1
|
Martinelle L, Saegerman C. A Review on Reliable and Standardized Animal Models to Study the Pathogenesis of Schmallenberg Virus in Ruminant Natural Host Species. Methods Mol Biol 2025; 2893:207-222. [PMID: 39671040 DOI: 10.1007/978-1-0716-4338-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In the late summer of 2011, the Netherlands reported a cluster of reduced milk yield, fever, and diarrhea in dairy cattle. In March 2012, congenital malformations appeared, and Schmallenberg virus (SBV) was identified, becoming one of the few orthobunyaviruses distributed in Europe. Initially, little was known about the pathogenesis and epidemiology of these viruses in the European context, so assumptions were largely extrapolated from related viruses and other regions worldwide. To study SBV's pathogenesis and its ability to cross the placental barrier, standardized and repeatable models that mimic clinical signs observed in the field are essential. This review discusses some of the latest experimental designs for infectious disease challenges involving SBV, covering infectious doses, routes of infection, inoculum preparation, and origin. Special attention is given to the placental crossing associated with SBV.
Collapse
Affiliation(s)
- Ludovic Martinelle
- Faculty of Veterinary Medicine, CARE-FEPEX experimental Station, Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, Liege, Belgium
| | - Claude Saegerman
- Faculty of Veterinary Medicine, Research Unit of Epidemiology and Risk analysis applied to Veterinary sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, Liege, Belgium.
| |
Collapse
|
2
|
Drolet BS, Reister-Hendricks L, Mayo C, Rodgers C, Molik DC, McVey DS. Increased Virulence of Culicoides Midge Cell-Derived Bluetongue Virus in IFNAR Mice. Viruses 2024; 16:1474. [PMID: 39339950 PMCID: PMC11437402 DOI: 10.3390/v16091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bluetongue (BT) is a Culicoides midge-borne hemorrhagic disease affecting cervids and ruminant livestock species, resulting in significant economic losses from animal production and trade restrictions. Experimental animal infections using the α/β interferon receptor knockout IFNAR mouse model and susceptible target species are critical for understanding viral pathogenesis, virulence, and evaluating vaccines. However, conducting experimental vector-borne transmission studies with the vector itself are logistically difficult and experimentally problematic. Therefore, experimental infections are induced by hypodermic injection with virus typically derived from baby hamster kidney (BHK) cells. Unfortunately, for many U.S. BTV serotypes, it is difficult to replicate the severity of the disease seen in natural, midge-transmitted infections by injecting BHK-derived virus into target host animals. Using the IFNAR BTV murine model, we compared the virulence of traditional BHK cell-derived BTV-17 with C. sonorensis midge (W8) cell-derived BTV-17 to determine whether using cells of the transmission vector would provide an in vitro virulence aspect of vector-transmitted virus. At both low and high doses, mice inoculated with W8-BTV-17 had an earlier onset of viremia, earlier onset and peak of clinical signs, and significantly higher mortality compared to mice inoculated with BHK-BTV-17. Our results suggest using a Culicoides W8 cell-derived inoculum may provide an in vitro vector-enhanced infection to more closely represent disease levels seen in natural midge-transmitted infections while avoiding the logistical and experimental complexity of working with live midges.
Collapse
Affiliation(s)
- Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Lindsey Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - David C. Molik
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - David Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, P.O. Box 830905, Lincoln, NE 68583, USA;
| |
Collapse
|
3
|
Rodríguez-Martín D, Louloudes-Lázaro A, Avia M, Martín V, Rojas JM, Sevilla N. The Interplay between Bluetongue Virus Infections and Adaptive Immunity. Viruses 2021; 13:1511. [PMID: 34452376 PMCID: PMC8402766 DOI: 10.3390/v13081511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Viral infections have long provided a platform to understand the workings of immunity. For instance, great strides towards defining basic immunology concepts, such as MHC restriction of antigen presentation or T-cell memory development and maintenance, have been achieved thanks to the study of lymphocytic choriomeningitis virus (LCMV) infections. These studies have also shaped our understanding of antiviral immunity, and in particular T-cell responses. In the present review, we discuss how bluetongue virus (BTV), an economically important arbovirus from the Reoviridae family that affects ruminants, affects adaptive immunity in the natural hosts. During the initial stages of infection, BTV triggers leucopenia in the hosts. The host then mounts an adaptive immune response that controls the disease. In this work, we discuss how BTV triggers CD8+ T-cell expansion and neutralizing antibody responses, yet in some individuals viremia remains detectable after these adaptive immune mechanisms are active. We present some unpublished data showing that BTV infection also affects other T cell populations such as CD4+ T-cells or γδ T-cells, as well as B-cell numbers in the periphery. This review also discusses how BTV evades these adaptive immune mechanisms so that it can be transmitted back to the arthropod host. Understanding the interaction of BTV with immunity could ultimately define the correlates of protection with immune mechanisms that would improve our knowledge of ruminant immunology.
Collapse
Affiliation(s)
| | | | | | | | | | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (D.R.-M.); (A.L.-L.); (M.A.); (V.M.); (J.M.R.)
| |
Collapse
|
4
|
Ain KU, Biswas SK, Inbaraj S, Chand K, Saxena A, Ramakrishnan MA, Sunder J, Kundu A, Pandey AB. Deciphering type-specific neutralizing antibodies to bluetongue virus in goats of Andaman and Nicobar Islands, India. Trop Anim Health Prod 2020; 52:2715-2719. [PMID: 32100170 DOI: 10.1007/s11250-020-02237-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/13/2020] [Indexed: 11/25/2022]
Abstract
The presence of antibodies to bluetongue virus (BTV) and the viral antigen is reported recently from the Andaman and Nicobar Islands, a group of islands at the juncture of the Bay of Bengal and the Andaman Sea. A retrospective study was conducted to investigate the presence of neutralizing antibodies to different BTV serotypes in the seroconverted goats of the Islands. Thirty six samples out of 186 serum samples tested were selected on the basis of high antibody titre as predicted in an indirect ELISA. Each of the selected serum samples was used for neutralization of six BTV serotypes (BTV-1, BTV-2, BTV-9, BTV-10, BTV-16 and BTV-23), the most commonly reported serotypes in India. Out of 36 serum samples used in the neutralization study, neutralizing antibodies could be determined in 15 samples. The neutralizing antibodies to BTV-10 were found in more number of the serum samples followed by BTV-1, BTV-2 and BTV-23 and BTV-9 and BTV-16. Many of the serum samples could neutralize more than one BTV serotypes indicating possible widespread superinfections by multiple BTV serotypes in goats in the Islands. Majority of the serum samples used in the neutralization study could not neutralize any of the six BTV serotypes commonly reported from India indicating possible circulation of other BTV serotypes yet to confirm. The present study reveals circulation of multiple BTV serotypes in Andaman and Nicobar Islands where there was no such report available earlier. The findings are laudable as the baseline information for further investigations to identify and characterize the virus and competent vectors and for implementing appropriate suitable control strategies for bluetongue in the Islands and the nearby territories.
Collapse
Affiliation(s)
- Kurat Ul Ain
- ICAR-Indian Veterinary Research Institute, Mukteswar, Kumaon, Nainital, Uttarakhand, India
| | - Sanchay Kumar Biswas
- ICAR-Indian Veterinary Research Institute, Mukteswar, Kumaon, Nainital, Uttarakhand, India.
| | - Sophia Inbaraj
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Karam Chand
- ICAR-Indian Veterinary Research Institute, Mukteswar, Kumaon, Nainital, Uttarakhand, India
| | - Arpit Saxena
- ICAR-Indian Veterinary Research Institute, Mukteswar, Kumaon, Nainital, Uttarakhand, India
| | | | - Jai Sunder
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Anandamoy Kundu
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Awadh Bihari Pandey
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
5
|
Reliable and Standardized Animal Models to Study the Pathogenesis of Bluetongue and Schmallenberg Viruses in Ruminant Natural Host Species with Special Emphasis on Placental Crossing. Viruses 2019; 11:v11080753. [PMID: 31443153 PMCID: PMC6722754 DOI: 10.3390/v11080753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023] Open
Abstract
Starting in 2006, bluetongue virus serotype 8 (BTV8) was responsible for a major epizootic in Western and Northern Europe. The magnitude and spread of the disease were surprisingly high and the control of BTV improved significantly with the marketing of BTV8 inactivated vaccines in 2008. During late summer of 2011, a first cluster of reduced milk yield, fever, and diarrhoea was reported in the Netherlands. Congenital malformations appeared in March 2012 and Schmallenberg virus (SBV) was identified, becoming one of the very few orthobunyaviruses distributed in Europe. At the start of both epizootics, little was known about the pathogenesis and epidemiology of these viruses in the European context and most assumptions were extrapolated based on other related viruses and/or other regions of the World. Standardized and repeatable models potentially mimicking clinical signs observed in the field are required to study the pathogenesis of these infections, and to clarify their ability to cross the placental barrier. This review presents some of the latest experimental designs for infectious disease challenges with BTV or SBV. Infectious doses, routes of infection, inoculum preparation, and origin are discussed. Particular emphasis is given to the placental crossing associated with these two viruses.
Collapse
|
6
|
Bluetongue Virus in France: An Illustration of the European and Mediterranean Context since the 2000s. Viruses 2019; 11:v11070672. [PMID: 31340459 PMCID: PMC6669443 DOI: 10.3390/v11070672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 01/24/2023] Open
Abstract
Bluetongue (BT) is a non-contagious animal disease transmitted by midges of the Culicoides genus. The etiological agent is the BT virus (BTV) that induces a variety of clinical signs in wild or domestic ruminants. BT is included in the notifiable diseases list of the World Organization for Animal Health (OIE) due to its health impact on domestic ruminants. A total of 27 BTV serotypes have been described and additional serotypes have recently been identified. Since the 2000s, the distribution of BTV has changed in Europe and in the Mediterranean Basin, with continuous BTV incursions involving various BTV serotypes and strains. These BTV strains, depending on their origin, have emerged and spread through various routes in the Mediterranean Basin and/or in Europe. Consequently, control measures have been put in place in France to eradicate the virus or circumscribe its spread. These measures mainly consist of assessing virus movements and the vaccination of domestic ruminants. Many vaccination campaigns were first carried out in Europe using attenuated vaccines and, in a second period, using exclusively inactivated vaccines. This review focuses on the history of the various BTV strain incursions in France since the 2000s, describing strain characteristics, their origins, and the different routes of spread in Europe and/or in the Mediterranean Basin. The control measures implemented to address this disease are also discussed. Finally, we explain the circumstances leading to the change in the BTV status of France from BTV-free in 2000 to an enzootic status since 2018.
Collapse
|
7
|
Putty K, Shaik AM, Peera SJ, Reddy YN, Rao PP, Patil SR, Reddy MS, Susmitha B, Jyothi JS. Infection kinetics and antibody responses in Deccani sheep during experimental infection and superinfection with bluetongue virus serotypes 4 and 16. Vet World 2019; 12:41-47. [PMID: 30936652 PMCID: PMC6431802 DOI: 10.14202/vetworld.2019.41-47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
Aim: The current study was designed to understand the infection kinetics and antibody responses of major circulating serotypes of bluetongue virus (BTV) in India, i.e., BTV-4 and BTV-16 through experimental infection and superinfection of Deccani sheep, a popular breed of sheep found in the southern states of India. Materials and Methods: Experimental infection with 106 TCID50/ml BTV-4 was followed by superinfection with BTV-16 and vice versa. Along with observing for clinical signs and immunological responses in the experimentally infected sheep, the effect of infection of one specific serotype on the outcome of superinfection with a different serotype was also studied. Results: Certain interesting findings have been made in the course of experimental infection, such as prominent signs of infection in BTV-4 infection, mild or no clinical signs in BTV-16-infected and superinfected animals, and non-seroconversion of one of the BTV-16-superinfected animals. In addition, BTV was isolated from infected sheep in all the experimental conditions except BTV-16 superinfection. Furthermore, it was observed that immune response in the form of type-specific antibodies was slower with BTV-16 superinfection. Conclusion: Superinfection of a sheep with more than one serotype of BTV is a common phenomenon in BT endemic countries like India. Such situation was replicated in an experimental infection in the current study, and the findings to our knowledge are first of a kind and are likely to aid in unfolding the newer aspects of BTV pathogenesis and virulence.
Collapse
Affiliation(s)
- Kalyani Putty
- Department of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, Rajendranagar, P V Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - Abdul Muzeer Shaik
- Veterinary Dispensary, Department of Animal Husbandry, Labbipet, Vijayawada, Andhra Pradesh, India
| | - Shaik Jahangeer Peera
- Veterinary Dispensary, Department of Animal Husbandry, Labbipet, Vijayawada, Andhra Pradesh, India
| | - Y Narasimha Reddy
- Department of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, Rajendranagar, P V Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - P P Rao
- Biovet, KIADB Industrial Area, Malur, Karnataka, India
| | - Sunil R Patil
- Department of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, Rajendranagar, P V Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - M Shreekanth Reddy
- Department of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, Rajendranagar, P V Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| | - B Susmitha
- Ella Foundation, Genome Valley, Shamirpet, Hyderabad, Telangana, India
| | - J Shiva Jyothi
- Department of Veterinary Microbiology and Veterinary Biotechnology, College of Veterinary Science, Rajendranagar, P V Narasimha Rao Telangana Veterinary University, Hyderabad, Telangana, India
| |
Collapse
|
8
|
De A, Das TK, Chand K, Debnath BC, Dey S, Hemadri D, Barman NN, Chaudhary JK, Muthuchelvan D, Saxena A, Tewari N, Chauhan A, Lohumi A, Biswas SK. Seroprevalence of bluetongue and presence of viral antigen and type-specific neutralizing antibodies in goats in Tripura, a state at Indo-Bangladesh border of northeastern India. Trop Anim Health Prod 2018; 51:261-265. [DOI: 10.1007/s11250-018-1672-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
|
9
|
Sohail T, Yaqub T, Shafee M, Abbas T, Nazir J, Ullah N, Rabbani M, Chaudhary MH, Mukhtar N, Habib M, Ul Rahman A, Malik AI, Ghafoor A, Zahoor MY, Shabbir MZ. Seroprevalence of Bluetongue Virus in small ruminants in Balochistan province, Pakistan. Transbound Emerg Dis 2018; 65:1272-1281. [DOI: 10.1111/tbed.12871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 12/01/2022]
Affiliation(s)
- T. Sohail
- University of Veterinary and Animal Sciences; Lahore Pakistan
| | - T. Yaqub
- University of Veterinary and Animal Sciences; Lahore Pakistan
| | - M. Shafee
- University of Balochistan; Quetta Pakistan
| | - T. Abbas
- Islamia University of Bahawalpur; Bahawalpur Pakistan
| | - J. Nazir
- University of Veterinary and Animal Sciences; Lahore Pakistan
| | - N. Ullah
- University of Balochistan; Quetta Pakistan
| | - M. Rabbani
- University of Veterinary and Animal Sciences; Lahore Pakistan
| | | | - N. Mukhtar
- Institute of Public Health; Lahore Pakistan
| | - M. Habib
- University of Veterinary and Animal Sciences; Lahore Pakistan
| | - A. Ul Rahman
- University of Veterinary and Animal Sciences; Lahore Pakistan
| | - A. I. Malik
- University of Veterinary and Animal Sciences; Lahore Pakistan
| | - A. Ghafoor
- University of Veterinary and Animal Sciences; Lahore Pakistan
| | - M. Y. Zahoor
- University of Veterinary and Animal Sciences; Lahore Pakistan
| | - M. Z. Shabbir
- University of Veterinary and Animal Sciences; Lahore Pakistan
| |
Collapse
|
10
|
Rojas JM, Rodríguez-Calvo T, Sevilla N. Recall T cell responses to bluetongue virus produce a narrowing of the T cell repertoire. Vet Res 2017; 48:38. [PMID: 28662714 PMCID: PMC5492282 DOI: 10.1186/s13567-017-0444-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/26/2017] [Indexed: 11/12/2022] Open
Abstract
In most viral infections, recall T cell responses are critical for protection. The magnitude of these secondary responses can also affect the CD8 and CD4 epitope repertoire diversity. Bluetongue virus (BTV) infection in sheep elicits a T cell response that contributes to viremia control and could be relevant for cross-protection between BTV serotypes. Here, we characterized CD4+ and CD8+ T cell responses during primary and recall responses. During primary immune responses, both CD4+ and CD8+ T cell populations expanded by 14 days post-infection (dpi). CD4+ T cell populations showed a lower peak of expansion and prolonged contraction phase compared to CD8+ T cell populations. Recall responses to BTV challenge led to BTV-specific expansion and activation of CD8+ but not of CD4+ T cells. The evolution of the BTV-specific TCR repertoire was also characterized in response to VP7 peptide stimulation. Striking differences in repertoire development were noted over the time-course of infection. During primary responses, a broader repertoire was induced for MHC-I and MHC-II epitopes. However, during memory responses, a narrowed repertoire was activated towards a dominant motif in VP7 comprising amino acids 139–291. Monocytes were also examined, and expanded during acute infection resolution. In addition, pro-inflammatory cytokine levels increased after BTV inoculation and persisted throughout the experiment, indicative of a prolonged inflammatory state during BTV infections. These findings could have implications for vaccine design as the narrowing memory T cell repertoire induced after BTV re-infection could lead to the development of protective immunodominant TCR repertoires that differs between individual sheep.
Collapse
Affiliation(s)
- José-Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación Agraria y Alimentaria, Ctra Algete a El Casar km 8, Valdeolmos, 28130, Madrid, Spain
| | - Teresa Rodríguez-Calvo
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación Agraria y Alimentaria, Ctra Algete a El Casar km 8, Valdeolmos, 28130, Madrid, Spain.,Institute of Diabetes Research, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación Agraria y Alimentaria, Ctra Algete a El Casar km 8, Valdeolmos, 28130, Madrid, Spain.
| |
Collapse
|
11
|
Abstract
The performance of different bluetongue control measures related to both vaccination and protection from bluetongue virus (BTV) vectors was assessed. By means of a mathematical model, it was concluded that when vaccination is applied on 95% of animals even for 3 years, bluetongue cannot be eradicated and is able to re‐emerge. Only after 5 years of vaccination, the infection may be close to the eradication levels. In the absence of vaccination, the disease can persist for several years, reaching an endemic condition with low level of prevalence of infection. Among the mechanisms for bluetongue persistence, the persistence in the wildlife, the transplacental transmission in the host, the duration of viraemia and the possible vertical transmission in vectors were assessed. The criteria of the current surveillance scheme in place in the EU for demonstration of the virus absence need revision, because it was highlighted that under the current surveillance policy bluetongue circulation might occur undetected. For the safe movement of animals, newborn ruminants from vaccinated mothers with neutralising antibodies can be considered protected against infection, although a protective titre threshold cannot be identified. The presence of colostral antibodies interferes with the vaccine immunisation in the newborn for more than 3 months after birth, whereas the minimum time after vaccination of animal to be considered immune can be up to 48 days. The knowledge about vectors ecology, mechanisms of over‐wintering and criteria for the seasonally vector‐free period was updated. Some Culicoides species are active throughout the year and an absolute vector‐free period may not exist at least in some areas in Europe. To date, there is no evidence that the use of insecticides and repellents reduce the transmission of BTV in the field, although this may reduce host/vector contact. By only using pour‐on insecticides, protection of animals is lower than the one provided by vector‐proof establishments. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1182/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1171/full
Collapse
|