1
|
Nielsen SS, Alvarez J, Calistri P, Canali E, Drewe JA, Garin-Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin MS, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Bron J, Olesen NJ, Sindre H, Stone D, Vendramin N, Antoniou SE, Broglia A, Karagianni AE, Papanikolaou A, Bicout DJ. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU)2016/429): Infection with salmonid alphavirus (SAV). EFSA J 2023; 21:e08327. [PMID: 37908450 PMCID: PMC10613945 DOI: 10.2903/j.efsa.2023.8327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Infection with salmonid alphavirus (SAV) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid out in Article 9 and Article 8 for listing animal species related to infection with SAV. The assessment was performed following the ad hoc method on data collection and assessment developed by AHAW Panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment, it was uncertain whether infection with salmonid alphavirus can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (50-80% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that infection with salmonid alphavirus does not meet the criteria in Section 1 (Category A; 5-10% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 50-90%, probability of meeting the criteria). The animal species to be listed for infection with SAV according to Article 8 criteria are provided.
Collapse
|
2
|
Holen E, Chen M, Fjelldal PG, Skjærven K, Sissener NH, Remø S, Prabhu AJ, Hamre K, Vikeså V, Subramanian S, Espe M. Tailoring freshwater diets towards boosted immunity and pancreas disease infection robustness in Atlantic salmon post smolts. FISH & SHELLFISH IMMUNOLOGY 2022; 120:377-391. [PMID: 34808357 DOI: 10.1016/j.fsi.2021.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The aim of the current study was to investigate how freshwater diets impact on immunity in Atlantic salmon smolts in freshwater, during transfer to seawater and in post smolts during the seawater stage with and without pancreas disease (PD) infection. Three specific freshwater diets were prepared: (i) A diet similar in composition to commercial salmon freshwater diets (Standard diet); (ii) A diet composed of vegetable oils (rapeseed, palm and linseed oils) mimicking the fat composition in aquatic insects - the natural diet of wild salmon in freshwater (Fatty acid diet); (iii) A diet enriched with possible immune modulating amino acids including dl-methionine, l-lysine, l-threonine and taurine (Amino acid diet). After seawater transfer, all fish were fed the same commercial diet. Head kidneys were extracted, and their leukocytes isolated from smolts right before transfer to seawater, from post smolts one and six weeks after transfer to seawater, and from post smolts in seawater after 8 weeks of ongoing PD infection. In addition, to provoke bacterial or virus induced inflammation in vitro, the individual leukocyte suspension from all fish were stimulated by lipopolysaccharide (LPS) or polyinosinic acid: polycytidylic acid (PIC). The transfer of smolts from fresh-to seawater changed the transcription of several types of genes. Particularly in isolates from fish fed the Standard or Fatty acid diet in freshwater, overall gene transcription (IL-1β, CD83, INF-γ, cox2, cd36, MGAT2, catalase) declined. However, the Amino acid diet stimulated the LPS induced gene transcription of IL-1β, CD83, Cox2, and INF-γ at this stage. In freshwater smolts, PIC stimulated leukocytes showed higher transcription level of Mx and viperin in the Fatty acid and Amino acid diet groups compared to the Standard diet group. In seawater post smolts, Mx and viperin responded similarly to PIC challenge in all diet groups. Furthermore, leukocytes isolated from PD infected fish, continued responding to PIC, regardless of freshwater diet.
Collapse
Affiliation(s)
- E Holen
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway.
| | - M Chen
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway; Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - P G Fjelldal
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - K Skjærven
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - N H Sissener
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - S Remø
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - A J Prabhu
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - K Hamre
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| | - V Vikeså
- Skretting ARC, Sjøhagen 3, 4026, Stavanger, Norway
| | | | - M Espe
- Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway
| |
Collapse
|
3
|
Røsæg MV, Thorarinsson R, Aunsmo A. Effect of vaccines against pancreas disease in farmed Atlantic salmon. JOURNAL OF FISH DISEASES 2021; 44:1911-1924. [PMID: 34402092 PMCID: PMC9291808 DOI: 10.1111/jfd.13505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 05/19/2023]
Abstract
Pancreas disease (PD) caused by salmonid alphavirus (SAV) continues to negatively impact salmon farming. To assess the effect on growth and mortality of three vaccines against PD, two controlled field designs were employed: one controlled field study with individual marked fish (PIT tag) assessing three PD vaccines and three controls groups, and a second controlled field study with group marked fish (Maxilla) comparing two PD vaccines against controls. In addition, a descriptive study using whole cages compared fish immunized with two different PD vaccines against controls. The target populations experienced a natural PD outbreak where both SAV 2 and SAV 3 were identified. Only one of the PD vaccines provided statistically significant improvements in harvest weight of 0.43 kg (CI: 0.29-0.57) and 0.51 kg (CI: 0.36-0.65) compared with the control in the PIT tag and the Maxilla study, respectively. In the latter, a significant reduction in mortality of 1.31 (CI:0.8-1.8) per cent points was registered for the same vaccine compared with controls. These results aligned with the growth and PD-specific mortality registered in the descriptive Cage study. The data in this study show a difference in the efficacy of PD vaccines in farmed Atlantic salmon.
Collapse
Affiliation(s)
| | | | - Arnfinn Aunsmo
- Faculty of Veterinary MedicineUniversity of Life SciencesOsloNorway
- Present address:
Laxar fiskeldi ehfEskifjörðurIceland
| |
Collapse
|
4
|
The C-Terminal Domain of Salmonid Alphavirus Nonstructural Protein 2 (nsP2) Is Essential and Sufficient To Block RIG-I Pathway Induction and Interferon-Mediated Antiviral Response. J Virol 2021; 95:e0115521. [PMID: 34523969 DOI: 10.1128/jvi.01155-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonid alphavirus (SAV) is an atypical alphavirus that has a considerable impact on salmon and trout farms. Unlike other alphaviruses, such as the chikungunya virus, SAV is transmitted without an arthropod vector, and it does not cause cell shutoff during infection. The mechanisms by which SAV escapes the host immune system remain unknown. By studying the role of SAV proteins on the RIG-I signaling cascade, the first line of defense of the immune system during infection, we demonstrated that nonstructural protein 2 (nsP2) effectively blocks the induction of type I interferon (IFN). This inhibition, independent of the protease activity carried by nsP2, occurs downstream of IRF3, which is the transcription factor allowing the activation of the IFN promoter and its expression. The inhibitory effect of nsP2 on the RIG-I pathway depends on the localization of nsP2 in the host cell nucleus, which is linked to two nuclear localization sequences (NLS) located in its C-terminal part. The C-terminal domain of nsP2 by itself is sufficient and necessary to block IFN induction. Mutation of the NLS of nsP2 is deleterious to the virus. Finally, nsP2 does not interact with IRF3, indicating that its action is possible through a targeted interaction within discrete areas of chromatin, as suggested by its punctate distribution observed in the nucleus. These results therefore demonstrate a major role for nsP2 in the control by SAV of the host cell's innate immune response. IMPORTANCE The global consumption of fish continues to rise, and the future demand cannot be met by capture fisheries alone due to limited stocks of wild fish. Aquaculture is currently the world's fastest-growing food production sector, with an annual growth rate of 6 to 8%. Recurrent outbreaks of SAV result in significant economic losses with serious environmental consequences for wild stocks. While the clinical and pathological signs of SAV infection are fairly well known, the molecular mechanisms involved are poorly described. In the present study, we focus on the nonstructural protein nsP2 and characterize a specific domain containing nuclear localization sequences that are critical for the inhibition of the host innate immune response mediated by the RIG-I pathway.
Collapse
|
5
|
Aksnes I, Braaen S, Markussen T, Åkesson CP, Villoing S, Rimstad E. Genetically modified attenuated salmonid alphavirus: A potential strategy for immunization of Atlantic salmon. JOURNAL OF FISH DISEASES 2021; 44:923-937. [PMID: 33591590 DOI: 10.1111/jfd.13352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Pancreas disease (PD) is a serious challenge in European salmonid aquaculture caused by salmonid alphavirus (SAV). In this study, we report the effect of immunization of Atlantic salmon with three attenuated infectious SAV3 strains with targeted mutations in a glycosylation site of the envelope E2 protein and/or in a nuclear localization signal in the capsid protein. In a pilot experiment, it was shown that the mutated viral strains replicated in fish, transmitted to naïve cohabitants and that the transmission had not altered the sequences. In the main experiment, the fish were immunized with the strains and challenged with SAV3 eight weeks after immunization. Immunization resulted in infection both in injected fish and 2 weeks later in the cohabitant fish, followed by a persistent but declining load of the mutated virus variants in the hearts. The immunized fish developed clinical signs and pathology consistent with PD prior to challenge. However, fish injected with the virus mutated in both E2 and capsid showed little clinical signs and had higher average weight gain than the groups immunized with the single mutated variants. The SAV strain used for challenge was not detected in the immunized fish indicating that these fish were protected against superinfection with SAV during the 12 weeks of the experiment.
Collapse
Affiliation(s)
- Ida Aksnes
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Stine Braaen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Turhan Markussen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | - Espen Rimstad
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
6
|
Non-Lethal Sequential Individual Monitoring of Viremia in Relation to DNA Vaccination in Fish-Example Using a Salmon Alphavirus DNA Vaccine in Atlantic Salmon Salmo salar. Vaccines (Basel) 2021; 9:vaccines9020163. [PMID: 33671162 PMCID: PMC7922653 DOI: 10.3390/vaccines9020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022] Open
Abstract
Traditionally, commercial testing for vaccine efficacy has relied on the mass infection of vaccinated and unvaccinated animals and the comparison of mortality prevalence and incidence. For some infection models where disease does not cause mortality this approach to testing vaccine efficacy is not useful. Additionally, in fish experimental studies on vaccine efficacy and immune response the norm is that several individuals are lethally sampled at sequential timepoints, and results are extrapolated to represent the kinetics of immune and disease parameters of an individual fish over the entire experimental infection period. In the present study we developed a new approach to vaccine testing for viremic viruses in fish by following the same individuals over the course of a DNA vaccination and experimental infection through repeated blood collection and analyses. Injectable DNA vaccines are particularly efficient against viral disease in fish. To date, two DNA vaccines have been authorised for use in fish farming, one in Canada against Infectious Haemorrhagic Necrotic virus and more recently one in Europe against Salmon Pancreatic Disease virus (SPDv) subtype 3. In the current study we engineered and used an experimental DNA vaccine against SPDv subtype 1. We measured viremia using a reporter cell line system and demonstrated that the viremia phase was completely extinguished following DNA vaccination. Differences in viremia infection kinetics between fish in the placebo group could be related to subsequent antibody levels in the individual fish, with higher antibody levels at terminal sampling in fish showing earlier viremia peaks. The results indicate that sequential non-lethal sampling can highlight associations between infection traits and immune responses measured at asynchronous timepoints and, can provide biological explanations for variation in data. Similar to results observed for the SPDv subtype 3 DNA vaccine, the SPDv subtype 1 DNA vaccine also induced an interferon type 1 response after vaccination and provided high protection against SPDv under laboratory conditions when fish were challenged at 7 weeks post-vaccination.
Collapse
|
7
|
Bikezina T, Dong X, Istomin E, Petrov Y, Shilin M. Ensuring Sustainable Development of Aquaculture by Enhancing the Natural Immunity of Fish. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213607015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the main tasks in the coming years will be the development and introduction of vaccines for the development of immunity against intracellular bacterial and viral pathogens. DNA vaccines will play an important role in such cases. With the emergence of intensive industrial fish farms, there were also problems associated with infectious diseases of cultivated objects. These diseases cause significant harm to fisheries and the aquaculture sector of the global economy as a whole. The article shows the way of the development of the environmentally safe and sustainable marine and freshwater aquaculture with using Pisces vaccination, and reveals the role of Pisces aquaculture as an integral part of the world economy, in the face of increasing anthropogenic pressure on aquatic ecosystems and of distribution of new dangerous Pisces infections. Perspective types of Pisces vaccines are presented and discussed. The effectiveness of different types of elaborated vaccines is discussed.
Collapse
|
8
|
Veenstra KA, Hodneland K, Fischer S, Takehana K, Belmonte R, Fischer U. Cellular Immune Responses in Rainbow Trout ( Onchorhynchus mykiss) Following Vaccination and Challenge Against Salmonid Alphavirus (SAV). Vaccines (Basel) 2020; 8:vaccines8040725. [PMID: 33276596 PMCID: PMC7761581 DOI: 10.3390/vaccines8040725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/25/2023] Open
Abstract
Viral disease outbreaks remain a significant limiting factor for aquaculture. The majority of licensed vaccines used in the industry are administered as oil-adjuvanted formulations carrying inactivated whole pathogens. Cell-mediated immune responses, in particular those based on virus-specific cytotoxic T-cells (CTLs) to conventional inactivated oil-based vaccines, are largely unexplored. As vaccines cannot be optimized against viral pathogens if knowledge of host cellular immune mechanisms remains unknown, in this study we examined fundamental cell-mediated immune responses after vaccination of rainbow trout with an oil-adjuvanted inactivated vaccine against salmonid alphavirus (SAV) and after infection with SAV. A unique in vitro model system was developed to examine MHC class I restricted CTL responses in a clonal line of rainbow trout. The levels of cell-mediated cytotoxicity were compared to pathology, virus load, specific antibody response, changes in immune cell populations, and mRNA expression. Our results hint that different protective mechanisms are being triggered by infection compared to vaccination. While vaccination itself did not cause a strong cytotoxic or humoral response, subsequent challenge of vaccinated fish resulted in significantly stronger and faster specific cytotoxicity, alongside reduced viral titers and pathology. Hence, testing a vaccine on the capacity to induce cell-mediated cytotoxicity will still require a challenge test. Examination of cellular markers additionally indicates that the initial innate response induced by the vaccine could play an important role in steering adaptive mechanisms.
Collapse
Affiliation(s)
- Kimberly A. Veenstra
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kjartan Hodneland
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Susanne Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kota Takehana
- Nagano Prefectural Fisheries Experimental Station, 2871 Oaza-Nakagawate, Akashina, Azumino-shi, Nagano 399-7102, Japan;
| | - Rodrigo Belmonte
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Uwe Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
- Correspondence: ; Tel.: +49-38351-71175
| |
Collapse
|
9
|
Aksnes I, Markussen T, Braaen S, Rimstad E. Mutation of N-glycosylation Sites in Salmonid Alphavirus (SAV) Envelope Proteins Attenuate the Virus in Cell Culture. Viruses 2020; 12:v12101071. [PMID: 32987930 PMCID: PMC7650630 DOI: 10.3390/v12101071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Salmonid alphavirus (SAV) is the cause of pancreas disease and sleeping disease in farmed salmonid fish in Europe. The spread of these diseases has been difficult to control with biosecurity and current vaccination strategies, and increased understanding of the viral pathogenesis could be beneficial for the development of novel vaccine strategies. N-glycosylation of viral envelope proteins may be crucial for viral virulence and a possible target for its purposed attenuation. In this study, we mutated the N-glycosylation consensus motifs of the E1 and E2 glycoproteins of a SAV3 infectious clone using site-directed mutagenesis. Mutation of the glycosylation motif in E1 gave a complete inactivation of the virus as no viral replication could be detected in cell culture and infectious particles could not be rescued. In contrast, infectious virus particles could be recovered from the SAV3 E2 mutants (E2319Q, E2319A), but not if they were accompanied by lack of N-glycosylation in E1. Compared to the non-mutated infectious clone, the SAV3-E2319Q and SAV3-E2319A recombinant viruses produced less cytopathic effects in cell culture and lower amounts of infectious viral particles. In conclusion, the substitution in the N-linked glycosylation site in E2 attenuated SAV3 in cell culture. The findings could be useful for immunization strategies using live attenuated vaccines and testing in fish will be desirable to study the clone’s properties in vivo.
Collapse
|
10
|
López-Lorenzo G, López-Novo C, Prieto A, Díaz JM, Gullón J, Arnal JL, Benito A, Díaz P, Panadero R, Díez-Baños P, Dalton KP, Parra F, Fernández G. Molecular detection of myxoma virus in the environment of vaccinated rabbitries. Transbound Emerg Dis 2020; 68:1424-1431. [PMID: 32813890 DOI: 10.1111/tbed.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022]
Abstract
Myxoma virus (MYXV) is the aetiological agent of myxomatosis, a systemic, mostly lethal disease that affects European rabbits. Vaccination against it, although widespread, has not been completely effective and disease outbreaks still take place on farms which carry out vaccination programmes. Since some of these cases have been attributed to airborne transmission or the spread of the virus via inanimate vectors, the aims of this study were to determine MYXV contamination levels and distribution in the environment of vaccinated farms and to ascertain whether the detected virus corresponded to field strains. For that, environmental samples from several areas, tools and employees from four (three infected and one uninfected) rabbitries were taken and analysed by qPCR. MYXV was detected in the environment of all the infected farms, whereas all the samples from the non-infected farm were negative. Furthermore, all the positive samples contained viral DNA compatible with field strains of the virus. These results lead us to believe that the administration of currently available commercial vaccines does not prevent infected animals from shedding the field virus. Moreover, viral DNA was also found in items that are not in direct contact with the animals, which could play a role in the transmission of the infection throughout the farm and to other farms. Therefore, this study proves that current vaccination schemes on their own are not sufficient to prevent this disease and should be accompanied by adequate biosecurity measures.
Collapse
Affiliation(s)
- Gonzalo López-Lorenzo
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Cynthia López-Novo
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Alberto Prieto
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - José Manuel Díaz
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | | | | | | | - Pablo Díaz
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rosario Panadero
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Díez-Baños
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Kevin P Dalton
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Francisco Parra
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Gonzalo Fernández
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
11
|
Bakke AF, Bjørgen H, Koppang EO, Frost P, Afanasyev S, Boysen P, Krasnov A, Lund H. IgM+ and IgT+ B Cell Traffic to the Heart during SAV Infection in Atlantic Salmon. Vaccines (Basel) 2020; 8:E493. [PMID: 32878234 PMCID: PMC7563723 DOI: 10.3390/vaccines8030493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/02/2023] Open
Abstract
B cells of teleost fish differentiate in the head kidney, and spleen, and either remain in the lymphatic organs or move to the blood and peripheral tissues. There is limited knowledge about piscine B cell traffic to sites of vaccination and infection and their functional roles at these sites. In this work, we examined the traffic of B cells in Atlantic salmon challenged with salmonid alphavirus (SAV). In situ hybridization (RNAScope) showed increased numbers of immunoglobin (Ig)M+ and IgT+ B cells in the heart in response to SAV challenge, with IgM+ B cells being most abundant. An increase in IgT+ B cells was also evident, indicating a role of IgT+ B cells in nonmucosal tissues and systemic viral infections. After infection, B cells were mainly found in the stratum spongiosum of the cardiac ventricle, colocalizing with virus-infected myocardial-like cells. From sequencing the variable region of IgM in the main target organ (heart) and comparing it with a major lymphatic organ (the spleen), co-occurrence in antibody repertoires indicated a transfer of B cells from the spleen to the heart, as well as earlier recruitment of B cells to the heart in vaccinated fish compared to those that were unvaccinated. Transcriptome analyses performed at 21 days post-challenge suggested higher expression of multiple mediators of inflammation and lymphocyte-specific genes in unvaccinated compared to vaccinated fish, in parallel with a massive suppression of genes involved in heart contraction, metabolism, and development of tissue. The adaptive responses to SAV in vaccinated salmon appeared to alleviate the disease. Altogether, these results suggest that migration of B cells from lymphatic organs to sites of infection is an important part of the adaptive immune response of Atlantic salmon to SAV.
Collapse
Affiliation(s)
- Anne Flore Bakke
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | - Håvard Bjørgen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | - Erling Olaf Koppang
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | - Petter Frost
- MSD Animal Health Innovation AD, Thormøhlens Gate 55, 5006 Bergen, Norway;
| | - Sergey Afanasyev
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Torez 44, Saint-Petersburg 194223, Russia;
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | | | - Hege Lund
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| |
Collapse
|
12
|
Abstract
Salmonid alphavirus (SAV), genus Alphavirus, family Togaviridae, is a single-stranded RNA virus affecting Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). It is known to be responsible for pancreas disease (PD) and sleeping disease (SD) which are increasing problems, causing high fish mortality and economic losses in the European aquaculture industry. Pancreas disease was first described in Atlantic salmon in Scotland in 1976 and a similar disease caused by the closely related sleeping disease virus was first described in rainbow trout in France. There have also been reports of salmonid alphavirus infections from other European countries, including Ireland, England, Norway, Germany, Italy, and Spain. Salmonid alphaviruses have been classified into six subtypes (SAV1–6). SAV1 and SAV4–6 cause pancreas disease in Atlantic salmon in Ireland or Scotland, SAV2 is the causative agent of sleeping disease in rainbow trout, and SAV3 has been detected in Atlantic salmon in Norway. The aim of this paper was to summarise current knowledge of infections caused by salmonid alphavirus and diagnostic methods including the newest techniques, and to briefly describe prevention from SAV infections by vaccination.
Collapse
|
13
|
Assefa A, Abunna F. Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Vet Med Int 2018; 2018:5432497. [PMID: 29682272 PMCID: PMC5846361 DOI: 10.1155/2018/5432497] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/31/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
Aquaculture is rapidly growing part of agriculture worldwide. It makes up around 44 percent of total fish production globally. This increased growth of production is achieved despite facing many challenges in the aquaculture environment. Among production limiting challenges, the infectious disease takes the lion share by causing multibillion-dollar loss annually. To reduce the impact of the fish disease, it is necessary to address health constraints based on scientifically proven and recommended ways. This review aims at pointing out some of the best approaches to prevention and control of infectious disease in aquaculture. Among the effective prevention and control strategies, vaccination is one of the key practices. Types of vaccines for use in fish include killed vaccines, attenuated vaccines, DNA vaccines, recombinant technology vaccines, and synthetic peptide vaccines. Administration techniques of vaccines in fish include oral, injection, or immersion methods. Antibiotics are also in use in aquaculture despite their side effects in the development of drug resistance by microorganisms. Biological and chemical disease control strategies such as using probiotics, prebiotics, and medicinal plants are widely in use. Biosecurity measures in aquaculture can keep the safety of a facility from certain disease-causing agents that are absent in particular system. Farm-level biosecurity measures include strict quarantine measures, egg disinfection, traffic control, water treatments, clean feed, and disposal of mortalities. In conclusion, rather than trying to treat every disease case, it advisable to follow a preventive approach before the event of any disease outbreaks.
Collapse
Affiliation(s)
- Ayalew Assefa
- Sekota Dryland Agricultural Research Center, P.O. Box 62, Sekota, Ethiopia
| | - Fufa Abunna
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Oromia, Ethiopia
| |
Collapse
|