1
|
Khalil NW, Elshorbagy MA, Elboraay EM, Helal AM. Live IBD vaccine exacerbates disease and pathological effects of Asian lineage H9N2 LPAIV in chickens. Avian Pathol 2023; 52:351-361. [PMID: 37439655 DOI: 10.1080/03079457.2023.2236994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Avian influenza H9N2 is one of the most commonly circulating viruses in numerous Egyptian poultry farms. The Asian lineage H9N2 exhibits an immunosuppressive effect, and its pathogenicity is amplified when it co-infects with other pathogens, especially with the immunosuppressive infectious bursal disease virus (IBDV), resulting in increased mortality rates. Both vaccines and field infection can exacerbate the pathogenicity of H9N2, particularly in the bursa of Fabricius, causing more significant lymphoid depletion. To comprehend the impact of the IBD vaccine on the viral and pathogenic effect of H9N2 infection in specific pathogen-free chicks (SPF), the experiment was designed as four groups; group 1 served as the negative control, group 2 received (228E) IBD vaccine, group 3 was challenged with H9N2, and group-4 was vaccinated by the IBD vaccine then challenged with H9N2. The clinical signs, relative immune organs weights and histopathological lesion scores were recorded. The tracheal and cloacal H9N2 viral shedding were also measured. Group 4 exhibited a significant decrease (P ≤ 0.05) in the relative bursal weight and an increase in the bursal lesion score when compared with groups 1 and 3 at 4 and 8 days post-challenge (dpc). The tracheal lesion score of group-4 recorded a significant increase when compared with groups 1 and 3. The renal lesion score of group 4 achieved a significant increase when compared with 1 and 3 at 8 dpc. Also, group 4 recorded a significant increase in H9N2 shedding in comparison with groups 1 and 3. Consequently, our study concluded that routine vaccination with the IBD intermediate plus vaccine exacerbates the silent infection of H9N2 resulting in outbreaks.
Collapse
Affiliation(s)
- N W Khalil
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - M A Elshorbagy
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - E M Elboraay
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - A M Helal
- Central Laboratory for Evaluation of Veterinary Biologics, Cairo, Egypt
| |
Collapse
|
2
|
Mo G, Wei P, Hu B, Nie Q, Zhang X. Advances on genetic and genomic studies of ALV resistance. J Anim Sci Biotechnol 2022; 13:123. [PMID: 36217167 PMCID: PMC9550310 DOI: 10.1186/s40104-022-00769-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Avian leukosis (AL) is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus (ALV). No vaccine or drug is currently available for the disease. Therefore, the disease can result in severe economic losses in poultry flocks. Increasing the resistance of poultry to ALV may be one effective strategy. In this review, we provide an overview of the roles of genes associated with ALV infection in the poultry genome, including endogenous retroviruses, virus receptors, interferon-stimulated genes, and other immune-related genes. Furthermore, some methods and techniques that can improve ALV resistance in poultry are discussed. The objectives are willing to provide some valuable references for disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, 530001, Guangxi, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
3
|
Mo G, Hu B, Wei P, Luo Q, Zhang X. The Role of Chicken Prolactin, Growth Hormone and Their Receptors in the Immune System. Front Microbiol 2022; 13:900041. [PMID: 35910654 PMCID: PMC9331192 DOI: 10.3389/fmicb.2022.900041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Prolactin (PRL) and growth hormone (GH) exhibit important roles in the immune system maintenance. In poultry, PRL mainly plays its roles in nesting, hatching, and reproduction, while GH is primarily responding to body weight, fat formation and feed conversion. In this review, we attempt to provide a critical overview of the relationship between PRL and GH, PRLR and GHR, and the immune response of poultry. We also propose a hypothesis that PRL, GH and their receptors might be used by viruses as viral receptors. This may provide new insights into the pathogenesis of viral infection and host immune response.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qingbin Luo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Chen S, Zhao R, Wu T, Wang D, Wang B, Pan S, Hu X, Pan Z, Cui H. An Endogenous Retroviral LTR-Derived Long Noncoding RNA lnc-LTR5B Interacts With BiP to Modulate ALV-J Replication in Chicken Cells. Front Microbiol 2021; 12:788317. [PMID: 34912323 PMCID: PMC8667585 DOI: 10.3389/fmicb.2021.788317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
Infection with the avian leukosis virus subgroup J (ALV-J) impairs host genes and facilitates the establishment of chronic infection and the viral life cycle. However, the involvement of long noncoding RNAs (lncRNAs) in ALV-J infection remains largely unknown. In this study, we identified a novel chicken lncRNA derived from LTR5B of the ERV-L family (namely lnc-LTR5B), which is significantly downregulated in ALV-J infected cells. lnc-LTR5B was localized in the cytoplasm and was relatively high expressed in the chicken lung and liver. Notably, the replication of ALV-J was inhibited by the overexpression of lnc-LTR5B but enhanced when lnc-LTR5B expression was knocked down. We further confirmed that lnc-LTR5B could bind to the binding immunoglobulin protein (BiP), a master regulator of endoplasmic reticulum (ER) function. Mechanistically, lnc-LTR5B serves as a competing endogenous RNA for BiP, restricting its physical availability. Upon ALV-J infection, the reduction of lnc-LTR5B released BiP, which facilitated its translocation to the cell surface. This is crucial for ALV-J entry as well as pro-survival signaling. In conclusion, we identified an endogenous retroviral LTR-activated lnc-LTR5B that is involved in regulating the cell surface translocation of BiP, and such regulatory machinery can be exploited by ALV-J to complete its life cycle and propagate.
Collapse
Affiliation(s)
- Shihao Chen
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ruihan Zhao
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ting Wu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Dedong Wang
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Biao Wang
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shiyu Pan
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Xu M, Mu X, Qian K, Shao H, Yao Y, Nair V, Wang J, Ye J, Qin A. Novel mutation of avian leukosis virus subgroup J from Tibetan chickens. Poult Sci 2021; 100:100931. [PMID: 33518331 PMCID: PMC7936214 DOI: 10.1016/j.psj.2020.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022] Open
Abstract
Tibetan chickens are descendants of the ancestral red jungle fowl Gallus gallus. Very little is known about pathogens in Tibetan chickens living in the high-altitude environment. Here, we report for the first time the detection and isolation of avian leukosis virus from Tibetan chickens, with all the avian leukosis virus-positive samples belonging to subgroup J. Phylogenetic analysis of the sequence revealed these viruses were in a new branch compared with previous reports. The 3'-end of the pol gene in the new strains showed 8-amino acid deletion, with 2 strains displaying a large-scale deletion in the hr2 region of gp85 protein. Among all the strains, several mutations in the primer binding site leader sequence and untranslated region, which came from Rous-associated virus, were identified. It is interesting that some of these mutations may have contributed to the competitive advantages to these isolates as observed from their increased replication in vitro. These results indicated that the virus isolates from Tibetan chickens can have competitive advantage over the other strains circulating in the poultry population in future.
Collapse
Affiliation(s)
- Moru Xu
- Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xiaohui Mu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P. R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Kun Qian
- Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Hongxia Shao
- Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Surrey GU24 0NF, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Surrey GU24 0NF, United Kingdom
| | - Jian Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P. R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Jianqiang Ye
- Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Aijian Qin
- Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.
| |
Collapse
|
6
|
Joaquim HPG, Costa AC, Serpa MH, Talib LL, Gattaz WF. Reduced Annexin A3 in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2020; 270:489-494. [PMID: 31372726 DOI: 10.1007/s00406-019-01048-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Abstract
The cellular and molecular mechanisms underlying onset and development of schizophrenia have not yet been completely elucidated, but the association of disturbed neuroplasticity and inflammation has gained particular relevance recently. These mechanisms are linked to annexins functions. ANXA3, particularly, is associated to inflammation and membrane metabolism cascades. The aim was to determine the ANXA3 levels in first-onset drug-naïve psychotic patients. We investigated by western blot the protein expression of annexin A3 in platelets of first-onset, drug-naïve psychotic patients (diagnoses according to DSM-IV: 28 schizophrenia, 27 bipolar disorder) as compared to 30 age- and gender-matched healthy controls. Annexin A3 level was lower in schizophrenia patients as compared to healthy controls (p < 0.001) and to bipolar patients (p < 0.001). Twenty out of 28 schizophrenic patients had undetectable annexin A3 levels, as compared to none from the bipolar and none from the control subjects. ANXA3 was reduced in drug-naïve patients with schizophrenia. ANXA3 affects neuroplasticity, inflammation and apoptosis, as well as it modulates membrane phospholipid metabolism. All these processes have been discussed in regard to the biology of schizophrenia. In face of these data, we feel that further studies with larger samples are warranted to investigate the possible role of reduced ANXA3 as a possible risk marker for schizophrenia.
Collapse
Affiliation(s)
- Helena P G Joaquim
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Alana Caroline Costa
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Maurício Henriques Serpa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Leda L Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785, 3º andar, São Paulo, SP, 05403-010, Brazil. .,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
7
|
Yuan Z, Chen M, Wang J, Li Z, Geng X, Sun J. Identification of Litopenaeus vannamei BiP as a novel cellular attachment protein for white spot syndrome virus by using a biotinylation based affinity chromatography method. FISH & SHELLFISH IMMUNOLOGY 2018; 79:130-139. [PMID: 29738871 DOI: 10.1016/j.fsi.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
White spot syndrome virus (WSSV) is a dangerous threat to shrimp farming that also attacks a wide range of crustaceans. Knowledge of the surface protein-protein interactions between the pathogen and host is very crucial to unraveling the molecular pathogenesis mechanisms of WSSV. In this study, LvBiP (Litopenaeus vannamei immunoglobulin heavy-chain-binding protein) was identified as a novel WSSV binding protein of L. vannamei by a biotinylation based affinity chromatography method. By using pull-down and ELISA assays, the binding of recombinant LvBiP to WSSV was proved to be specific and ATP- dependent. The interaction was also confirmed by the result of co-immunoprecipitation assay. Immunofluorescence studies revealed the co-localization of LvBiP with WSSV on the cell surface of shrimp haemocytes. Additionally, LvBiP is likely to play an important role in WSSV infection. Treatment of gill cellular membrane proteins (CMPs) with purified rLvBiP and antibody that specifically recognizes LvBiP, led to a significant reduction in the binding of WSSV to gill CMPs. In the in vivo neutralization assay, rLvBiP and anti-LvBiP polyclonal antibody partially blocked the infection of WSSV. Taken together, the results indicate that LvBiP, a molecular chaperon of the HSP70 family, is a novel host factor involved at the step of attachment of the WSSV to the host cells and a potential candidate of therapeutic target.
Collapse
Affiliation(s)
- Zengzhi Yuan
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin, 300387, PR China; College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Meng Chen
- College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Jingting Wang
- College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Zhuoyu Li
- College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin, 300387, PR China; College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, PR China.
| |
Collapse
|
8
|
Li T, Xie J, Lv L, Sun S, Dong X, Xie Q, Liang G, Xia C, Shao H, Qin A, Ye J. A chicken liver cell line efficiently supports the replication of ALV-J possibly through its high level viral receptor and efficient protein expression system. Vet Res 2018; 49:41. [PMID: 29720272 PMCID: PMC5932828 DOI: 10.1186/s13567-018-0537-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/03/2018] [Indexed: 02/01/2023] Open
Abstract
In this study, we identified a chicken liver cell line (LMH) which could strongly support the replication of ALV-J (Subgroup J of avian leukosis virus) with high viral titer. Notably, ALV-J was efficiently detected by ELISA in LMH cells 1 day before DF1 cells. In comparison with DF1 cells, LMH cells not only expressed higher levels of ALV-J receptor chNHE-1, but also possessed a more efficient protein expression system for foreign genes. Thus, LMH cells could be a novel tool to shorten the ALV-J eradication approach and accelerate studies on the pathogenesis and oncogenesis of ALV-J.
Collapse
Affiliation(s)
- Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lu Lv
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shu Sun
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaomei Dong
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guangcheng Liang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chichao Xia
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
9
|
Zhao D, Liu Q, Han K, Wang H, Yang J, Bi K, Liu Y, Liu N, Tian Y, Li Y. Identification of Glucose-Regulated Protein 78 (GRP78) as a Receptor in BHK-21 Cells for Duck Tembusu Virus Infection. Front Microbiol 2018; 9:694. [PMID: 29692766 PMCID: PMC5903163 DOI: 10.3389/fmicb.2018.00694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/26/2018] [Indexed: 12/05/2022] Open
Abstract
Since 2010, outbreak and spread of tembusu virus (TMUV) caused huge losses to the breeding industry of waterfowl in several provinces of China. In this study, we identify the glucose-regulated protein 78 (GRP78) as a receptor in BHK-21 cells for duck TMUV infection. Using cell membrane from BHK-21 cells, a TMUV-binding protein of approximately 70 kDa was observed by viral overlay protein binding assay (VOPBA). LC-MS/MS analysis and co-immunoprecipitation identified GRP78 as a protein interacting with TMUV. Antibody against GRP78 inhibited the binding of TMUV to the cell surface of BHK-21 cells. Indirect immunofluorescence studies showed the colocalization of GRP78 with TMUV in virus-infected BHK-21 cells. We found that GRP78 over-expression increased TMUV infection, whereas GRP78 knockdown by using a specific small interfering RNA inhibited TMUV infection in BHK-21 cells. Taken together, our results indicate that GRP78 is a novel host factor involved in TMUV entry.
Collapse
Affiliation(s)
- Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Huili Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Keran Bi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Na Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Yujie Tian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
10
|
Qian K, Kong ZR, Zhang J, Cheng XW, Wu ZY, Gu CX, Shao HX, Qin AJ. Baicalin is an inhibitor of subgroup J avian leukosis virus infection. Virus Res 2018; 248:63-70. [PMID: 29481814 DOI: 10.1016/j.virusres.2018.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/02/2023]
Abstract
Avian leukosis virus subgroup J (ALV-J) can cause great economic losses to the poultry industry worldwide. Baicalin, one of the flavonoids present in S.baicalensis Georgi, has been shown to have antiviral activities. To investigate whether baicalin has antiviral effects on the infection of ALV-J in DF-1 cells, the cells were treated with baicalin at different time points. We found that baicalin could inhibit viral mRNA, protein levels and overall virus infection in a dose- and time-dependent manner using a variety of assays. Baicalin specifically targeted virus internalization and reduced the infectivity of ALV-J particles, but had no effect on the levels of major ALV-J receptor and virus binding to DF-1 cells. Collectively, these results suggest that baicalin might have potential to be developed as a novel antiviral agent for ALV-J infection.
Collapse
Affiliation(s)
- Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
| | - Zheng-Ru Kong
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Jie Zhang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Xiao-Wei Cheng
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Zong-Yi Wu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Cheng-Xi Gu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Hong-Xia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Ai-Jian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
11
|
Recombinant heat shock protein 78 enhances enterovirus 71 propagation in Vero cells and is induced in SK-N-SH cells during the infection. Arch Virol 2017; 162:1649-1660. [DOI: 10.1007/s00705-017-3287-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/04/2017] [Indexed: 12/23/2022]
|