1
|
Liu Y, Yang D, Jiang W, Chi T, Kang J, Wang Z, Wu F. Cell entry of bovine respiratory syncytial virus through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK pathways. Front Microbiol 2024; 15:1393127. [PMID: 38690369 PMCID: PMC11059085 DOI: 10.3389/fmicb.2024.1393127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is an RNA virus with envelope that causes acute, febrile, and highly infectious respiratory diseases in cattle. However, the manner and mechanism of BRSV entry into cells remain unclear. In this study, we aimed to explore the entry manner of BRSV into MDBK cells and its regulatory mechanism. Our findings, based on virus titer, virus copies, western blot and IFA analysis, indicate that BRSV enters MDBK cells through endocytosis, relying on dynamin, specifically via clathrin-mediated endocytosis rather than caveolin-mediated endocytosis and micropinocytosis. We observed that the entered BRSV initially localizes in early endosomes and subsequently localizes in late endosomes. Additionally, our results of western blot, virus titer and virus copies demonstrate that BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways. Overall, our study suggests that BRSV enters MDBK cells through clathrin-mediated endocytosis, entered BRSV is trafficked to late endosome via early endosome, BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Dongliang Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu, China
| | - Wen Jiang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Tianying Chi
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zhiliang Wang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| |
Collapse
|
2
|
Liu Y, Zhang Q, Zou M, Cui J, Shi X, Li L, Wu F, Xu X. Cell entry of Bovine herpesvirus-1 through clathrin- and caveolin-mediated endocytosis requires activation of PI3K-Akt-NF-κB and Ras-p38 MAPK pathways as well as the interaction of BoHV-1 gD with cellular receptor nectin-1. Vet Microbiol 2023; 279:109672. [PMID: 36774841 DOI: 10.1016/j.vetmic.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Bovine herpesvirus-1 (BoHV-1) can infect all breeds of cattle and cause severe respiratory organs and genital tract diseases. However, the mechanism of BoHV-1 entering the cells remains unclear. In this study, we explored the mechanism of BoHV-1 entering MDBK cells. We found that the entry of BoHV-1 was blocked by NH4Cl and bafilomycin A1, indicating that BoHV-1 entry is dependent on the acidic environment of endosome. Specific inhibitor dynasore and small interfering RNA (siRNA) knockdown of dynamin-2 inhibited BoHV-1 entry, showing that dynamin is required in BoHV-1 entry. The results of specific inhibitor, siRNA knockdown and co-localization indicating clathrin- and caveolin- mediated endocytosis play a role in BoHV-1 entry. BoHV-1 infection was not affected by EIPA which is a specific inhibitor of macropinocytosis. In addition, we found that BoHV-1 triggered PI3K-Akt-NF-κB and Ras-p38 MAPK signaling pathways to induce clathrin-mediated and caveolin-mediated endocytosis at the early stage of BoHV-1 infection. BoHV-1 binding was sufficient to activate the endocytic signaling pathways and promote viral entry. These two signaling pathways were activated by transfection of viral gD protein, and were inhibited by deletion of viral gD protein and the siRNA knockdown of cellular receptor nectin-1. The results of co-localization indicating the entered BoHV-1 is traced to late endosomes via early endosomes. Our results suggested the interaction of viral gD protein and cellular receptor nectin-1 triggered the PI3K-Akt-NF-κB and Ras-p38 MAPK signaling pathways and induced clathrin-mediated and caveolin-mediated endocytosis to promote BoHV-1 entry into MDBK cells at the early stage of BoHV-1 infection.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Zou
- State Key Laboratory of Animal Genetical Engineered Vaccine of Ministry of Science and Technology, Qingdao YeBio Biological Engineering Company Limited, Qingdao, Shandong 266110, China
| | - Jin Cui
- Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linjie Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Zeng S, Peng O, Hu F, Xia Y, Geng R, Zhao Y, He Y, Xu Q, Xue C, Cao Y, Zhang H. Metabolomic analysis of porcine intestinal epithelial cells during swine acute diarrhea syndrome coronavirus infection. Front Cell Infect Microbiol 2022; 12:1079297. [PMID: 36530441 PMCID: PMC9751206 DOI: 10.3389/fcimb.2022.1079297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enveloped, positive single-stranded RNA virus belonging to Coronaviridae family, Orthocoronavirinae subfamily, Alphacoronavirus genus. As one of the main causes of swine diarrhea, SADS-CoV has brought huge losses to the pig industry. Although we have a basic understanding of SADS-CoV, the research on the pathogenicity and interactions between host and virus are still limited, especially the metabolic changes induced by SADS-CoV infection. Here, we utilized a combination of untargeted metabolomics and lipomics to analyze the metabolic alteration in SADS-CoV infected cells. Significant changes were observed in 1257 of 2225 metabolites identified in untargeted metabolomics, while the number of lipomics was 435 out of 868. Metabolic pathway enrichment analysis showed that amino acid metabolism, tricarboxylic acid (TCA) cycle and ferroptosis were disrupted during viral infection, suggesting that these metabolic pathways may partake in pathological processes related to SADS-CoV pathogenesis. Collectively, our findings gain insights into the cellular metabolic disorder during SADS-CoV infection, offer a valuable resource for further exploration of the relationship between virus and host metabolic activities, and provide potential targets for the development of antiviral drugs.
Collapse
Affiliation(s)
- Siying Zeng
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Fangyu Hu
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Yu Xia
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Rui Geng
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Yan Zhao
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Yihong He
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐sen University, Guangzhou, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, Life Sciences School, Sun Yat‐sen University, Guangzhou, China,*Correspondence: Hao Zhang,
| |
Collapse
|
4
|
Saleri R, Borghetti P, Ravanetti F, Andrani M, Cavalli V, De Angelis E, Ferrari L, Martelli P. A Co-Culture Model of IPEC-J2 and Swine PBMC to Study the Responsiveness of Intestinal Epithelial Cells: The Regulatory Effect of Arginine Deprivation. Animals (Basel) 2021; 11:ani11092756. [PMID: 34573721 PMCID: PMC8465608 DOI: 10.3390/ani11092756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The interest in amino acids comes from their involvement in research on alternative strategies for the utilization of antibiotics on farms. Among several substances used to replace antibiotics, there is arginine, an essential amino acid in newborns and piglets. This amino acid has a protective role in intestinal immune cells and improves intestinal immunity. The purpose of this research was to define a co-culture model, in which intestinal epithelial cells can communicate with peripheral blood mononuclear cells (PBMC) to deepen the effects of arginine deprivation on intestinal epithelial cells over time. The main finding was that the lack of arginine highly impacts on intestinal and immune cells by way of immuno-regulation mediated by the expression of pro- and anti-inflammatory cytokines. The use of this experimental model could allow us to investigate the impact of and interactions between specific nutrients and the complex intestinal environment and, in addition, to assess feed additives to improve health and animal production. Abstract Arginine is a semi-essential amino acid, supplementation with which induces a reduction of intestinal damage and an improvement of intestinal immunity in weaned piglets, but the mechanism is not yet entirely clear. The aim of this study was to characterise a co-culture model by measuring changes in gene expression over time (24 and 48 h) in intestinal IPEC-J2 cells in the presence of immune cells activated with phytohemagglutinin and, consequently, to assess the effectiveness of arginine deprivation or supplementation in modulating the expression of certain cytokines related to the regulation of intestinal cells’ function. The main results show the crucial role of arginine in the viability/proliferation of intestinal cells evaluated by an MTT assay, and in the positive regulation of the expression of pro-inflammatory (TNF-α, IL-1α, IL-6, IL-8) and anti-inflammatory (TGF-β) cytokines. This experimental model could be important for analysing and clarifying the role of nutritional conditions in intestinal immune cells’ functionality and reactivity in pigs as well as the mechanisms of the intestinal defence system. Among the potential applications of our in vitro model of interaction between IEC and the immune system there is the possibility of studying the effect of feed additives to improve animal health and production.
Collapse
|
5
|
The Amino Acid-mTORC1 Pathway Mediates APEC TW-XM-Induced Inflammation in bEnd.3 Cells. Int J Mol Sci 2021; 22:ijms22179245. [PMID: 34502151 PMCID: PMC8431488 DOI: 10.3390/ijms22179245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
The blood-brain barrier (BBB) is key to establishing and maintaining homeostasis in the central nervous system (CNS); meningitis bacterial infection can disrupt the integrity of BBB by inducing an inflammatory response. The changes in the cerebral uptake of amino acids may contribute to inflammatory response during infection and were accompanied by high expression of amino acid transporters leading to increased amino acid uptake. However, it is unclear whether amino acid uptake is changed and how to affect inflammatory responses in mouse brain microvascular endothelial (bEnd.3) cells in response to Avian Pathogenic Escherichia coli TW-XM (APEC XM) infection. Here, we firstly found that APEC XM infection could induce serine (Ser) and glutamate (Glu) transport from extracellular into intracellular in bEnd.3 cells. Meanwhile, we also shown that the expression sodium-dependent neutral amino acid transporter 2 (SNAT2) for Ser and excitatory amino acid transporter 4 (EAAT4) for Glu was also significantly elevated during infection. Then, in amino acid deficiency or supplementation medium, we found that Ser or Glu transport were involving in increasing SNAT2 or EAAT4 expression, mTORC1 (mechanistic target of rapamycin complex 1) activation and inflammation, respectively. Of note, Ser or Glu transport were inhibited after SNAT2 silencing or EAAT4 silencing, resulting in inhibition of mTORC1 pathway activation, and inflammation compared with the APEC XM infection group. Moreover, pEGFP-SNAT2 overexpression and pEGFP-EAAT4 overexpression in bEnd.3 cells all could promote amino acid uptake, activation of the mTORC1 pathway and inflammation during infection. We further found mTORC1 silencing could inhibit inflammation, the expression of SNAT2 and EAAT4, and amino acid uptake. Taken together, our results demonstrated that APEC TW-XM infection can induce Ser or Glu uptake depending on amino acid transporters transportation, and then activate amino acid-mTORC1 pathway to induce inflammation in bEnd.3 cells.
Collapse
|
6
|
Porcine enteric coronaviruses: an updated overview of the pathogenesis, prevalence, and diagnosis. Vet Res Commun 2021; 45:75-86. [PMID: 34251560 PMCID: PMC8273569 DOI: 10.1007/s11259-021-09808-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
The recent prevalence of coronavirus (CoV) poses a serious threat to animal and human health. Currently, porcine enteric coronaviruses (PECs), including the transmissible gastroenteritis virus (TGEV), the novel emerging swine acute diarrhoea syndrome coronavirus (SADS-CoV), porcine delta coronavirus (PDCoV), and re-emerging porcine epidemic diarrhoea virus (PEDV), which infect pigs of different ages, have caused more frequent occurrences of diarrhoea, vomiting, and dehydration with high morbidity and mortality in piglets. PECs have the potential for cross-species transmission and are causing huge economic losses in the pig industry in China and the world, which therefore needs to be urgently addressed. Accordingly, this article summarises the pathogenicity, prevalence, and diagnostic methods of PECs and provides an important reference for their improved diagnosis, prevention, and control.
Collapse
|