1
|
Ferrari C, Punturiero C, Milanesi R, Delledonne A, Bagnato A, Strillacci MG. Exploring the genetic variability of the PRNP gene at codons 127, 142, 146, 154, 211, 222, and 240 in goats farmed in the Lombardy Region, Italy. Vet Res 2024; 55:99. [PMID: 39107851 PMCID: PMC11304840 DOI: 10.1186/s13567-024-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Scrapie is a transmissible spongiform encephalopathy affecting sheep and goats. The prion protein-encoding gene (PRNP) plays a crucial role in determining susceptibility and resistance to scrapie. At the European level, surveillance of scrapie is essential to prevent the spread of the disease to livestock. According to the Regulation EU 2020/772 polymorphisms K222, D/S146 could function as resistance alleles in the genetic management of disease prevention. In Italy, a breeding plan for scrapie eradication has not been implemented for goats. However, surveillance plans based on the PRNP genotype have been developed as a preventive measure for scrapie. This research aimed to describe the polymorphisms at 7 positions within the PRNP gene in 956 goats of the Alpine, Saanen and mixed populations farmed in the Lombardy Region in Italy. PRNP polymorphisms were detected using single nucleotide polymorphism markers included in the Neogen GGP Goat 70 k chip. The K222 allele occurred in all populations, with frequencies ranging from 2.1 to 12.7%. No animals carried the S/D146 resistance allele. However, it has been demonstrated that polymorphisms in the other positions analysed could influence resistance or susceptibility to scrapie outbreaks in different ways. Ten potentially distinct haplotypes were found, and the most prevalent of the three populations was H2, which differed from the wild type (H1) in terms of mutation (S vs P) at codon 240. This study provided additional information on the genetic variability of the PRNP gene in these populations in the Lombardy region of Italy, contributing to the development of genetic control measures for disease prevention.
Collapse
Affiliation(s)
- Carlotta Ferrari
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| | - Chiara Punturiero
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Raffaella Milanesi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Andrea Delledonne
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Maria G Strillacci
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| |
Collapse
|
2
|
Gurau MR, Negru E, Ionescu T, Udriste AA, Cornea CP, Baraitareanu S. Genetic Polymorphism at 15 Codons of the Prion Protein Gene in 156 Goats from Romania. Genes (Basel) 2022; 13:genes13081316. [PMID: 35893054 PMCID: PMC9394368 DOI: 10.3390/genes13081316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The variability of prion protein gene (PRNP) codons and the frequency of alleles (K222, D146, and S146) that appear to confer genetic resistance to classical scrapie are still unknown in several goat populations/breeds prevalent in Romania. This work aims to assess the genetic polymorphism at 15 PRNP codons in Romanian goat populations to inform the development of goat breeding programs for scrapie resistance. Methods: Whole blood and hair follicles from Carpathian (50), French Alpine (53), and Banat’s White (53) breed goats were sampled to extract genomic DNA for genetic analyses and Sanger sequencing. In the targeted goat groups, one classical scrapie-positive Banat’s White goat was included. Results: The codons without polymorphisms were G37G, W102W, N146N, R151R, S173S, and I218I. The following non-synonymous polymorphisms of PRNP were recorded: P110P, P110S, P110T, T110T, G127G, G127S, I142I, I142M, T142I, H143H, P143P, R143R, R154R, H154R, P168P, Q168Q, Q211Q, Q211R, Q222Q, H222Q, K222K, S240S, P240P, P240S, and S240P. Conclusions: PRNP polymorphism was recorded in 60% (9/15) of codons. The scrapie-positive Banat’s White goat had G37G, W102W, T110T, G127G, I142I, H143H, N146N, R151R, R154R, P168P, S173S, R211R, I218I, Q222Q, and S240S. The K222 allele had a frequency of 6% (3/50) in Carpathian, 9.43% (5/53) in Banat’s White, and 15.09% (8/53) in French Alpine. Therefore, the polymorphisms detected in this sample of Romanian goat breeds are too rare to design a breeding program at the current time.
Collapse
Affiliation(s)
- Maria Rodica Gurau
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, District 5, 050097 Bucharest, Romania; (M.R.G.); (E.N.); (T.I.)
| | - Elena Negru
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, District 5, 050097 Bucharest, Romania; (M.R.G.); (E.N.); (T.I.)
| | - Teodor Ionescu
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, District 5, 050097 Bucharest, Romania; (M.R.G.); (E.N.); (T.I.)
| | - Anca Amalia Udriste
- Laboratory of Molecular Plant Physiology, Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania;
| | - Călina Petruța Cornea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania;
| | - Stelian Baraitareanu
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, District 5, 050097 Bucharest, Romania; (M.R.G.); (E.N.); (T.I.)
- Correspondence:
| |
Collapse
|
3
|
Favole A, Mazza M, D'Angelo A, Lombardi G, Palmitessa C, Dell'Atti L, Cagnotti G, Berrone E, Gallo M, Avanzato T, Messana E, Masoero L, Acutis PL, Meloni D, Cardone F, Caramelli M, Casalone C, Corona C. RT-QuIC detection of pathological prion protein in subclinical goats following experimental oral transmission of L-type BSE. BMC Res Notes 2021; 14:442. [PMID: 34876215 PMCID: PMC8650279 DOI: 10.1186/s13104-021-05859-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
Objective The spread of bovine spongiform encephalopathy (BSE) agent to small ruminants is still a major issue in the surveillance of transmissible spongiform encephalopathies (TSEs). L-type bovine spongiform encephalopathy (L-BSE) is an atypical form of BSE with an unknown zoonotic potential that is transmissible to cattle and small ruminants. Our current knowledge of bovine atypical prion strains in sheep and goat relies only on experimental transmission studies by intracranial inoculation. To assess oral susceptibility of goats to L-BSE, we orally inoculated five goats with cattle L-BSE brain homogenates and investigated pathogenic prion protein (PrPsc) distribution by an ultrasensitive in vitro conversion assay known as Real-Time Quaking Induced Conversion (RT-QuIC). Results Despite a prolonged observation period of 80 months, all these animals and the uninfected controls did not develop clinical signs referable to TSEs and tested negative by standard diagnostics. Otherwise, RT-QuIC analysis showed seeding activity in five out of five examined brain samples. PrPsc accumulation was also detected in spinal cord and lymphoreticular system. These results indicate that caprine species are susceptible to L-BSE by oral transmission and that ultrasensitive prion tests deserve consideration to improve the potential of current surveillance systems against otherwise undetectable forms of animal prion infections.
Collapse
Affiliation(s)
- Alessandra Favole
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy.
| | - Maria Mazza
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | | | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Claudia Palmitessa
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Luana Dell'Atti
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | | | - Elena Berrone
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Marina Gallo
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Tiziana Avanzato
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Erika Messana
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Loretta Masoero
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Pier Luigi Acutis
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Daniela Meloni
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | | | - Maria Caramelli
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Cristina Casalone
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - Cristiano Corona
- S.C. Neuroscienze, Lab. di Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy.
| |
Collapse
|
4
|
Zeineldin M, Lehman K, Urie N, Branan M, Wiedenheft A, Marshall K, Robbe-Austerman S, Thacker T. Large-scale survey of prion protein genetic variability in scrapie disease-free goats from the United States. PLoS One 2021; 16:e0254998. [PMID: 34280230 PMCID: PMC8289333 DOI: 10.1371/journal.pone.0254998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
Scrapie is a slowly progressive neurodegenerative disease of small ruminants caused by an accumulation of an abnormal isoform of prion protein in the central nervous system. Polymorphisms of the prion protein gene (PRNP) strongly modulate scrapie resistance and incubation period in goats. The aim of this study was to identify PRNP genetic variability in goats across the United States. Blood from a total of 6,029 apparent scrapie disease-free goats from 654 operations and 19 breeds were analyzed. Sequencing of PRNP revealed 26 genotypes with different rates based on eight codons. The GG127, RR154, and QQ222 genotypes were predominant and showed a remarkably high rate across all goats. The QK222 and NS146 genotypes, known to be protective against scrapie, were found in 0.6% [with 95% CI = (0.3, 1.2)] and 22.0% [95% CI = (19.1, 25.2)] of goats, respectively. The QK222 genotype was found in 23.1% of Oberhasli goats tested, with 95%CI = (3.9, 68.7)] and 22.0% of Toggenburg goats tested with 95%CI = (9.7, 42.5)], while NS146 was found in 65.5% of Savannah goats tested, with 95%CI = (30.8, 89.9), 36.7% of Boer goats tested, with 95%CI = (33.1, 40.4), 36.3% of Nubian goats tested, with 95%CI = (27.0, 46.7)], and 35.6% of LaMancha goats tested, with 95%CI = (22.8, 50.8%). The MM142 and IM142 genotypes were found more frequently in goats on dairy operations, while the HR143, NS146, and ND146 genotypes were found more frequently in goats on meat operations. Goats in the east region had a higher percentage of goats with RH154, RQ211, and QK222 genotypes than goats in the west region. The results of this study showed high genetic variability of PRNP among the U.S. goat population, with differences by location and breed, and may serve as a rationale for development of goat breeding programs at the national level to mitigate the risk of scrapie.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States of America
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha, Egypt
| | - Kimberly Lehman
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Natalie Urie
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States of America
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Matthew Branan
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States of America
| | - Alyson Wiedenheft
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States of America
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Katherine Marshall
- National Animal Health Monitoring System, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States of America
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Tyler Thacker
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States of America
| |
Collapse
|
5
|
Torricelli M, Sebastiani C, Ciullo M, Ceccobelli S, Chiappini B, Vaccari G, Capocefalo A, Conte M, Giovannini S, Lasagna E, Sarti FM, Biagetti M. PRNP Polymorphisms in Eight Local Goat Populations/Breeds from Central and Southern Italy. Animals (Basel) 2021; 11:ani11020333. [PMID: 33525718 PMCID: PMC7911694 DOI: 10.3390/ani11020333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
In goats, as in sheep, genotypes of the prion protein gene (PRNP) can influence animals' susceptibility to scrapie. Since the polymorphic codons in sheep are well known, a genetic selection plan has been implemented in Europe, in order to reduce the prevalence of susceptible genotypes to scrapie. In Italy, no breeding plan for scrapie resistance in goats has been adopted, yet. Likewise, according to the most recent modification of Regulation EU 999/2001 (Regulation EU 772/2020) of the European Commission (EU), based on all the available experimental and in field data, K222, D146 and S146 polymorphisms could be used as scrapie resistance alleles in genetic management both in scrapie outbreaks and in disease prevention. In order to collect data on the variability of PRNP, the present study aimed to analyze the sequence of the PRNP gene in eight Italian local goat populations/breeds reared in central and southern Italy (Bianca Monticellana, Capestrina, Facciuta della Valnerina, Fulva del Lazio, Garganica, Grigia Ciociara, Grigia Molisana, and Teramana), some of which were investigated for the first time; moreover, two cosmopolitan breeds (Alpine and Saanen) were included. Blood samples were collected from 219 goats. Genomic DNA was extracted from whole blood. DNA was used as template in PCR amplification of the entire PRNP open reading frame (ORF). Purified amplicons have been sequenced and aligned to Capra hircus PRNP. Particularly, the alleles carrying the resistance-related 222 K polymorphism occurred in all populations with a frequency between 2.5% and 12.5%. An additional resistance allele carrying the S146 variant was observed with a frequency of 3.7% only in the Alpine breed. For three of the estimated alleles, we could not establish if the found double polymorphisms in heterozygosis were in phase, due to technical limitations. In this context, in addition to selective culling in scrapie outbreaks according to the European regulation in force, in the future, selection plans could be adopted to deal with scrapie and to control its diffusion, meanwhile paying attention to preserve a high variability of PRNP.
Collapse
Affiliation(s)
- Martina Torricelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
| | - Carla Sebastiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
| | - Marcella Ciullo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Barbara Chiappini
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Gabriele Vaccari
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Antonio Capocefalo
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Michela Conte
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Samira Giovannini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06121 Perugia, Italy; (S.G.); (E.L.); (F.M.S.)
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06121 Perugia, Italy; (S.G.); (E.L.); (F.M.S.)
| | - Francesca Maria Sarti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06121 Perugia, Italy; (S.G.); (E.L.); (F.M.S.)
| | - Massimo Biagetti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
- Correspondence:
| |
Collapse
|
6
|
Nonno R, Marin-Moreno A, Carlos Espinosa J, Fast C, Van Keulen L, Spiropoulos J, Lantier I, Andreoletti O, Pirisinu L, Di Bari MA, Aguilar-Calvo P, Sklaviadis T, Papasavva-Stylianou P, Acutis PL, Acin C, Bossers A, Jacobs JG, Vaccari G, D'Agostino C, Chiappini B, Lantier F, Groschup MH, Agrimi U, Maria Torres J, Langeveld JPM. Characterization of goat prions demonstrates geographical variation of scrapie strains in Europe and reveals the composite nature of prion strains. Sci Rep 2020; 10:19. [PMID: 31913327 PMCID: PMC6949283 DOI: 10.1038/s41598-019-57005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Bovine Spongiform Encephalopathy (BSE) is the only animal prion which has been recognized as a zoonotic agent so far. The identification of BSE in two goats raised the need to reliably identify BSE in small ruminants. However, our understanding of scrapie strain diversity in small ruminants remains ill-defined, thus limiting the accuracy of BSE surveillance and spreading fear that BSE might lurk unrecognized in goats. We investigated prion strain diversity in a large panel of European goats by a novel experimental approach that, instead of assessing the neuropathological profile after serial transmissions in a single animal model, was based on the direct interaction of prion isolates with several recipient rodent models expressing small ruminants or heterologous prion proteins. The findings show that the biological properties of scrapie isolates display different patterns of geographical distribution in Europe and suggest that goat BSE could be reliably discriminated from a wide range of biologically and geographically diverse goat prion isolates. Finally, most field prion isolates showed composite strain features, with discrete strain components or sub-strains being present in different proportions in individual goats or tissues. This has important implications for understanding the nature and evolution of scrapie strains and their transmissibility to other species, including humans.
Collapse
Affiliation(s)
- Romolo Nonno
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | | | | | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | | | - John Spiropoulos
- Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom
| | - Isabelle Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Olivier Andreoletti
- UMR INRA ENVT 1225- IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Laura Pirisinu
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Michele A Di Bari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Alex Bossers
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Jorge G Jacobs
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Gabriele Vaccari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia D'Agostino
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Barbara Chiappini
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Frederic Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Umberto Agrimi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | | |
Collapse
|
7
|
Haley NJ, Merrett K, Buros Stein A, Simpson D, Carlson A, Mitchell G, Staskevicius A, Nichols T, Lehmkuhl AD, Thomsen BV. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLoS One 2019; 14:e0224342. [PMID: 31790424 PMCID: PMC6886763 DOI: 10.1371/journal.pone.0224342] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic wasting disease is a prion disease affecting both free-ranging and farmed cervids in North America and Scandinavia. A range of cervid species have been found to be susceptible, each with variations in the gene for the normal prion protein, PRNP, reportedly influencing both disease susceptibility and progression in the respective hosts. Despite the finding of several different PRNP alleles in white-tailed deer, the majority of past research has focused on two of the more common alleles identified-the 96G and 96S alleles. In the present study, we evaluate both infection status and disease stage in nearly 2100 farmed deer depopulated in the United States and Canada, including 714 CWD-positive deer and correlate our findings with PRNP genotype, including the more rare 95H, 116G, and 226K alleles. We found significant differences in either likelihood of being found infected or disease stage (and in many cases both) at the time of depopulation in all genotypes present, relative to the most common 96GG genotype. Despite high prevalence in many of the herds examined, infection was not found in several of the reported genotypes. These findings suggest that additional research is necessary to more properly define the role that these genotypes may play in managing CWD in both farmed and free-ranging white-tailed deer, with consideration for factors including relative fitness levels, incubation periods, and the kinetics of shedding in animals with these rare genotypes.
Collapse
Affiliation(s)
- Nicholas J. Haley
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Kahla Merrett
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Amy Buros Stein
- Office of Research and Sponsored Programs, Midwestern University, Glendale, Arizona
| | - Dennis Simpson
- Simpson Whitetails Genetic Testing, Belleville, Michigan
| | - Andrew Carlson
- Simpson Whitetails Genetic Testing, Belleville, Michigan
| | - Gordon Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - Antanas Staskevicius
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - Tracy Nichols
- United States Department of Agriculture, APHIS, Veterinary Services, Cervid Health Program, Fort Collins, Colorado, United States of America
| | - Aaron D. Lehmkuhl
- United States Department of Agriculture, APHIS, Veterinary Services, National Veterinary Services Laboratories, Ames, Iowa, United States of America
| | - Bruce V. Thomsen
- United States Department of Agriculture, APHIS, Veterinary Services, National Veterinary Services Laboratories, Ames, Iowa, United States of America
- United States Department of Agriculture, APHIS, Veterinary Services, Center for Veterinary Biologics, Ames, Iowa, United States of America
| |
Collapse
|
8
|
Langeveld JPM, Pirisinu L, Jacobs JG, Mazza M, Lantier I, Simon S, Andréoletti O, Acin C, Esposito E, Fast C, Groschup M, Goldmann W, Spiropoulos J, Sklaviadis T, Lantier F, Ekateriniadou L, Papasavva-Stylianou P, van Keulen LJM, Acutis PL, Agrimi U, Bossers A, Nonno R. Four types of scrapie in goats differentiated from each other and bovine spongiform encephalopathy by biochemical methods. Vet Res 2019; 50:97. [PMID: 31767033 PMCID: PMC6878695 DOI: 10.1186/s13567-019-0718-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023] Open
Abstract
Scrapie in goats has been known since 1942, the archetype of prion diseases in which only prion protein (PrP) in misfolded state (PrPSc) acts as infectious agent with fatal consequence. Emergence of bovine spongiform encephalopathy (BSE) with its zoonotic behaviour and detection in goats enhanced fears that its source was located in small ruminants. However, in goats knowledge on prion strain typing is limited. A European-wide study is presented concerning the biochemical phenotypes of the protease resistant fraction of PrPSc (PrPres) in over thirty brain isolates from transmissible spongiform encephalopathy (TSE) affected goats collected in seven countries. Three different scrapie forms were found: classical scrapie (CS), Nor98/atypical scrapie and one case of CH1641 scrapie. In addition, CS was found in two variants-CS-1 and CS-2 (mainly Italy)-which differed in proteolytic resistance of the PrPres N-terminus. Suitable PrPres markers for discriminating CH1641 from BSE (C-type) appeared to be glycoprofile pattern, presence of two triplets instead of one, and structural (in)stability of its core amino acid region. None of the samples exhibited BSE like features. BSE and these four scrapie types, of which CS-2 is new, can be recognized in goats with combinations of a set of nine biochemical parameters.
Collapse
Affiliation(s)
- Jan P M Langeveld
- Wageningen BioVeterinary Research (WBVR), Wageningen University & Research, Houtribweg 39, 8221RA, Lelystad, The Netherlands.
| | - Laura Pirisinu
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita (ISS), 299-00161, Rome, Italy
| | - Jorg G Jacobs
- Wageningen BioVeterinary Research (WBVR), Wageningen University & Research, Houtribweg 39, 8221RA, Lelystad, The Netherlands
| | - Maria Mazza
- Italian Reference Centre for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte (IZSTO), 10154, Turin, TO, Italy
| | - Isabelle Lantier
- UMR 1282 ISP, Institut National de la Recherche Agronomique (INRA), University of Tours, 37380, Nouzilly, France
| | - Stéphanie Simon
- Commissariat à l'Énergie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Olivier Andréoletti
- UMR INRA/ENVT 1225 IHAP, École Nationale Vétérinaire de Toulouse (ENVT), 31300, Toulouse, France
| | - Cristina Acin
- Research Centre for TSE and Emerging Transmissible Diseases, University of Zaragoza (UNIZAR), 50013, Zaragoza, Spain
| | - Elena Esposito
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita (ISS), 299-00161, Rome, Italy
| | - Christine Fast
- Friedrich-Loeffler-Institut (FLI), Institute of Novel and Emerging Infectious Diseases, Greifswald-Isle of Riems, 17493, Greifswald, Germany
| | - Martin Groschup
- Friedrich-Loeffler-Institut (FLI), Institute of Novel and Emerging Infectious Diseases, Greifswald-Isle of Riems, 17493, Greifswald, Germany
| | - Wilfred Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh (UEDIN), Easter Bush, Midlothian, EH25 9RG, UK
| | - John Spiropoulos
- Department of Pathology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Theodoros Sklaviadis
- School of Pharmacy, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Frederic Lantier
- UMR 1282 ISP, Institut National de la Recherche Agronomique (INRA), University of Tours, 37380, Nouzilly, France
| | - Loukia Ekateriniadou
- Hellenic Agricultural Organization DEMETER, Veterinary Research Institute, 57001, Thessaloniki, Greece
| | | | - Lucien J M van Keulen
- Wageningen BioVeterinary Research (WBVR), Wageningen University & Research, Houtribweg 39, 8221RA, Lelystad, The Netherlands
| | - Pier-Luigi Acutis
- Italian Reference Centre for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte (IZSTO), 10154, Turin, TO, Italy
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita (ISS), 299-00161, Rome, Italy
| | - Alex Bossers
- Wageningen BioVeterinary Research (WBVR), Wageningen University & Research, Houtribweg 39, 8221RA, Lelystad, The Netherlands
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita (ISS), 299-00161, Rome, Italy
| |
Collapse
|
9
|
Vouraki S, Gelasakis AI, Alexandri P, Boukouvala E, Ekateriniadou LV, Banos G, Arsenos G. Genetic profile of scrapie codons 146, 211 and 222 in the PRNP gene locus in three breeds of dairy goats. PLoS One 2018; 13:e0198819. [PMID: 29879210 PMCID: PMC5991713 DOI: 10.1371/journal.pone.0198819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/27/2018] [Indexed: 11/29/2022] Open
Abstract
Polymorphisms at PRNP gene locus have been associated with resistance against classical scrapie in goats. Genetic selection on this gene within appropriate breeding programs may contribute to the control of the disease. The present study characterized the genetic profile of codons 146, 211 and 222 in three dairy goat breeds in Greece. A total of 766 dairy goats from seven farms were used. Animals belonged to two indigenous Greek, Eghoria (n = 264) and Skopelos (n = 287) and a foreign breed, Damascus (n = 215). Genomic DNA was extracted from blood samples from individual animals. Polymorphisms were detected in these codons using Real-Time PCR analysis and four different Custom TaqMan® SNP Genotyping Assays. Genotypic, allelic and haplotypic frequencies were calculated based on individual animal genotypes. Chi-square tests were used to examine Hardy-Weinberg equilibrium state and compare genotypic distribution across breeds. Genetic distances among the three breeds, and between these and 30 breeds reared in other countries were estimated based on haplotypic frequencies using fixation index FST with Arlequin v3.1 software; a Neighbor-Joining tree was created using PHYLIP package v3.695. Level of statistical significance was set at P = 0.01. All scrapie resistance-associated alleles (146S, 146D, 211Q and 222K) were detected in the studied population. Significant frequency differences were observed between the indigenous Greek and Damascus breeds. Alleles 222K and 146S had the highest frequency in the two indigenous and the Damascus breed, respectively (ca. 6.0%). The studied breeds shared similar haplotypic frequencies with most South Italian and Turkish breeds but differed significantly from North-Western European, Far East and some USA goat breeds. Results suggest there is adequate variation in the PRNP gene locus to support breeding programs for enhanced scrapie resistance in goats reared in Greece. Genetic comparisons among goat breeds indicate that separate breeding programs should apply to the two indigenous and the imported Damascus breeds.
Collapse
Affiliation(s)
- Sotiria Vouraki
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios I. Gelasakis
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Panoraia Alexandri
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evridiki Boukouvala
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Loukia V. Ekateriniadou
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Georgios Banos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland’s Rural College and The Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Sacchi P, Rasero R, Ru G, Aiassa E, Colussi S, Ingravalle F, Peletto S, Perrotta MG, Sartore S, Soglia D, Acutis P. Predicting the impact of selection for scrapie resistance on PRNP genotype frequencies in goats. Vet Res 2018; 49:26. [PMID: 29510738 PMCID: PMC5840724 DOI: 10.1186/s13567-018-0518-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/03/2018] [Indexed: 11/10/2022] Open
Abstract
The European Union has implemented breeding programmes to increase scrapie resistance in sheep. A similar approach can be applied also in goats since the K222 allele provides a level of resistance equivalent to that of ARR in sheep. The European Food Safety Authority stated that breeding for resistance could be offered as an option for Member States to control classical scrapie in goats. We assessed the impact of different breeding strategies on PRNP genotype frequencies using a mathematical model that describes in detail the evolution of K222 in two goat breeds, Chamois Coloured and Saanen. Different patterns of age structure and replacement rate were modelled as factors affecting response to selection. Breeding for scrapie resistance can be implemented in goats, even though the initial K222 frequencies in these breeds are not particularly favourable and the rate at which the resistant animals increase, both breeding and slaughtered for meat production, is slow. If the goal is not to achieve the fixation of resistance allele, it is advisable to carry out selection only until a desired frequency of K222-carriers has been attained. Nucleus selection vs. selection on the overall populations is less expensive but takes longer to reach the desired output. The programme performed on the two goat breeds serves as a model of the response the selection could have in other breeds that show different initial frequencies and population structure. In this respect, the model has a general applicability.
Collapse
Affiliation(s)
- Paola Sacchi
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Roberto Rasero
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Giuseppe Ru
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Eleonora Aiassa
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Silvia Colussi
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Francesco Ingravalle
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Simone Peletto
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Maria Gabriella Perrotta
- Direzione generale della sanità animale e dei farmaci veterinari, Ministero della Salute, Rome, Italy
| | - Stefano Sartore
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Dominga Soglia
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Pierluigi Acutis
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| |
Collapse
|
11
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Speybroeck N, Simmons M, Kuile BT, Threlfall J, Wahlström H, Acutis PL, Andreoletti O, Goldmann W, Langeveld J, Windig JJ, Ortiz Pelaez A, Snary E. Genetic resistance to transmissible spongiform encephalopathies (TSE) in goats. EFSA J 2017; 15:e04962. [PMID: 32625625 PMCID: PMC7010077 DOI: 10.2903/j.efsa.2017.4962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Breeding programmes to promote resistance to classical scrapie, similar to those for sheep in existing transmissible spongiform encephalopathies (TSE) regulations, have not been established in goats. The European Commission requested a scientific opinion from EFSA on the current knowledge of genetic resistance to TSE in goats. An evaluation tool, which considers both the weight of evidence and strength of resistance to classical scrapie of alleles in the goat PRNP gene, was developed and applied to nine selected alleles of interest. Using the tool, the quality and certainty of the field and experimental data are considered robust enough to conclude that the K222, D146 and S146 alleles both confer genetic resistance against classical scrapie strains known to occur naturally in the EU goat population, with which they have been challenged both experimentally and under field conditions. The weight of evidence for K222 is greater than that currently available for the D146 and S146 alleles and for the ARR allele in sheep in 2001. Breeding for resistance can be an effective tool for controlling classical scrapie in goats and it could be an option available to member states, both at herd and population levels. There is insufficient evidence to assess the impact of K222, D146 and S146 alleles on susceptibility to atypical scrapie and bovine spongiform encephalopathy (BSE), or on health and production traits. These alleles are heterogeneously distributed across the EU Member States and goat breeds, but often at low frequencies (< 10%). Given these low frequencies, high selection pressure may have an adverse effect on genetic diversity so any breeding for resistance programmes should be developed at Member States, rather than EU level and their impact monitored, with particular attention to the potential for any negative impact in rare or small population breeds.
Collapse
|