1
|
Pampanella L, Petrocelli G, Abruzzo PM, Zucchini C, Canaider S, Ventura C, Facchin F. Cytochalasins as Modulators of Stem Cell Differentiation. Cells 2024; 13:400. [PMID: 38474364 PMCID: PMC10931372 DOI: 10.3390/cells13050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Regenerative medicine aims to identify new research strategies for the repair and restoration of tissues damaged by pathological or accidental events. Mesenchymal stem cells (MSCs) play a key role in regenerative medicine approaches due to their specific properties, such as the high rate of proliferation, the ability to differentiate into several cell lineages, the immunomodulatory potential, and their easy isolation with minimal ethical issues. One of the main goals of regenerative medicine is to modulate, both in vitro and in vivo, the differentiation potential of MSCs to improve their use in the repair of damaged tissues. Over the years, much evidence has been collected about the ability of cytochalasins, a large family of 60 metabolites isolated mainly from fungi, to modulate multiple properties of stem cells (SCs), such as proliferation, migration, and differentiation, by altering the organization of the cyto- and the nucleo-skeleton. In this review, we discussed the ability of two different cytochalasins, cytochalasins D and B, to influence specific SC differentiation programs modulated by several agents (chemical or physical) or intra- and extra-cellular factors, with particular attention to human MSCs (hMSCs).
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Cinzia Zucchini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| |
Collapse
|
2
|
Asano T, Sasse P, Nakata T. Development of a Cre-recombination-based color-switching reporter system for cell fusion detection. Biochem Biophys Res Commun 2024; 690:149231. [PMID: 38000293 DOI: 10.1016/j.bbrc.2023.149231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Cell fusion plays a key role in the development and formation of tissues and organs in several organisms. Skeletal myogenesis is assessed in vitro by cell shape and gene and protein expression using immunofluorescence and immunoblotting assays. However, these conventional methods are complex and do not allow for easy time-course observation in living cells. Therefore, this study aimed to develop a Cre recombination-based fluorescent reporter system to monitor cell-cell fusion. We combined green and red fluorescent proteins with a Cre-loxP system to detect syncytium formation using a fluorescent binary switch. This allowed us to visualize mononucleated cells with green fluorescence before fusion and multinucleated syncytia with red fluorescence by conditional expression after cell fusion. The formation of multinuclear myotubes during myogenic differentiation was detected by the change in fluorescence from green to red after Cre-mediated recombination. The distribution of the fluorescence signal correlated with the expression of myogenic differentiation markers. Moreover, red reporter fluorescence intensity was correlated with the number of nuclei contained in the red fluorescent-positive myotubes. We also successfully demonstrated that our fusion monitoring system is applicable to the formation of skeletal muscle myotube and placental syncytiotrophoblast. These results suggest that the color-switching fluorescent reporter system, using Cre-mediated recombination, could be a robust tool used to facilitate the study of cell-to-cell fusion.
Collapse
Affiliation(s)
- Toshifumi Asano
- Department of Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; The Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Takao Nakata
- Department of Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; The Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
3
|
Tarum J, Degens H, Turner MD, Stewart C, Sale C, Santos L. Modelling Skeletal Muscle Ageing and Repair In Vitro. J Tissue Eng Regen Med 2023; 2023:9802235. [PMID: 40226404 PMCID: PMC11919149 DOI: 10.1155/2023/9802235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 04/15/2025]
Abstract
Healthy skeletal muscle can regenerate after ischaemic, mechanical, or toxin-induced injury, but ageing impairs that regeneration potential. This has been largely attributed to dysfunctional satellite cells and reduced myogenic capacity. Understanding which signalling pathways are associated with reduced myogenesis and impaired muscle regeneration can provide valuable information about the mechanisms driving muscle ageing and prompt the development of new therapies. To investigate this, we developed a high-throughput in vitro model to assess muscle regeneration in chemically injured C2C12 and human myotube-derived young and aged myoblast cultures. We observed a reduced regeneration capacity of aged cells, as indicated by an attenuated recovery towards preinjury myotube size and myogenic fusion index at the end of the regeneration period, in comparison with younger muscle cells that were fully recovered. RNA-sequencing data showed significant enrichment of KEGG signalling pathways, PI3K-Akt, and downregulation of GO processes associated with muscle development, differentiation, and contraction in aged but not in young muscle cells. Data presented here suggest that repair in response to in vitro injury is impaired in aged vs. young muscle cells. Our study establishes a framework that enables further understanding of the factors underlying impaired muscle regeneration in older age.
Collapse
Affiliation(s)
- Janelle Tarum
- Department of Sport Science, Sport Health and Performance Enhancement Research Centre (SHAPE), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hans Degens
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Lithuanian Sports University, Kaunas, Lithuania
| | - Mark D. Turner
- Centre for Diabetes, Chronic Diseases and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, UK
| | - Claire Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Craig Sale
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Lívia Santos
- Department of Sport Science, Sport Health and Performance Enhancement Research Centre (SHAPE), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
4
|
Bagley JR, Denes LT, McCarthy JJ, Wang ET, Murach KA. The myonuclear domain in adult skeletal muscle fibres: past, present and future. J Physiol 2023; 601:723-741. [PMID: 36629254 PMCID: PMC9931674 DOI: 10.1113/jp283658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.
Collapse
Affiliation(s)
- James R. Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, California
| | | | - John J. McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, Florida
- Myology Institute, University of Florida
- Genetics Institute, University of Florida
| | - Kevin A. Murach
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
- Cell and Molecular Biology Graduate Program, University of Arkansas
| |
Collapse
|
5
|
Catteau M, Passerieux E, Blervaque L, Gouzi F, Ayoub B, Hayot M, Pomiès P. Response to Electrostimulation Is Impaired in Muscle Cells from Patients with Chronic Obstructive Pulmonary Disease. Cells 2021; 10:3002. [PMID: 34831227 PMCID: PMC8616440 DOI: 10.3390/cells10113002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
Among the comorbidities associated with chronic obstructive pulmonary disease (COPD), skeletal muscle weakness and atrophy are known to affect patient survival rate. In addition to muscle deconditioning, various systemic and intrinsic factors have been implicated in COPD muscle dysfunction but an impaired COPD muscle adaptation to contraction has never been extensively studied. We submitted cultured myotubes from nine healthy subjects and nine patients with COPD to an endurance-type protocol of electrical pulse stimulation (EPS). EPS induced a decrease in the diameter, covered surface and expression of MHC1 in COPD myotubes. Although the expression of protein degradation markers was not affected, expression of the protein synthesis marker mTOR was not induced in COPD compared to healthy myotubes after EPS. The expression of the differentiation markers p16INK4a and p21 was impaired, while expression of Myf5 and MyoD tended to be affected in COPD muscle cells in response to EPS. The expression of mitochondrial biogenesis markers PGC1α and MFN2 was affected and expression of TFAM and COX1 tended to be reduced in COPD compared to healthy myotubes upon EPS. Lipid peroxidation was increased and the expression of the antioxidant enzymes SOD2 and GPx4 was affected in COPD compared to healthy myotubes in response to EPS. Thus, we provide evidence of an impaired response of COPD muscle cells to contraction, which might be involved in the muscle weakness observed in patients with COPD.
Collapse
Affiliation(s)
- Matthias Catteau
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| | - Emilie Passerieux
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| | - Léo Blervaque
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| | - Farés Gouzi
- PhyMedExp, University of Montpellier—INSERM—CNRS—CHRU Montpellier, 34295 Montpellier, France; (F.G.); (B.A.); (M.H.)
| | - Bronia Ayoub
- PhyMedExp, University of Montpellier—INSERM—CNRS—CHRU Montpellier, 34295 Montpellier, France; (F.G.); (B.A.); (M.H.)
| | - Maurice Hayot
- PhyMedExp, University of Montpellier—INSERM—CNRS—CHRU Montpellier, 34295 Montpellier, France; (F.G.); (B.A.); (M.H.)
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| |
Collapse
|
6
|
Kok HJ, Barton ER. Actions and interactions of IGF-I and MMPs during muscle regeneration. Semin Cell Dev Biol 2021; 119:11-22. [PMID: 33962867 DOI: 10.1016/j.semcdb.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Muscle regeneration requires the coordination of several factors to mobilize satellite cells and macrophages, remodel the extracellular matrix surrounding muscle fibers, and repair existing and/or form new muscle fibers. In this review, we focus on insulin-like growth factor I and the matrix metalloproteinases, which are secreted proteins that act on cells and the matrix to resolve damage. While their actions appear independent, their interactions occur at the transcriptional and post-translational levels to promote feed-forward activation of each other. Together, these proteins assist at virtually every step of the repair process, and contribute significantly to muscle regenerative capacity.
Collapse
Affiliation(s)
- Hui Jean Kok
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA
| | - Elisabeth R Barton
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA.
| |
Collapse
|
7
|
Yokoyama S, Ohno Y, Egawa T, Ohashi K, Ito R, Ortuste Quiroga HP, Yamashita T, Goto K. MBNL1-Associated Mitochondrial Dysfunction and Apoptosis in C2C12 Myotubes and Mouse Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21176376. [PMID: 32887414 PMCID: PMC7503908 DOI: 10.3390/ijms21176376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
We explored the interrelationship between a tissue-specific alternative splicing factor muscleblind-like 1 (MBNL1) and peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α), B-cell lymphoma 2 (Bcl-2) or Bcl-2-associated X protein (Bax) in C2C12 myotubes and mouse skeletal muscle to investigate a possible physiological role of MBNL1 in mitochondrial-associated apoptosis of skeletal muscle. Expression level of PGC-1α and mitochondrial membrane potential evaluated by the fluorescence ratio of JC-1 aggregate to monomer in C2C12 myotubes were suppressed by knockdown of MBNL1. Conversely, the ratio of Bax to Bcl-2 as well as the apoptotic index in C2C12 myotubes was increased by MBNL1 knockdown. In plantaris muscle, on the other hand, not only the minimum muscle fiber diameter but also the expression level of MBNL1 and PGC-1α in of 100-week-old mice were significantly lower than that of 10-week-old mice. Furthermore, the ratio of Bax to Bcl-2 in mouse plantaris muscle was increased by aging. These results suggest that MBNL1 may play a key role in aging-associated muscle atrophy accompanied with mitochondrial dysfunction and apoptosis via mediating PGC-1α expression in skeletal muscle.
Collapse
Affiliation(s)
- Shingo Yokoyama
- Laboratory of Physiology, School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (S.Y.); (K.O.)
| | - Yoshitaka Ohno
- Faculty of Rehabilitation and Care, Seijoh University, Tokai 476-8588, Japan;
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Tatsuro Egawa
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8511, Japan
| | - Kazuya Ohashi
- Laboratory of Physiology, School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (S.Y.); (K.O.)
| | - Rika Ito
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Huascar Pedro Ortuste Quiroga
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Tomohiro Yamashita
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Katsumasa Goto
- Laboratory of Physiology, School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (S.Y.); (K.O.)
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
- Correspondence:
| |
Collapse
|
8
|
Altered protein turnover signaling and myogenesis during impaired recovery of inflammation-induced muscle atrophy in emphysematous mice. Sci Rep 2018; 8:10761. [PMID: 30018383 PMCID: PMC6050248 DOI: 10.1038/s41598-018-28579-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Exacerbations in Chronic obstructive pulmonary disease (COPD) are often accompanied by pulmonary and systemic inflammation, and are associated with an increased susceptibility to weight loss and muscle wasting. As the emphysematous phenotype in COPD appears prone to skeletal muscle wasting, the aims of this study were to evaluate in emphysematous compared to control mice following repetitive exacerbations (1) changes in muscle mass and strength and, (2) whether muscle mass recovery and its underlying processes are impaired. Emphysema was induced by intra-tracheal (IT) elastase instillations, followed by three weekly IT-LPS instillations to mimic repetitive exacerbations. Loss of muscle mass and strength were measured, and related to analyses of muscle protein turnover and myogenesis signaling in tissue collected during and following recovery. Emphysematous mice showed impaired muscle mass recovery in response to pulmonary inflammation-induced muscle atrophy. Proteolysis and protein synthesis signaling remained significantly higher in emphysematous mice during recovery from LPS. Myogenic signaling in skeletal muscle was altered, and fusion capacity of cultured muscle cells treated with plasma derived from LPS-treated emphysematous mice was significantly decreased. In conclusion, repetitive cycles of pulmonary inflammation elicit sustained muscle wasting in emphysematous mice due to impaired muscle mass recovery, which is accompanied by aberrant myogenesis.
Collapse
|