1
|
Ferreira AH, Real CC, Malafaia O. Heterobivalent Dual-Target Peptide for Integrin-α vβ 3 and Neuropeptide Y Receptors on Breast Tumor. Pharmaceuticals (Basel) 2024; 17:1328. [PMID: 39458969 PMCID: PMC11510292 DOI: 10.3390/ph17101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Heterodimer peptides targeting more than one receptor can be advantageous, as tumors can simultaneously express more than one receptor type. For human breast cancer, a promising biological target is tumor angiogenesis through αvβ3 integrin expression. Another promising target is Neuropeptide Y receptors, considering Y1R is overexpressed in 90% of human breast tumors. This article details the development and preclinical evaluation, both in vitro and in vivo, of a novel heterodimer peptide dual-receptor-targeting probe, [99mTc]HYNIC-cRGDfk-NPY, designed for imaging breast tumors. Methods: Female BALB/c healthy mice were used to perform biodistrubution studies and female SCID mice were subcutaneously injected with MCF-7 and MDA-MB-231 tumor cells. [99mTc]HYNIC-cRGDfk-NPY was intravenously administered to the mice, followed by ex vivo biodistribution studies and small-animal SPECT/CT imaging. Nonspecific tracer uptake in both models was determined by coinjecting an excess of unlabeled HYNIC-cRGDfk-NPY (100 µg) along with the radiolabeled tracer. Results: Imaging and biodistribution data demonstrate good uptake to estrogen receptor-positive (MCF-7) and triple-negative (MDA-MB-231) tumor models. The in vivo tumor uptakes of radiolabeled conjugate were 9.30 ± 3.25% and 4.93 ± 1.01% for MCF-7 and MDA-MB231, respectively. The tumor/muscle ratios were 5.65 ± 0.94 for the MCF-7 model and 7.78 ± 3.20 for MDA-MB231. Conclusions: [99mTc]HYNIC-cRGDfk-NPY demonstrated rapid blood clearance, renal excretion, and in vivo tumor uptake, highlighting its potential as a tumor imaging agent.
Collapse
Affiliation(s)
- Aryel H. Ferreira
- MackGraphe-Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
- Mackenzie Evangelical College of Paraná, Mackenzie Presbyterian University, Curitiba 80730-000, Brazil
- Nuclear and Energy Research Institute, Instituto de Pesquisas Energéticas e Nucleares da Comissão Nacional de Energia Nuclear—São Paulo (IPEN-CNEN/SP), São Paulo 05508-000, Brazil
| | - Caroline C. Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Osvaldo Malafaia
- Mackenzie Evangelical College of Paraná, Mackenzie Presbyterian University, Curitiba 80730-000, Brazil
| |
Collapse
|
2
|
De K, Tanbir SKE, Sinha S, Mukhopadhyay S. Lipid-Based Nanocarrier by Targeting with LHRH Peptide: A Promising Approach for Prostate Cancer Radio-Imaging and Therapy. Mol Pharm 2024; 21:4128-4146. [PMID: 38920398 DOI: 10.1021/acs.molpharmaceut.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Prostate cancer is a prevalently detected malignancy with a dismal prognosis. Luteinizing-hormone-releasing-hormone (LHRH) receptors are overexpressed in such cancer cells, to which the LHRH-decapeptide can specifically bind. A lipid-polyethylene glycol-conjugated new LHRH-decapeptide analogue (D-P-HLH) was synthesized and characterized. D-P-HLH-coated and anticancer drug doxorubicin (DX)-loaded solid lipid nanoparticles (F-DX-SLN) were formulated by the cold homogenization technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry, dynamic light scattering, electron microscopy, entrapment efficiency, and drug-release profile studies. F-DX-SLN allows site-specific DX delivery by reducing the side effects of chemotherapy. Cancer cells could precisely take up F-DX-SLN by targeting specific receptors, boosting the cytotoxicity at the tumor site. The efficacy of F-DX-SLN on PC3/SKBR3 cells by the MTT assay revealed that F-DX-SLN was more cytotoxic than DX and/or DX-SLN. Flow cytometry and confocal microscopic studies further support F-DX-SLNs' increased intracellular absorption capability in targeting LHRH overexpressed cancer cells. F-DX-SLN ensured high apoptotic potential, noticeably larger mitochondrial transmembrane depolarization action, as well as the activation of caspases, a longer half-life, and greater plasma concentration. F-DX-SLN/DX-SLN was radiolabeled with technetium-99m; scintigraphic imaging studies established its tumor selectivity in PC3 tumor-bearing nude mice. The efficacy of the formulations in cancer treatment, in vivo therapeutic efficacy tests, and histopathological studies were also conducted. Results clearly indicate that F-DX-SLN exhibits sustained and superior targeted administration of anticancer drugs, thus opening up the possibility of a drug delivery system with precise control and targeting effects. F-DX-SLN could also provide a nanotheranostic approach with improved efficacy for prostate cancer therapy.
Collapse
Affiliation(s)
- Kakali De
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - S K Eashayan Tanbir
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samarendu Sinha
- Netaji Subhas Chandra Bose Cancer Hospital, 3081 Nayabad, Kolkata 700094, India
| | - Soma Mukhopadhyay
- Netaji Subhas Chandra Bose Cancer Hospital, 3081 Nayabad, Kolkata 700094, India
| |
Collapse
|
3
|
Rezaeianpour M, Mazidi SM, Nami R, Geramifar P, Mosayebnia M. Vimentin-targeted radiopeptide 99m Tc-HYNIC-(tricine/EDDA)-VNTANST: a promising drug for pulmonary fibrosis imaging. Nucl Med Commun 2023; 44:777-787. [PMID: 37395537 DOI: 10.1097/mnm.0000000000001724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by the accumulation of extracellular matrix. Because there is no effective treatment for advanced IPF to date, its early diagnosis can be critical. Vimentin is a cytoplasmic intermediate filament that is significantly up-regulated at the surface of fibrotic foci with a crucial role in fibrotic morphological changes. METHODS In the present study, VNTANST sequence as a known vimentin-targeting peptide was conjugated to hydrazinonicotinic acid (HYNIC) and labeled with 99m Tc. The stability test in saline and human plasma and log P determination were performed. Next, the biodistribution study and single photon emission computed tomography (SPECT) integrated with computed tomography (CT) scanning were performed in healthy and bleomycin-induced fibrosis mice models. RESULTS The 99m Tc-HYNIC-(tricine/EDDA)-VNTANST showed a hydrophilic nature (log P = -2.20 ± 0.38) and high radiochemical purity > 97% and specific activity (336 Ci/mmol). The radiopeptide was approximately 93% and 86% intact in saline and human plasma within 6 h, respectively. The radiopeptide was substantially accumulated in the pulmonary fibrotic lesions (test vs. control = 4.08 ± 0.08% injected dose per gram (ID/g) vs. 0.36 ± 0.01% ID/g at 90 min postinjection). SPECT-CT images in fibrosis-bearing mice also indicated the fibrotic foci and kidneys. CONCLUSION Because there is no available drug for the treatment of advanced pulmonary fibrosis, early diagnosis is the only chance. The 99m Tc-HYNIC-(tricine/EDDA)-VNTANST could be a potential tracer for SPECT imaging of pulmonary fibrosis.
Collapse
Affiliation(s)
- Maliheh Rezaeianpour
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences
| | | | - Reza Nami
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences
- Department of Nuclear Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Mosayebnia
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
4
|
De K, Prasad P, Sinha S, Mukhopadhyay S, Roy SS. Synthesis, Characterization, and Biological Evaluation of Radiolabeled Glutamine Conjugated Polymeric Nanoparticles: A Simple Approach for Tumor Imaging. ACS APPLIED BIO MATERIALS 2023. [PMID: 37248067 DOI: 10.1021/acsabm.3c00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Application of nanoradiopharmaceuticals for molecular imaging has gained worldwide importance for their multifaceted potentials focusing on providing a safe and cost-effective approach. Biodistribution studies on such species are capable of bringing nanomedicine to patients. Current therapeutically available labeling strategies suffer from different limitations, including off-target cytotoxicity and radiolabel release over time. Poly(lactic-co-glycolic acid)(PLGA) nanoparticles are biodegradable carriers for a variety of contrast agents that can be employed in medicine with high loading capacity for multimodal imaging agents. Here, glutamine-conjugated PLGA polymers were used to construct polymeric nanoparticles (G-PNP) similar to unconjugated PLGA nanoparticles (PNP)s formulated for ex vivo cell labeling and in vivo tumor scintigraphy studies. G-PNP/PNP, characterized by Fourier-transform infrared, atomic-force-microscopy, particle-size, and zeta-potential studies, were biocompatible as evaluated by MTT assay. G-PNPs were radiolabeled with 99mtechnetium (99mTc) by borohydrite reduction. G-PNPs demonstrated higher cellular uptake than PNPs, with no major cytotoxicity. Radiochemical purity indicated that 99mTc labeled G-PNP (99mTc-G-PNP) can form a stable complex with substantial stability in serum with respect to time. Imaging studies showed that 99mTc-G-PNP significantly accumulated at the C6 glioma cell induced tumor-site in rats. Thus, 99mTc-G-PNP demonstrated favorable characteristics and imaging potential which may make it a promising tumor imaging nanoprobe as a nanoradiopharmaceutical.
Collapse
Affiliation(s)
- Kakali De
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Parash Prasad
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samarendu Sinha
- Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700 094, West Bengal, India
| | - Soma Mukhopadhyay
- Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700 094, West Bengal, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
5
|
Zhang L, Chen C, Zou W, Chen X, Zhou M, Ma C, Xi X, Chen T, Shaw C, Liu M, Wang L. Two novel bombesin-like neuropeptides from the skin secretion of Pelophylax kl. esculentus: Ex vivo pharmacological characterization on rat smooth muscle types. Front Mol Biosci 2022; 9:953974. [PMID: 36250016 PMCID: PMC9560764 DOI: 10.3389/fmolb.2022.953974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian bombesin-like neuropeptides (BLPs) play an important role in regulation of physiological and pathophysiological processes. Frog skin-derived BLPs, of smaller size and diverse lengths and sequences at their N-terminus, have attracted the attention of many researchers. However, these N-terminal variants and the receptors modulating their pharmacological actions are poorly studied and less understood. In this study, two BLPs, namely, [Asn3, Lys6, Thr10, Phe13]3–14-bombesin and [Asn3, Lys6, Phe13]3–14-bombesin with primary structures NLGKQWATGHFM and NLGKQWAVGHFM were isolated from the skin secretion of hybrid Pelophylax kl. esculentus. Both BLPs share a similar primary structure with only a single amino acid substitution at the eighth position (threonine to valine), while they have quite different myotropic potencies with EC50 values in the range of 22.64 ± 9.7 nM (N = 8) to 83.93 ± 46.9 nM (N = 8). The potency of [Asn3, Lys6, Thr10, Phe13]3–14-bombesin was approximately 3-fold higher than that of [Asn3, Lys6, Phe13]3–14-bombesin. Through the investigation of receptor selectivity using a canonical bombesin receptor antagonist, it was found that [Asn3, Lys6, Thr10, Phe13]3–14-bombesin and [Asn3, Lys6, Phe13]3–14-bombesin had an affinity to both BB1 and BB2 receptors. Their contractile functions are mainly modulated by both BB1 and BB2 receptors on rat urinary bladder and BB2 alone on rat uterus smooth muscle preparations. These data may provide new insights into the design of potent and selective ligands for bombesin receptors. Moreover, [Asn3, Lys6, Thr10, Phe13]3–14-bombesin and [Asn3, Lys6, Phe13]3–14-bombesin did not induce significant hemolysis and toxicity in normal human cells, suggesting that these two natural novel BLPs have great potential for development into new drug candidates.
Collapse
Affiliation(s)
- Luyao Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Chen Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wanchen Zou
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Xinping Xi
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Mingchun Liu, ; Lei Wang,
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Mingchun Liu, ; Lei Wang,
| |
Collapse
|
6
|
De K. Decapeptide Modified Doxorubicin Loaded Solid Lipid Nanoparticles as Targeted Drug Delivery System against Prostate Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13194-13207. [PMID: 34723562 DOI: 10.1021/acs.langmuir.1c01370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Growing instances of prostate cancer with poor prognosis have become a challenging task in cancer therapy. Luteinizing-hormone-releasing-hormone (LHRH) receptors are overexpressed in prostate cancer cells. Polyethylene glycol (PEG) conjugated lipids exhibit superiority in terms of retention/circulation in biological systems. PEGylated dipalmitoylphosphatedylethanolamine (DPPE-PEG), covalently linked with 6-hydrazinopyridine-3-carboxylic-acid, was conjugated with new LHRH-receptor positive peptide analog (DPPE-PEG-HYNIC-d-Glu-His-Trp-Ser-Tyr-d-Asn-Leu-d-Gln-Pro-Gly-NH2). Surface modified doxorubicin (DOX) loaded solid lipid nanoparticle (SLN) was prepared using soylecithin, stearic acid and Poloxamer-188 by solvent emulsification/evaporation method for targeted delivery of DOX into prostate cancer cells. SLN, DOX loaded SLN (DSLN) and surface modified DSLN (M-DSLN) were characterized by means of their size, zeta potential, morphology, storage time, drug payload, and subsequent release kinetics studies. Homogeneity of surface morphology, upon modification of SLN, was revealed from the dynamic light scattering, atomic force microscopy, and scanning electron microscopic studies. Homogeneous adsolubilization of DOX throughout the hydrophobic moiety of SLN was established by the differential scanning calorimetric studies. Release of DOX were sustained in DSLN and M-DSLN. Cellular uptake and in vitro activities of formulations against LHRH positive PC3/SKBR3 cancer cell lines revealed higher cellular internalization, cytotoxicity that followed the sequence DOX < DSLN < M-DSLN. Dye staining and flow cytometry studies revealed higher apoptosis in cancer cells. Such receptor specific drug delivery systems are considered to have substantial potential in prostate cancer therapy.
Collapse
Affiliation(s)
- Kakali De
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal India
| |
Collapse
|
7
|
Fang H, Cavaliere A, Li Z, Huang Y, Marquez-Nostra B. Preclinical Advances in Theranostics for the Different Molecular Subtypes of Breast Cancer. Front Pharmacol 2021; 12:627693. [PMID: 33986665 PMCID: PMC8111013 DOI: 10.3389/fphar.2021.627693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. The heterogeneity of breast cancer and drug resistance to therapies make the diagnosis and treatment difficult. Molecular imaging methods with positron emission tomography (PET) and single-photon emission tomography (SPECT) provide useful tools to diagnose, predict, and monitor the response of therapy, contributing to precision medicine for breast cancer patients. Recently, many efforts have been made to find new targets for breast cancer therapy to overcome resistance to standard of care treatments, giving rise to new therapeutic agents to offer more options for patients with breast cancer. The combination of diagnostic and therapeutic strategies forms the foundation of theranostics. Some of these theranostic agents exhibit high potential to be translated to clinic. In this review, we highlight the most recent advances in theranostics of the different molecular subtypes of breast cancer in preclinical studies.
Collapse
Affiliation(s)
- Hanyi Fang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Alessandra Cavaliere
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Ziqi Li
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Bernadette Marquez-Nostra
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|