1
|
Zorigt T, Furuta Y, Simbotwe M, Ochi A, Tsujinouchi M, Shawa M, Shimizu T, Isoda N, Enkhtuya J, Higashi H. Development of ELISA based on Bacillus anthracis capsule biosynthesis protein CapA for naturally acquired antibodies against anthrax. PLoS One 2021; 16:e0258317. [PMID: 34634075 PMCID: PMC8504768 DOI: 10.1371/journal.pone.0258317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacterium Bacillus anthracis. Detecting naturally acquired antibodies against anthrax sublethal exposure in animals is essential for anthrax surveillance and effective control measures. Serological assays based on protective antigen (PA) of B. anthracis are mainly used for anthrax surveillance and vaccine evaluation. Although the assay is reliable, it is challenging to distinguish the naturally acquired antibodies from vaccine-induced immunity in animals because PA is cross-reactive to both antibodies. Although additional data on the vaccination history of animals could bypass this problem, such data are not readily accessible in many cases. In this study, we established a new enzyme-linked immunosorbent assay (ELISA) specific to antibodies against capsule biosynthesis protein CapA antigen of B. anthracis, which is non-cross-reactive to vaccine-induced antibodies in horses. Using in silico analyses, we screened coding sequences encoded on pXO2 plasmid, which is absent in the veterinary vaccine strain Sterne 34F2 but present in virulent strains of B. anthracis. Among the 8 selected antigen candidates, capsule biosynthesis protein CapA (GBAA_RS28240) and peptide ABC transporter substrate-binding protein (GBAA_RS28340) were detected by antibodies in infected horse sera. Of these, CapA has not yet been identified as immunoreactive in other studies to the best of our knowledge. Considering the protein solubility and specificity of B. anthracis, we prepared the C-terminus region of CapA, named CapA322, and developed CapA322-ELISA based on a horse model. Comparative analysis of the CapA322-ELISA and PAD1-ELISA (ELISA uses domain one of the PA) showed that CapA322-ELISA could detect anti-CapA antibodies in sera from infected horses but was non-reactive to sera from vaccinated horses. The CapA322-ELISA could contribute to the anthrax surveillance in endemic areas, and two immunoreactive proteins identified in this study could be additives to the improvement of current or future vaccine development.
Collapse
Affiliation(s)
- Tuvshinzaya Zorigt
- Division of Infection and Immunity, International Institute for Zoonosis Control (Former Research Center for Zoonosis Control), Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control (Former Research Center for Zoonosis Control), Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Manyando Simbotwe
- Division of Infection and Immunity, International Institute for Zoonosis Control (Former Research Center for Zoonosis Control), Hokkaido University, Sapporo, Japan
| | - Akihiro Ochi
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Mai Tsujinouchi
- Division of Infection and Immunity, International Institute for Zoonosis Control (Former Research Center for Zoonosis Control), Hokkaido University, Sapporo, Japan
| | - Misheck Shawa
- Division of Infection and Immunity, International Institute for Zoonosis Control (Former Research Center for Zoonosis Control), Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoko Shimizu
- Division of Infection and Immunity, International Institute for Zoonosis Control (Former Research Center for Zoonosis Control), Hokkaido University, Sapporo, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control (Former Research Center for Zoonosis Control), Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
2
|
Chuang CC, Tsai MH, Yen HJ, Shyu HF, Cheng KM, Chen XA, Chen CC, Young JJ, Kau JH. A fucoidan-quaternary chitosan nanoparticle adjuvant for anthrax vaccine as an alternative to CpG oligodeoxynucleotides. Carbohydr Polym 2019; 229:115403. [PMID: 31826481 DOI: 10.1016/j.carbpol.2019.115403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 12/22/2022]
Abstract
We examined the efficacy of fucoidan-N-(2-hydroxy-3-trimethylammonium)propylchitosan nanoparticles (FUC-HTCC NPs) as adjuvants for anthrax vaccine adsorbed (AVA). Positively and negatively surface-charged FUC-HTCC NPs were prepared via polyelectrolyte complexation by varying the mass ratio of FUC and HTCC. When cultured with L929 cells or JAWS II dendritic cells, both charged NPs showed high cell viability and low cytotoxicity, observed via MTT assay and lactate dehydrogenase release assay, respectively. In addition, we have monitored excellent NPs uptake efficacy by dendritic cells and observed that combining FUC-HTCC NPs with AVA significantly increases the magnitude of IgG-anti-protective antigen titers in A/J mice compared to that by CpG oligodeoxynucleotides plus AVA or AVA alone, and PA-specific IgG1 and IgG2a analysis confirmed that FUC-HTCC NPs strongly stimulated humoral immunity. Furthermore, FUC-HTCC NPs plus AVA provided a superior survival rate (100%) of A/J mice compared to CpG oligodeoxynucleotides plus AVA (75%) or AVA alone (50%) following anthrax lethal toxin challenge. The findings support FUC-HTCC NPs as a potential adjuvant of AVA for rapid induction of protective immunity.
Collapse
Affiliation(s)
- Chuan-Chang Chuang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Meng-Hung Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Hui-Ju Yen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Huey-Fen Shyu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Kuang-Ming Cheng
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Xin-An Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC.
| | - Jyh-Hwa Kau
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC.
| |
Collapse
|
3
|
Çokçalışkan C, Tuncer Göktuna P, Türkoğlu T, Uzunlu E, Gündüzalp C, Uzun EA, Sareyyüpoğlu B, Kürkçü A, Gülyaz V. Effect of simultaneous administration of foot-and-mouth disease (FMD) and anthrax vaccines on antibody response to FMD in sheep. Clin Exp Vaccine Res 2019; 8:103-109. [PMID: 31406691 PMCID: PMC6689499 DOI: 10.7774/cevr.2019.8.2.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/30/2019] [Indexed: 11/15/2022] Open
Abstract
Purpose Foot-and-mouth disease (FMD) and anthrax are important diseases in sheep. Vaccination is a favorable strategy against both infections. Simultaneous administration of vaccines does generally not impede the immune responses of each other, although there are some exceptions, and it may help reduce the labor and costs of vaccination as well as distress on animals. Although oil adjuvant FMD vaccine has been tried with live anthrax vaccine in cattle, there are no reports on the simultaneous use of both vaccines in sheep. Materials and Methods In this study, FMD seronegative sheep were used to investigate the impact of the simultaneous vaccination of FMD and anthrax on FMD antibody titers of sheep. Virus neutralization test and liquid phase blocking enzyme-linked immunosorbent assay were used to determine the antibody response to the FMD vaccine. Results The results demonstrated that both vaccines can be used simultaneously without any interference with the FMD response. Moreover, the simultaneous administration with anthrax vaccine had a stimulating effect on the early (day 7 post-vaccination) virus neutralization antibody response to the FMD vaccine. Conclusion The simultaneous use of the FMD and anthrax vaccines did not hinder the response to the FMD vaccine in sheep.
Collapse
Affiliation(s)
- Can Çokçalışkan
- Republic of Turkey Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Pelin Tuncer Göktuna
- Republic of Turkey Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Tunçer Türkoğlu
- Republic of Turkey Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Ergün Uzunlu
- Republic of Turkey Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Ceylan Gündüzalp
- Republic of Turkey Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Eylem Aras Uzun
- Republic of Turkey Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Beyhan Sareyyüpoğlu
- Republic of Turkey Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Ayça Kürkçü
- Republic of Turkey Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Veli Gülyaz
- Republic of Turkey Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| |
Collapse
|
4
|
Ndumnego OC, Koehler SM, Crafford JE, Beyer W, van Heerden H. Immunogenicity of anthrax recombinant peptides and killed spores in goats and protective efficacy of immune sera in A/J mouse model. Sci Rep 2018; 8:16937. [PMID: 30446695 PMCID: PMC6240085 DOI: 10.1038/s41598-018-35382-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/02/2018] [Indexed: 11/09/2022] Open
Abstract
Anthrax is primarily recognized as an affliction of herbivores with incubation period ranging from three to five days post-infection. Currently, the Sterne live-spore vaccine is the only vaccine approved for control of the disease in susceptible animals. While largely effective, the Sterne vaccine has several problems including adverse reactions in sensitive species, ineffectiveness in active outbreaks and incompatibility with antibiotics. These can be surmounted with the advent of recombinant peptides (non-living) next generation vaccines. The candidate vaccine antigens comprised of recombinant protective antigen (PA), spore-specific antigen (bacillus collagen-like protein of anthracis, BclA) and formaldehyde inactivated spores (FIS). Presently, little information exists on the protectivity of these novel vaccine candidates in susceptible ruminants. Thus, this study sought to assess the immunogenicity of these vaccine candidates in goats and evaluate their protectivity using an in vivo mouse model. Goats receiving a combination of PA, BclA and FIS yielded the highest antibody and toxin neutralizing titres compared to recombinant peptides alone. This was also reflected in the passive immunization experiment whereby mice receiving immune sera from goats vaccinated with the antigen combination had higher survival post-challenge. In conclusion, the current data indicate promising potential for further development of non-living anthrax vaccines in ruminants.
Collapse
Affiliation(s)
- Okechukwu C Ndumnego
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa. .,Africa Health Research Institute, Durban, South Africa.
| | - Susanne M Koehler
- Institute of Animal Science, Department of Livestock Infectiology and Environmental Hygiene, University of Hohenheim, Stuttgart, Germany.,Robert Koch Institute, Berlin, Germany
| | - Jannie E Crafford
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Wolfgang Beyer
- Institute of Animal Science, Department of Livestock Infectiology and Environmental Hygiene, University of Hohenheim, Stuttgart, Germany
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa.
| |
Collapse
|