04/2023] Open
Abstract
Evidence suggests that paternal diet can predispose offspring to metabolic dysfunction. Despite this knowledge, little is known regarding the effects of paternal high-fat feeding on offspring insulin sensitivity. The purpose of this study was to investigate for the first time the effects of paternal high-fat feeding on whole-body and skeletal muscle insulin action in young and adult offspring. At 4 weeks of age, founder C57BL6/N males (F0) were fed a high-fat diet or control diet for 12 weeks and then bred with females on a control diet. Offspring (F1) were euthanized at 6 weeks, 6 months, or 12 months and insulin-stimulated insulin signaling was measured ex vivo in isolated soleus muscle. At 6 weeks of age, paternal high fat offspring (HFO) had enhanced whole-body insulin sensitivity (35%, P < 0.05), as well as, increased insulin-stimulated skeletal muscle phosphorylation of Akt threonine 308 (70%, P < 0.05) and AS160 threonine 642 (80%, P < 0.05) compared to paternal control fed offspring (CFO), despite both offspring groups consuming standard chow. At 6 months of age, HFO had increased percent body fat compared to CFO (74%, P < 0.005) and whole-body and skeletal muscle insulin signaling normalized to CFO. Body fat was inversely related with insulin signaling in HFO, but not CFO. These findings suggest that paternal high-fat feeding contributes to enhanced whole-body and skeletal muscle insulin sensitivity in HFO early in life; however, these benefits are lost by early adulthood, potentially due to premature increases in body fat.
Collapse
Affiliation(s)
- Leslie A. Consitt
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
- Diabetes InstituteOhio UniversityAthensOhioUSA
- Ohio Musculoskeletal and Neurological InstituteOhio UniversityAthensOhioUSA
| | - Gunjan Saxena
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
| | - Yuriy Slyvka
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
- Diabetes InstituteOhio UniversityAthensOhioUSA
| | - Brian C. Clark
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
- Ohio Musculoskeletal and Neurological InstituteOhio UniversityAthensOhioUSA
| | - Max Friedlander
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
| | - Yizhu Zhang
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
| | - Felicia V. Nowak
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
- Diabetes InstituteOhio UniversityAthensOhioUSA
| |
Collapse
|