1
|
Campos A, Burgos-Ravanal R, Lobos-González L, Huilcamán R, González MF, Díaz J, Verschae AC, Acevedo JP, Carrasco M, Sepúlveda F, Jeldes E, Varas-Godoy M, Leyton L, Quest AF. Caveolin-1-dependent tenascin C inclusion in extracellular vesicles is required to promote breast cancer cell malignancy. Nanomedicine (Lond) 2023; 18:1651-1668. [PMID: 37929694 DOI: 10.2217/nnm-2023-0143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Background: Elevated expression of CAV1 in breast cancer increases tumor progression. Extracellular vesicles (EVs) from CAV1-expressing MDA-MB-231 breast cancer cells contain Tenascin C (TNC), but the relevance of TNC remained to be defined. Methods: EVs were characterized by nanotracking analysis, microscopy and western blotting. The uptake of EVs by cells was studied using flow cytometry. The effects of EVs on breast cancer cells were tested in migration, invasion, colony formation and in vivo assays. Results: EVs were taken up by cells; however, only those containing TNC promoted invasiveness. In vivo, EVs lacking TNC ceased to promote tumor growth. Conclusion: CAV1 and TNC contained in breast cancer cell-derived EVs were identified as proteins that favor progression of breast cancer.
Collapse
Affiliation(s)
- America Campos
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, 8380492, Universidad de Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago, 8340148, Chile
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, 8380492, Chile
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, Scotland
| | - Renato Burgos-Ravanal
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, 8380492, Universidad de Chile
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, 8380492, Chile
| | - Lorena Lobos-González
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, 8380492, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Santiago, 7610615, Chile
| | - Ricardo Huilcamán
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, 8380492, Universidad de Chile
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, 8380492, Chile
| | - María Fernanda González
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, 8380492, Universidad de Chile
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, 8380492, Chile
| | - Jorge Díaz
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, 8380492, Universidad de Chile
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, 8380492, Chile
| | - Albano Cáceres Verschae
- Laboratorio de Biología Celular del Cáncer, CEBICEM, Universidad San Sebastián, Santiago, 7510157, Chile
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Juan Pablo Acevedo
- Center of Interventional Medicine for Precision & Advanced Cellular Therapy (IMPACT), Santiago, 8331150, Chile
| | - Macarena Carrasco
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago, 8340148, Chile
| | - Francisca Sepúlveda
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago, 8340148, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Santiago, 7610615, Chile
| | - Emanuel Jeldes
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago, 8340148, Chile
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, Scotland
| | - Manuel Varas-Godoy
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago, 8340148, Chile
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, 8380492, Chile
- Laboratorio de Biología Celular del Cáncer, CEBICEM, Universidad San Sebastián, Santiago, 7510157, Chile
| | - Lisette Leyton
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, 8380492, Universidad de Chile
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, 8380492, Chile
| | - Andrew Fg Quest
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, 8380492, Universidad de Chile
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago, 8380492, Chile
| |
Collapse
|
2
|
Dual Magnetic Particle Imaging and Akaluc Bioluminescence Imaging for Tracking Cancer Cell Metastasis. Tomography 2023; 9:178-194. [PMID: 36828368 PMCID: PMC9968184 DOI: 10.3390/tomography9010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Magnetic particle imaging (MPI) provides hotspot tracking and direct quantification of superparamagnetic iron oxide nanoparticle (SPIO)-labelled cells. Bioluminescence imaging (BLI) with the luciferase reporter gene Akaluc can provide complementary information on cell viability. Thus, we explored combining these technologies to provide a more holistic view of cancer cell fate in mice. Akaluc-expressing 4T1Br5 cells were labelled with the SPIO Synomag-D and injected into the mammary fat pads (MFP) of four nude mice. BLI was performed on days 0, 6 and 13, and MPI was performed on days 1, 8 and 14. Ex vivo histology and fluorescence microscopy of MFP and a potential metastatic site was conducted. The BLI signal in the MFP increased significantly from day 0 to day 13 (p < 0.05), mirroring tumor growth. The MPI signal significantly decreased from day 1 to day 14 (p < 0.05) due to SPIO dilution in proliferating cells. Both modalities detected secondary metastases; however, they were visualized in different anatomical regions. Akaluc BLI complemented MPI cell tracking, allowing for longitudinal measures of cell viability and sensitive detection of distant metastases at different locations. We predict this multimodal imaging approach will help to evaluate novel therapeutics and give a better understanding of metastatic mechanisms.
Collapse
|
3
|
Helderman RFCPA, Restrepo MT, Rodermond HM, van Bochove GGW, Löke DR, Franken NAP, Kok HP, Tanis PJ, Crezee J, Oei AL. Non-Invasive Imaging and Scoring of Peritoneal Metastases in Small Preclinical Animal Models Using Ultrasound: A Preliminary Trial. Biomedicines 2022; 10:biomedicines10071610. [PMID: 35884917 PMCID: PMC9313051 DOI: 10.3390/biomedicines10071610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The peritoneum is a common site for the formation of metastases originating from several gastrointestinal and gynecological malignancies. A representative preclinical model to thoroughly explore the pathophysiological mechanisms and to study new treatment strategies is important. A major challenge for such models is defining and quantifying the (total) tumor burden in the peritoneal cavity prior to treatment, since it is preferable to use non-invasive methods. We evaluated ultrasound as a simple and easy-to-handle imaging method for this purpose. Methods: Peritoneal metastases were established in six WAG/Rij rats through i.p. injections of the colon carcinoma cell line CC-531. Using ultrasound, the location, number and size of intraperitoneal tumor nodules were determined by two independent observers. Tumor outgrowth was followed using ultrasound until the peritoneal cancer index (PCI) was ≥8. Interobserver variability and ex vivo correlation were assessed. Results: Visible peritoneal tumor nodules were formed in six WAG/Rij rats within 2–4 weeks after cell injection. In most animals, tumor nodules reached a size of 4–6 mm within 3–4 weeks, with total PCI scores ranging from 10–20. The predicted PCI scores using ultrasound ranged from 11–19 and from 8–18, for observer 1 and 2, respectively, which was quite similar to the ex vivo scores. Conclusions: Ultrasound is a reliable non-invasive method to detect intraperitoneal tumor nodules and quantify tumor outgrowth in a rat model.
Collapse
Affiliation(s)
- Roxan F. C. P. A. Helderman
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (R.F.C.P.A.H.); (H.M.R.); (G.G.W.v.B.); (D.R.L.); (N.A.P.F.); (H.P.K.); (J.C.)
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
| | - Mauricio Tobón Restrepo
- Division of Diagnostic Imaging, Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Hans M. Rodermond
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (R.F.C.P.A.H.); (H.M.R.); (G.G.W.v.B.); (D.R.L.); (N.A.P.F.); (H.P.K.); (J.C.)
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
| | - Gregor G. W. van Bochove
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (R.F.C.P.A.H.); (H.M.R.); (G.G.W.v.B.); (D.R.L.); (N.A.P.F.); (H.P.K.); (J.C.)
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
| | - Daan R. Löke
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (R.F.C.P.A.H.); (H.M.R.); (G.G.W.v.B.); (D.R.L.); (N.A.P.F.); (H.P.K.); (J.C.)
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
| | - Nicolaas A. P. Franken
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (R.F.C.P.A.H.); (H.M.R.); (G.G.W.v.B.); (D.R.L.); (N.A.P.F.); (H.P.K.); (J.C.)
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
| | - H. Petra Kok
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (R.F.C.P.A.H.); (H.M.R.); (G.G.W.v.B.); (D.R.L.); (N.A.P.F.); (H.P.K.); (J.C.)
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
| | - Pieter J. Tanis
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (R.F.C.P.A.H.); (H.M.R.); (G.G.W.v.B.); (D.R.L.); (N.A.P.F.); (H.P.K.); (J.C.)
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
| | - Arlene L. Oei
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (R.F.C.P.A.H.); (H.M.R.); (G.G.W.v.B.); (D.R.L.); (N.A.P.F.); (H.P.K.); (J.C.)
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
4
|
Buggisch JR, Göhler D, Sobilo J, Lerondel S, Rezniczek GA, Stintz M, Rudolph A, Tabchouri N, Roger S, Ouaissi M, Giger-Pabst U. Development and technical validation of an ultrasound nebulizer to deliver intraperitoneal pressurized aerosols in a rat colon cancer peritoneal metastases model. BMC Cancer 2022; 22:570. [PMID: 35597921 PMCID: PMC9124413 DOI: 10.1186/s12885-022-09668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/11/2022] [Indexed: 11/15/2022] Open
Abstract
Background/aim To develop and validate a nebulizer device for anti-cancer research on pressurized intraperitoneal aerosol supply in a preclinical peritoneal metastases (PM) rat model. Material and methods For aerosol generation, an ultrasonic nebulizer (USN) was modified. Aerosol analyses were performed ex-vivo by laser diffraction spectrometry (LDS). Intraperitoneal (IP) 99mtechnetium sodium pertechnetate (99mTc) aerosol distribution and deposition were quantified by in-vivo single photon emission computed tomography (SPECT/CT) and compared to liquid IP instillation of equivalent volume/doses of 99mTc with and without capnoperitoneum. PM was induced by IP injection of HCT116-Luc2 human colon cancer cells in immunosuppressed RNU rats. Tumor growth was monitored by bioluminescence imaging (BLI), 18F-FDG positron emission tomography (PET) and tissues examination at necropsy. Results The USN was able to establish a stable and reproducible capnoperitoneum at a pressure of 8 to 10 mmHg. LDS showed that the USN provides a polydisperse and monomodal aerosol with a volume-weighted diameter of 2.6 μm. At a CO2 flow rate of 2 L/min with an IP residence time of 3.9 s, the highest drug deposition efficiency was found to be 15 wt.-%. In comparison to liquid instillation, nebulization showed the most homogeneous IP spatial drug deposition. Compared to BLI, 18F-FDG-PET was more sensitive to detect smaller PM nodules measuring only 1–2 mm in diameter. BLI, 18F-FDG PET and necropsy analyses showed relevant PM in all animals. Conclusions The USN together with the PM rat model are suitable for robust and species-specific preclinical pharmacological studies regarding intraperitoneal delivery of pressurized aerosolized drugs and cancer research.
Collapse
Affiliation(s)
- Jonathan R Buggisch
- University of Münster, Medizinische Fakultät, Münster, Germany.,CNRS UPS44, CIPA, PHENOMIN-TAAM, Orléans, France
| | - Daniel Göhler
- Research Group Mechanical Process Engineering, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Dresden, Germany.,Technologie-orientierte Partikel-, Analysen- und Sensortechnik, Topas GmbH, Dresden, Germany
| | | | | | - Günther A Rezniczek
- Department of Obstetrics and Gynecology, Marien Hospital Herne, Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Stintz
- Research Group Mechanical Process Engineering, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Dresden, Germany
| | - Andreas Rudolph
- Technologie-orientierte Partikel-, Analysen- und Sensortechnik, Topas GmbH, Dresden, Germany
| | - Nicolas Tabchouri
- Department of Digestive, Oncological, Endocrine, Hepato-Biliary, Pancreatic and Liver Transplant Surgery, University Hospital of Tours, Lille, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, France.,Institut Universitaire de France, Paris, France
| | - Mehdi Ouaissi
- Department of Digestive, Oncological, Endocrine, Hepato-Biliary, Pancreatic and Liver Transplant Surgery, University Hospital of Tours, Lille, France.,EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, France
| | - Urs Giger-Pabst
- EA4245 Transplantation, Immunologie, Inflammation, Université de Tours, France. .,University of Applied Science Düsseldorf, 40489, Düsseldorf, Germany.
| |
Collapse
|
5
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
6
|
Husni P, Shin Y, Kim JC, Kang K, Lee ES, Youn YS, Rusdiana T, Oh KT. Photo-Based Nanomedicines Using Polymeric Systems in the Field of Cancer Imaging and Therapy. Biomedicines 2020; 8:E618. [PMID: 33339198 PMCID: PMC7765596 DOI: 10.3390/biomedicines8120618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
The use of photo-based nanomedicine in imaging and therapy has grown rapidly. The property of light in converting its energy into different forms has been exploited in the fields of optical imaging (OI) and phototherapy (PT) for diagnostic and therapeutic applications. The development of nanotechnology offers numerous advantages to overcome the challenges of OI and PT. Accordingly, in this review, we shed light on common photosensitive agents (PSAs) used in OI and PT; these include fluorescent and bioluminescent PSAs for OI or PT agents for photodynamic therapy (PDT) and photothermal therapy (PTT). We also describe photo-based nanotechnology systems that can be used in photo-based diagnostics and therapies by using various polymeric systems.
Collapse
Affiliation(s)
- Patihul Husni
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Yuseon Shin
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Jae Chang Kim
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Kioh Kang
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea;
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| |
Collapse
|
7
|
Spectral photon-counting CT imaging of colorectal peritoneal metastases: initial experience in rats. Sci Rep 2020; 10:13394. [PMID: 32770125 PMCID: PMC7414131 DOI: 10.1038/s41598-020-70282-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Computed tomography imaging plays a major role in the preoperative assessment of tumor burden by providing an accurate mapping of the distribution of peritoneal metastases (PM). Spectral Photon Counting Computed Tomography (SPCCT) is an innovative imaging modality that could overcome the current limitations of conventional CT, offering not only better spatial resolution but also better contrast resolution by allowing the discrimination of multiple contrast agents. Based on this capability, we tested the feasibility of SPCCT in the detection of PM at different time of tumor growth in 16 rats inoculated with CC531 cells using dual-contrast injection protocols in two compartments (i.e. intravenous iodine and intraperitoneal gadolinium or the reverse protocol), compared to surgery. For all peritoneal regions and for both protocols, sensitivity was 69%, specificity was 100% and accuracy was 80%, and the correlation with surgical exploration was strong (p = 0.97; p = 0.0001). No significant difference was found in terms of diagnostic performance, quality of peritoneal opacification or diagnostic quality between the 2 injection protocols. We also showed poor vascularization of peritoneal metastases by measuring low concentrations of contrast agent in the largest lesions using SPCCT, which was confirmed by immunohistochemical analyses. In conclusion, SPCCT using dual-contrast agent injection protocols in 2 compartments is a promising imaging modality to assess the extent of PM in a rat model.
Collapse
|
8
|
Taibi A, Albouys J, Jacques J, Perrin ML, Yardin C, Durand Fontanier S, Bardet SM. Comparison of implantation sites for the development of peritoneal metastasis in a colorectal cancer mouse model using non-invasive bioluminescence imaging. PLoS One 2019; 14:e0220360. [PMID: 31365553 PMCID: PMC6668798 DOI: 10.1371/journal.pone.0220360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
The development of cancer mouse models is still needed for the identification and preclinical validation of novel therapeutic targets in colorectal cancer, which is the third leading cause of cancer-related deaths in Europe. The purpose of this study was to determine the most accurate tumour cell injection method to obtain suitable peritoneal metastasis (PM) for subsequent therapeutic treatments. Here, we grafted murine colon carcinoma CT-26 cells expressing luciferase into immunocompetent BALB-c mice by intravenous injection (IV group), subcutaneous injection (SC group), intraperitoneal injection after peritoneal scratching (A group) or intraperitoneal injection alone (IP group). Tumour growth was monitored by bioluminescence during the first 15 days post-grafting. The peritoneal carcinomatosis index was evaluated macroscopically, histology, immunohistochemistry and multiphoton microscopy were performed in peritoneal tumour tissue. Upon implantation, no tumour growth was observed in the IV group, similar to the non-injected group. Both the IP and SC groups showed intermediate growth rates, but the SC group produced only a single subcutaneous nodule. The A group exhibited the highest tumour growth at 15 days post-surgery. Anatomic and histologic analyses corroborated the existence of various tumour nodules, and multiphoton microscopy was used to evaluate tumour fibrosis-infiltrating cells in a non-pathologic peritoneum. In conclusion, limited PM was obtained by IP injection, whereas IP injection after peritoneal scratching led to an extensive PM murine model for evaluating new therapeutics.
Collapse
Affiliation(s)
- Abdelkader Taibi
- Visceral Surgery Department, Dupuytren University Hospital, Limoges, France
- University Limoges, CNRS, XLIM, UMR 7252, Limoges, France
- * E-mail:
| | - Jeremie Albouys
- University Limoges, CNRS, XLIM, UMR 7252, Limoges, France
- Gastroenterology Department, Dupuytren University Hospital, Limoges, France
| | - Jeremie Jacques
- University Limoges, CNRS, XLIM, UMR 7252, Limoges, France
- Gastroenterology Department, Dupuytren University Hospital, Limoges, France
| | | | - Catherine Yardin
- University Limoges, CNRS, XLIM, UMR 7252, Limoges, France
- Cytology and Histology Department, Dupuytren University Hospital, Limoges, France
| | - Sylvaine Durand Fontanier
- Visceral Surgery Department, Dupuytren University Hospital, Limoges, France
- University Limoges, CNRS, XLIM, UMR 7252, Limoges, France
| | | |
Collapse
|
9
|
Momcilovic M, Shackelford DB. Imaging Cancer Metabolism. Biomol Ther (Seoul) 2018; 26:81-92. [PMID: 29212309 PMCID: PMC5746040 DOI: 10.4062/biomolther.2017.220] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.
Collapse
Affiliation(s)
- Milica Momcilovic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - David B Shackelford
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| |
Collapse
|