1
|
Encarnação PMCC, Correia PMM, Ribeiro FM, Veloso JFCA. Timing performance evaluation of a dual-Axis rotational PET system according to NEMA NU 4-2008 standards: A simulation study. Biomed Phys Eng Express 2025; 11:035012. [PMID: 40146005 DOI: 10.1088/2057-1976/adc5f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025]
Abstract
Introduction:Positron Emission Tomography (PET) imaging's diagnostic accuracy is dependent on the scanner design and image quality, which is affected by several factors including the coincidence timing window (CTW). NEMA NU 4-2008 procedures are commonly used to assess and compare PET systems performance, including dual rotation technologies like easyPET.3D, known for high-spatial resolution and reduced parallax contribution.Aim:This study aims to identify easyPET.3D's optimal performance based on NEMA standards. In addition, explores the impact of different CTWs on PET image quality by comparing simulated electronics capable of a 300 ps CTW with a 40 ns CTW.Results:When the data is filtered by a 40 ns CTW, a sub-millimetre resolution at the field-of-view (FoV) centre and a constant behaviour in the radial direction are achieved. The absolute sensitivity was 0.18% with a maximum value of 0.31%, for a 15 mm transverse FoV. The noise equivalent count rate peaked at 18 MBq with 249 cps. Recovery coefficients ranged from 17% to 90%, and spilled-over ratios were 0.32 (water) and 0.41 (air).Conclusions:A shorter 300 ps CTW primarily impacted PET dynamic range, allowing higher activity acquisitions, with no significant changes in resolution and sensitivity under NEMA test conditions. As for the image quality test, the 300 ps CTW images have less background, better SOR values, and similar RC values when comparing the 40 ns CTW.
Collapse
Affiliation(s)
- P M C C Encarnação
- i3N (Institute for Nanostructures, Nanomodelling and Nanofabrication) and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - P M M Correia
- i3N (Institute for Nanostructures, Nanomodelling and Nanofabrication) and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - F M Ribeiro
- i3N (Institute for Nanostructures, Nanomodelling and Nanofabrication) and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - J F C A Veloso
- i3N (Institute for Nanostructures, Nanomodelling and Nanofabrication) and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Spahn MA, Loy TV, Celen S, Koole M, Deroose CM, Cawthorne C, Vanduffel W, Schols D, Bormans G, Cleeren F. Selective PET imaging of CXCR4 using the Al 18F-labeled antagonist LY2510924. Eur J Nucl Med Mol Imaging 2025; 52:1723-1738. [PMID: 39658737 PMCID: PMC11928405 DOI: 10.1007/s00259-024-07025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND [68Ga]PentixaFor detects C-X-C chemokine receptor type 4 (CXCR4) overexpression in various malignancies, such as multiple myeloma and non-Hodgkin lymphomas, as well as in endocrine and inflammatory disorders. This study aimed to develop an Al18F-labeled radiotracer derived from LY2510924 for CXCR4-targeted imaging, leveraging the physical and logistical advantages of fluorine-18. METHODS We designed a CXCR4-specific radioprobe, [18F]AlF-NOTA-SC, based on LY2510924 by incorporating a triglutamate linker and NOTA chelator to enable Al18F-labeling. The in vitro CXCR4 affinity was assessed using cell-based binding assays. Subsequently, in vivo pharmacokinetics and tumor uptake of [18F]AlF-NOTA-SC were assessed in naïve mice and mice with xenografts derived from U87.CD4/U87.CD4.CXCR4 and MM.1 S cells. Finally, biodistribution was determined in a non-human primate using PET-MR. RESULTS Compared to Ga-PentixaFor, AlF-NOTA-SC demonstrated similar in vitro affinity for human CXCR4. [18F]AlF-NOTA-SC was produced with a decay-corrected radiochemical yield of 21.0 ± 7.1% and an apparent molar activity of 16.4 ± 3.6 GBq/µmol. In [18F]AlF-NOTA-SC binding assays on U87.CD4.CXCR4 cells, the total bound fraction was 7.1 ± 0.5% (58% blocking by AMD3100). In naïve mice, the radiotracer did not accumulate in any organs; however, it showed a significant CXCR4-specific uptake in xenografted tumors (SUVmeanU87.CD4 = 0.04 ± 0.00 (n = 3); SUVmeanU87.CD4.CXCR4 = 3.04 ± 0.65 (n = 3); SUVmeanMM.1 S = 1.95 ± 0.11 (n = 3)). In a non-human primate, [18F]AlF-NOTA-SC accumulated in CXCR4 expressing organs, such as the spleen and bone marrow. CONCLUSION [18F]AlF-NOTA-SC exhibited CXCR4-specific uptake in vitro and in vivo, with fast and persistent tumor accumulation, making it a strong candidate for clinical translation as an 18F-alternative to [68Ga]PentixaFor.
Collapse
Affiliation(s)
- Muriel Aline Spahn
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, B-3000, Belgium
| | - Sofie Celen
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christopher Cawthorne
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, KU Leuven Medical School, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, B-3000, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Williams T, Groß R, Arias-Loza AP, Nordbeck P, Noerpel M, Cirnu A, Kimmel L, Ashour D, Ramos G, Waschke J, Higuchi T, Gerull B. Illuminating Cardiac Remodeling: Insights From [ 18F]-Fluorodeoxyglucose Positron Emission Tomography Imaging in Plakoglobin-Associated Arrhythmogenic Cardiomyopathy. J Am Heart Assoc 2025; 14:e038331. [PMID: 40028850 DOI: 10.1161/jaha.124.038331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/07/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is a genetic heart muscle disease, which presents with arrhythmias and sudden cardiac death, along with progressive cardiac remodeling and myocardial inflammation. This study aims to elucidate the patterns of [18F]-fluorodeoxyglucose ([18F]-FDG) uptake in a mouse model of plakoglobin-associated cardiac disease to better understand its diagnostic potential. METHODS AND RESULTS Plakoglobin (Jup) knockout mice developed a cardiomyopathy that presented an ACM-like phenotype at 6 weeks of age. Flow cytometry experiments showed a significant increase of immune cells, for example, an expansion of proinflammatory and tissue-injury macrophages. In vivo positron emission tomography and ex vivo autoradiography showed increased [18F]-FDG uptake in genotype positive hearts. A correlative analysis between [18F]-FDG positivity and macrophage infiltration using CD68 and CD206 staining did not show colocalization. CD68 and CD206 positivity was primarily observed within the fibrotic scar, whereas [18F]-FDG uptake was predominantly identified in CD68 and CD206-negative tissue areas. Instead, [18F]-FDG signal seemed to originate from cardiomyocytes adjacent to areas of fibrotic remodeling. Morphometric analysis revealed hypertrophy of these cardiomyocytes, which may reflect metabolic remodeling as a compensatory response. CONCLUSIONS In our murine model of Jup-related ACM, strong cardiac [18F]-FDG uptake was detected, which colocalized with regional hypertrophic cardiomyocytes rather than inflammatory cells. These findings indicate that [18F]-FDG positron emission tomography is a valuable tool for identifying and localizing hypermetabolic areas associated with cardiac remodeling in ACM, providing insights into disease mechanisms and potential diagnostic strategies.
Collapse
MESH Headings
- Animals
- Fluorodeoxyglucose F18
- Radiopharmaceuticals
- Ventricular Remodeling
- Disease Models, Animal
- Positron-Emission Tomography/methods
- Mice, Knockout
- gamma Catenin/metabolism
- Fibrosis
- Myocardium/pathology
- Myocardium/metabolism
- Arrhythmogenic Right Ventricular Dysplasia/metabolism
- Arrhythmogenic Right Ventricular Dysplasia/diagnostic imaging
- Arrhythmogenic Right Ventricular Dysplasia/genetics
- Macrophages/metabolism
- Macrophages/pathology
- Mannose Receptor
- Mice, Inbred C57BL
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Mannose-Binding Lectins/metabolism
- Mannose-Binding Lectins/genetics
- Mice
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Autoradiography
- Male
- Phenotype
- CD68 Molecule
Collapse
Affiliation(s)
- Tatjana Williams
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics University Hospital Würzburg Würzburg Germany
| | - Regina Groß
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics University Hospital Würzburg Würzburg Germany
| | - Anahi-Paula Arias-Loza
- Comprehensive Heart Failure Center, Department of Nuclear Medicine University Hospital Würzburg Würzburg Germany
| | - Peter Nordbeck
- Department of Internal Medicine I University Hospital Würzburg Würzburg Germany
| | - Mike Noerpel
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics University Hospital Würzburg Würzburg Germany
| | - Alexandra Cirnu
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics University Hospital Würzburg Würzburg Germany
| | - Laura Kimmel
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics University Hospital Würzburg Würzburg Germany
| | - DiyaaEldin Ashour
- Comprehensive Heart Failure Center, Immunocardiology Lab, University Hospital Würzburg Würzburg Germany
| | - Gustavo Ramos
- Comprehensive Heart Failure Center, Immunocardiology Lab, University Hospital Würzburg Würzburg Germany
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-University Munich Munich Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center, Department of Nuclear Medicine University Hospital Würzburg Würzburg Germany
| | - Brenda Gerull
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics University Hospital Würzburg Würzburg Germany
- Department of Internal Medicine I University Hospital Würzburg Würzburg Germany
| |
Collapse
|
4
|
Hesketh RL, Lewis DY, Brindle KM. Optimisation of Animal Handing and Timing of 2-deoxy-2-[ 18F]fluoro-D-glucose PET Tumour Imaging in Mice. Mol Imaging Biol 2024; 26:965-976. [PMID: 39528890 PMCID: PMC11634969 DOI: 10.1007/s11307-024-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE In humans, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) tumour-to-background contrast continues to increase long after a typical uptake period of 45 - 60 min. Similar studies have not been performed in mice and the static imaging time point for most studies is arbitrarily set at 30 - 60 min post-injection of [18F]FDG. Ideally, static PET imaging should be performed after the initial period of rapid uptake but this period has not been defined in mice, with previous dynamic studies in mice being limited to 60 min. This study aimed to define the kinetics of [18F]FDG biodistribution over periods of 3 - 4 h in different murine tumour models, both subcutaneous and autochthonous, and to further refine fasting and warming protocols used prior to imaging. PROCEDURES Dynamic [18F]FDG PET-CT scans lasting 3 or 4 h were performed with C57BL/6 J and Balb/c nude mice bearing subcutaneous EL4 murine T-cell lymphoma and Colo205 human colorectal tumours, respectively, and with transgenic Eμ-Myc lymphoma mice. Prior to [18F]FDG injection, four combinations of different animal handling conditions were used: warming for 1 h at 31 °C; maintenance at room temperature (20 - 24 °C), fasting for 6 - 10 h and a fed state. RESULTS Tumour mean standardised uptake value (SUVmean) peaked at 147 ± 48 min post injection in subcutaneous tumours and 74 ± 31 min in autochthonous Eμ-Myc lymphomas. The tumour-to-blood ratio (TBR) peaked at 171 ± 57 and 83 ± 33 min in subcutaneous and autochthonous Eμ-Myc tumours, respectively. Fasting increased tumour [18F]FDG uptake and suppressed myocardial uptake in EL4 tumour-bearing mice. There was a good correlation between tumour SUVmean and Ki calculated using an input function (IDIF) derived from the inferior vena cava. CONCLUSIONS Delayed static [18F]FDG-PET imaging (> 60 min) in both autochthonous and subcutaneous tumours in improved tumour-to-background contrast and increased reproducibility.
Collapse
Affiliation(s)
- Richard L Hesketh
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
- Centre for Medical Imaging, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7TY, UK.
| | - David Y Lewis
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
5
|
Urueña-Méndez G, Arrondeau C, Marchessaux F, Goutaudier R, Ginovart N. Dissociable Roles of the mPFC-to-VTA Pathway in the Control of Impulsive Action and Risk-Related Decision-Making in Roman High- and Low-Avoidance Rats. Int J Neuropsychopharmacol 2024; 27:pyae034. [PMID: 39155560 PMCID: PMC11450641 DOI: 10.1093/ijnp/pyae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Impulsive action and risk-related decision-making (RDM) are associated with various psychiatric disorders, including drug abuse. Both behavioral traits have also been linked to reduced frontocortical activity and alterations in dopamine function in the ventral tegmental area (VTA). However, despite direct projections from the medial prefrontal cortex (mPFC) to the VTA, the specific role of the mPFC-to-VTA pathway in controlling impulsive action and RDM remains unexplored. METHODS We used positron emission tomography with [18F]-fluorodeoxyglucose to evaluate brain metabolic activity in Roman high- (RHA) and low-avoidance (RLA) rats, which exhibit innate differences in impulsive action and RDM. Notably, we used a viral-based double dissociation chemogenetic strategy to isolate, for the first time to our knowledge, the role of the mPFC-to-VTA pathway in controlling these behaviors. We selectively activated the mPFC-to-VTA pathway in RHA rats and inhibited it in RLA rats, assessing the effects on impulsive action and RDM in the rat gambling task. RESULTS Our results showed that RHA rats displayed higher impulsive action, less optimal decision-making, and lower cortical activity than RLA rats at baseline. Chemogenetic activation of the mPFC-to-VTA pathway reduced impulsive action in RHA rats, whereas chemogenetic inhibition had the opposite effect in RLA rats. However, these manipulations did not affect RDM. Thus, by specifically targeting the mPFC-to-VTA pathway in a phenotype-dependent way, we reverted innate patterns of impulsive action but not RDM. CONCLUSION Our findings suggest a dissociable role of the mPFC-to-VTA pathway in impulsive action and RDM, highlighting its potential as a target for investigating impulsivity-related disorders.
Collapse
Affiliation(s)
- Ginna Urueña-Méndez
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chloé Arrondeau
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florian Marchessaux
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raphaël Goutaudier
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nathalie Ginovart
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Zachhuber L, Filip T, Mozayani B, Löbsch M, Scheiner S, Vician P, Stanek J, Hacker M, Helbich TH, Wanek T, Berger W, Kuntner C. Characterization of a Syngeneic Orthotopic Model of Cholangiocarcinoma by [ 18F]FDG-PET/MRI. Cancers (Basel) 2024; 16:2591. [PMID: 39061229 PMCID: PMC11275149 DOI: 10.3390/cancers16142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a type of primary liver cancer originating from the biliary tract epithelium, characterized by limited treatment options for advanced cases and low survival rates. This study aimed to establish an orthotopic mouse model for CCA and monitor tumor growth using PET/MR imaging. Murine CCA cells were implanted into the liver lobe of male C57BL/6J mice. The imaging groups included contrast-enhanced (CE) MR, CE-MR with static [18F]FDG-PET, and dynamic [18F]FDG-PET. Tumor volume and FDG uptake were measured weekly over four weeks. Early tumor formation was visible in CE-MR images, with a gradual increase in volume over time. Dynamic FDG-PET revealed an increase in the metabolic glucose rate (MRGlu) over time. Blood analysis showed pathological changes in liver-related parameters. Lung metastases were observed in nearly all animals after four weeks. The study concludes that PET-MR imaging effectively monitors tumor progression in the CCA mouse model, providing insights into CCA development and potential treatment strategies.
Collapse
Affiliation(s)
- Lena Zachhuber
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (L.Z.); (T.W.)
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Filip
- Institute of Animal Breeding and Genetics & Biomodels Austria, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Behrang Mozayani
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Mathilde Löbsch
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Scheiner
- Centre for Cancer Research and Comprehensive Cancer Center, Division of Applied and Experimental Oncology, Medical University of Vienna, 1090 Vienna, Austria (W.B.)
| | - Petra Vician
- Centre for Cancer Research and Comprehensive Cancer Center, Division of Applied and Experimental Oncology, Medical University of Vienna, 1090 Vienna, Austria (W.B.)
| | - Johann Stanek
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (L.Z.); (T.W.)
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas H. Helbich
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (L.Z.); (T.W.)
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Wanek
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (L.Z.); (T.W.)
| | - Walter Berger
- Centre for Cancer Research and Comprehensive Cancer Center, Division of Applied and Experimental Oncology, Medical University of Vienna, 1090 Vienna, Austria (W.B.)
| | - Claudia Kuntner
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (L.Z.); (T.W.)
- Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Liu Y, Jiang Z, Yang X, Wang Y, Yang B, Fu Q. Engineering Nanoplatforms for Theranostics of Atherosclerotic Plaques. Adv Healthc Mater 2024; 13:e2303612. [PMID: 38564883 DOI: 10.1002/adhm.202303612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Atherosclerotic plaque formation is considered the primary pathological mechanism underlying atherosclerotic cardiovascular diseases, leading to severe cardiovascular events such as stroke, acute coronary syndromes, and even sudden cardiac death. Early detection and timely intervention of plaques are challenging due to the lack of typical symptoms in the initial stages. Therefore, precise early detection and intervention play a crucial role in risk stratification of atherosclerotic plaques and achieving favorable post-interventional outcomes. The continuously advancing nanoplatforms have demonstrated numerous advantages including high signal-to-noise ratio, enhanced bioavailability, and specific targeting capabilities for imaging agents and therapeutic drugs, enabling effective visualization and management of atherosclerotic plaques. Motivated by these superior properties, various noninvasive imaging modalities for early recognition of plaques in the preliminary stage of atherosclerosis are comprehensively summarized. Additionally, several therapeutic strategies are proposed to enhance the efficacy of treating atherosclerotic plaques. Finally, existing challenges and promising prospects for accelerating clinical translation of nanoplatform-based molecular imaging and therapy for atherosclerotic plaques are discussed. In conclusion, this review provides an insightful perspective on the diagnosis and therapy of atherosclerotic plaques.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|