1
|
Lin C, Xiong J, Chen Y, Zheng H, Li M. Overexpression of CENPU promotes cancer growth and metastasis and is associated with poor survival in patients with nasopharyngeal carcinoma. Transl Cancer Res 2024; 13:2812-2824. [PMID: 38988917 PMCID: PMC11231766 DOI: 10.21037/tcr-23-2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/28/2024] [Indexed: 07/12/2024]
Abstract
Background Centromere protein U (CENPU) is key for mitosis in the carcinogenesis of cancers. However, the roles of CENPU have not been inspected in nasopharyngeal carcinoma (NPC). Thus, we aimed to explore the functions and mechanisms of CENPU in NPC. Methods Expression of CENPU was evaluated by real-time quantitative polymerase chain reaction, western blotting and immunohistochemistry. The biological functions of CENPU were evaluated in vitro and in vivo. Gene chip analysis, ingenuity pathway analysis, and coimmunoprecipitation experiments were used to explore the mechanisms of CENPU. Results CENPU was highly expressed in NPC. High expression of CENPU was associated with advanced tumor, node and metastasis (TNM) stage and poor overall survival. Cox regression analysis demonstrated that CENPU expression was an independent prognostic factor in NPC. Knockdown of CENPU inhibited proliferation and migration in vitro and in vivo. Knockdown of CENPU upregulated dual specificity phosphatase 6 (DUSP6) expression. The expression of CNEPU was inversely correlated with the expression of DUSP6 in NPC tissues. Mechanistic studies confirmed that CENPU increased the activation of the ERK1/2 and p38 signaling pathways by suppressing the expression of DUSP6. Conclusions CENPU acts as an oncogene in NPC by interacting with DUSP6, and may represent a promising prognostic biomarker for patients with NPC.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yuebing Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Huiping Zheng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Meifang Li
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
2
|
Liu Y, Luo Z. Repurposing Anticancer Drugs Targeting the MAPK/ERK Signaling Pathway for the Treatment of Respiratory Virus Infections. Int J Mol Sci 2024; 25:6946. [PMID: 39000055 PMCID: PMC11240997 DOI: 10.3390/ijms25136946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory virus infections remain a significant challenge to human health and the social economy. The symptoms range from mild rhinitis and nasal congestion to severe lower respiratory tract dysfunction and even mortality. The efficacy of therapeutic drugs targeting respiratory viruses varies, depending upon infection time and the drug resistance engendered by a high frequency of viral genome mutations, necessitating the development of new strategies. The MAPK/ERK pathway that was well delineated in the 1980s represents a classical signaling cascade, essential for cell proliferation, survival, and differentiation. Since this pathway is constitutively activated in many cancers by oncogenes, several drugs inhibiting Raf/MEK/ERK have been developed and currently used in anticancer treatment. Two decades ago, it was reported that viruses such as HIV and influenza viruses could exploit the host cellular MAPK/ERK pathway for their replication. Thus, it would be feasible to repurpose this category of the pathway inhibitors for the treatment of respiratory viral infections. The advantage is that the host genes are not easy to mutate such that the drug resistance rarely occurs during short-period treatment of viruses. Therefore, in this review we will summarize the research progress on the role of the MAPK/ERK pathway in respiratory virus amplification and discuss the potential of the pathway inhibitors (MEK inhibitors) in the treatment of respiratory viral infections.
Collapse
Affiliation(s)
| | - Zhijun Luo
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China;
| |
Collapse
|
3
|
Wu W, Li J, Yin Y, Zhou Y, Huang X, Cao Y, Chen X, Zhou Y, Du J, Xu Z, Yang B, He Q, Yang X, Hu Y, Yan H, Luo P. Rutin attenuates ensartinib-induced hepatotoxicity by non-transcriptional regulation of TXNIP. Cell Biol Toxicol 2024; 40:38. [PMID: 38789868 PMCID: PMC11126486 DOI: 10.1007/s10565-024-09883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.
Collapse
Affiliation(s)
- Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Jinjin Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Yiming Yin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Yourong Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Yashi Cao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Xueqin Chen
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310002, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yunfang Zhou
- The Laboratory of Clinical Pharmacy, the Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323020, China
| | - Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310017, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Yuhuai Hu
- Innovation Institute of Hangzhou Yuhong Pharmatech Co.,LTD, Hangzhou, 310018, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China.
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China.
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310018, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
| |
Collapse
|
4
|
Chen Y, Zheng S, Zhao X, Zhang Y, Yu S, Wei J. Unveiling the protective effects of BMSCs/anti-miR-124-3p exosomes on LPS-induced endometrial injury. Funct Integr Genomics 2024; 24:32. [PMID: 38363406 DOI: 10.1007/s10142-024-01303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
Researchers have reported that miR-124-3p is highly expressed in patients with chronic endometritis. However, the underlying mechanism of miR-124-3p in the development of endometritis remains unclear. This study constructed an in vitro endometrial cell injury model by treating HEECs with 2 μg/mL LPS for 48 h. Then, 1 mg/kg LPS was injected into both sides of the mouse uterus to construct an in vivo endometrial injury model. The expression of miR-124-3p in human endometrial epithelial cells (HEECs) was assessed using RT‒qPCR. Exosomes were separated from bone marrow-derived mesenchymal stem cells (BMSCs) and cocultured with HEECs. A dual-luciferase reporter assay was performed to confirm the relationship between miR-124-3p and DUSP6. The results indicated that LPS inhibited HEEC viability in a time- and dose-dependent manner. The miR-124-3p inhibitor reversed the LPS-induced apoptosis and inhibition of HEEC viability. In addition, miR-124-3p could be transferred from BMSCs to HEECs by exosomes. Exosomes were derived from BMSCs treated with an NC inhibitor (BMSCs/NC Exo) or miR-124-3p inhibitor (BMSCs/anti-miR-124-3p Exo). In addition, BMSCs/anti-miR-124-3p Exo abolished the LPS-induced inhibition of HEEC viability and proliferation by inducing HEEC apoptosis. Moreover, BMSCs/anti-miR-124-3p Exo alleviated the LPS-induced inflammation of HEECs by upregulating DUSP6 and downregulating p-p65 and p-ERK. Furthermore, in an LPS-induced in vivo endometrial injury model, BMSCs/anti-miR-124-3p Exo increased the expression level of DUSP6 and decreased the expression levels of p-p65 and p-ERK. BMSCs/anti-miR-124-3p Exo protected against LPS-induced endometrial damage in vitro and in vivo by upregulating DUSP6 and downregulating p-p65 and p-ERK1/2. This study showed that BMSCs/anti-miR-124-3p Exo might be a potential alternative for the treatment of endometritis.
Collapse
Grants
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
- 2020J01986, 2021J1236, 2022J01689 Natural Science Foundation of Fujian Province
Collapse
Affiliation(s)
- Yihong Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Shan Zheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Xiumei Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Suchai Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Juanbing Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
5
|
Xu J, Yin P, Liu X, Hou X. Forsythoside A inhibits apoptosis and autophagy induced by infectious bronchitis virus through regulation of the PI3K/Akt/NF-κB pathway. Microbiol Spectr 2023; 11:e0192123. [PMID: 37971265 PMCID: PMC10715169 DOI: 10.1128/spectrum.01921-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Infectious bronchitis virus (IBV) is an acute and highly infectious viral disease that seriously endangered the development of the chicken industry. However, due to the limited effectiveness of commercial vaccines, there is an urgent need to develop safe and effective anti-IBV drugs. Forsythoside A (FTA) is a natural ingredient with wide pharmacological and biological activities, and it has been shown to have antiviral effects against IBV. However, the antiviral mechanism of FTA is still unclear. In this study, we demonstrated that FTA can inhibit cell apoptosis and autophagy induced by IBV infection by regulating the PI3K/AKT/NF-κB signaling pathway. This finding is important for exploring the role and mechanism of FTA in anti-IBV infection, indicating that FTA can be further studied as an anti-IBV drug.
Collapse
Affiliation(s)
- Jun Xu
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Peng Yin
- Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Xuewei Liu
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
6
|
Zhou L, Li C, Zhang R, Li Q, Sun Y, Feng Y, Lan T, Ma J. Identification of a receptor tyrosine kinase inhibitor CP-724714 inhibits SADS-CoV related swine diarrhea coronaviruses infection in vitro. Virol Sin 2023; 38:778-786. [PMID: 37406816 PMCID: PMC10590692 DOI: 10.1016/j.virs.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
The outbreak of the COVID-19 epidemic in 2020 has caused unprecedented panic among all mankind, pointing the major importance of effective treatment. Since the emergence of the swine acute diarrhea syndrome coronavirus (SADS-CoV) at the end of 2017, multiple reports have indicated that the bat-related SADS-CoV possesses a potential threat for cross-species transmission. Vaccines and antiviral drugs development deserve more attention. In this study, we found that the HER2 phosphorylation inhibitor (CP-724714) inhibited SADS-CoV infection in a dose-dependent manner. Further validation demonstrated that CP-724714 affected at the post-entry stage of SADS-CoV infection cycle. Also, efficient SADS-CoV infection required the activation of HER2 and its cascade Ras-Raf-Mek-Erk signaling pathway. In addition, CP-724714 has a broad-spectrum anti-swine diarrhea coronaviruses activity, and can dose-dependently combat SADS-CoV, porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and transmissible gastroenteritis virus (TGEV) infection in vitro with a specificity index of greater than 21.98, 9.38, 95.23 and 31.62, respectively. These results highlight the potential utility of CP-724714 or antiviral drugs targeting with HER2 and its cascade Ras-Raf-Mek-Erk signaling pathway as host-targeted SADS-CoV and other related coronaviruses therapeutics.
Collapse
Affiliation(s)
- Ling Zhou
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Cheng Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ruiyu Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qianniu Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuan Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Tian Lan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Jingyun Ma
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Shen J, Xu Q, Chen L, Chang X, Shen R, Zhao Z, Zhu L, Wu Y, Hou X. Andrographolide inhibits infectious bronchitis virus-induced apoptosis, pyroptosis, and inflammation. Antivir Ther 2023; 28:13596535231207499. [PMID: 37846668 DOI: 10.1177/13596535231207499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
BACKGROUND Avian infectious bronchitis virus (IBV), a coronavirus, causes a huge economic loss to the poultry industry. Andrographolide (APL) is a compound with a variety of pharmacological properties, including antiviral and anti-inflammatory effects. In this study, APL was evaluated for antiviral activity by its anti-apoptotic, anti-pyroptosis, and anti-inflammatory effects. METHODS The cytotoxicity of APL was determined by the MTT method. We investigated the therapeutic impact of APL on IBV through a plate assay. We explored that APL inhibited IBV-induced apoptosis, pyroptosis, and inflammation in HD11 cells by RT-qPCR and immunofluorescence. Also, it was verified in the clinical chicken embryo trial. RESULTS We found that APL down-regulated apoptosis-related genes Caspase-3, Caspase-8, Caspase-9, Bax, Bid, and Bak, down-regulated pyroptosis gene DFNA5, and down-regulated inflammation-related genes (NF-κB, NLRP3, iNOS, TNF-α, and IL-1β). In addition, APL reduced the reactive oxygen species (ROS) production in cells. Finally, clinical trials showed that APL inhibited IBV-induced apoptosis, pyroptosis, and inflammation, as well as reduced the mortality and malformation of chicken embryos. CONCLUSIONS In this study, we delved into the antiviral properties of APL in the context of chicken macrophage (HD11) infection with IBV. Our findings confirm that andrographolide effectively inhibits apoptosis, pyroptosis, and inflammation by IBV infection. Furthermore, this inhibition was verified on chicken embryos in vivo. This inhibition suggests a substantial potential for APL as a therapeutic agent to mitigate the harmful effects of IBV on host cells.
Collapse
Affiliation(s)
- Jiachen Shen
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qiuchi Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Lu Chen
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xinyu Chang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ruiting Shen
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhenhua Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Lifei Zhu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yifei Wu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
8
|
Chen S, Xin Y, Tang K, Wu Y, Guo Y. Nardosinone and aurantio-obtusin, two medicine food homology natural compounds, are anti-influenza agents as indicated by transcriptome signature reversion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154515. [PMID: 36347176 DOI: 10.1016/j.phymed.2022.154515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Medicine food homology (MFH) refers to food that can be used as medicine, and compounds isolated from MFH materials are valuable in novel drug discovery due to their good safety. Transcriptome signature reversion (TSR) is an attractive method for discovering drugs through transcriptional reverse matching; namely, the changes in transcriptional signatures induced by compounds are matched to a certain disease. This strategy can be used to discover anti-influenza agents among MFH natural compounds. PURPOSE MFH natural compounds with anti-influenza activities were identified through analyses of the reversal in the expression of multiple informative genes followed by in vitro evaluation of the cytopathic effect (CPE) caused by influenza infection and relative quantification of the nucleoprotein (NP) gene in viral RNA (vRNA). The combined effect of active compounds was determined through network-based separation score prediction followed by quantification of the viral hemagglutinin (HA) level. METHODS The transcriptome profiles of 4 lung or airway cell lines infected with 7 influenza virus strains were analyzed by robust rank aggregation (RRA) to identify informative genes in the signature of influenza virus infection. The identified informative genes were then matched to a transcriptomic profile library of MFH natural compounds. The anti-influenza activities of MFH natural compounds with negative enrichment scores (ESs) were evaluated in vitro using a CPE assay and relative quantification of the NP gene in the vRNA in the supernatant and cytoplasm to identify anti-influenza agents. The effects of combinations of active compounds were analyzed using network-based calculations followed by confirmation through bioassays for quantifying the viral HA levels. RESULTS Among the 159 MFH natural compounds, 54 compounds had negative ESs, as determined through TSR, and the anti-influenza activities of nardosinone and aurantio-obtusin were confirmed by bioassays. The half-maximal effective concentrations (EC50) of nardosinone and aurantio-obtusin were 4.3-84.4 μM and 31.9-113.6 μM, respectively. The separation score between the informative genes with expression that was negatively regulated by nardosinone and aurantio-obtusin in the human protein-protein interaction (PPI) network was calculated to be 0.10, which indicated that the two compounds potentially exert a synergistic effect, and this effect was confirmed by the finding that the combination indexes (CIs) were calculated to equal 0.86 at inhibition level of 50% and 0.44 at inhibition level of 90%. CONCLUSION The TSR analysis and in vitro evaluation identified nardosinone and aurantio-obtusin as anti-influenza agents. Their antiviral activities were exerted by reversing the expression of multiple informative genes of the host cells. The separation analysis between the informative genes that were reversely regulated by nardosinone and aurantio-obtusin indicated that their combination may exert a synergistic effect, which was confirmed in vitro.
Collapse
Affiliation(s)
- Shubing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yijing Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ke Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - You Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
9
|
Rather IA, Lew LC, Kamli MR, Hakeem KR, Sabir JSM, Park YH, Hor YY. The Inhibition of SARS-CoV-2 and the Modulation of Inflammatory Responses by the Extract of Lactobacillus sakei Probio65. Vaccines (Basel) 2022; 10:vaccines10122106. [PMID: 36560517 PMCID: PMC9787410 DOI: 10.3390/vaccines10122106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
In the three years since the first outbreak of COVID-19 in 2019, the SARS-CoV-2 virus has continued to be prevalent in our community. It is believed that the virus will remain present, and be transmitted at a predictable rate, turning endemic. A major challenge that leads to this is the constant yet rapid mutation of the virus, which has rendered vaccination and current treatments less effective. In this study, the Lactobacillus sakei Probio65 extract (P65-CFS) was tested for its safety and efficacy in inhibiting SARS-CoV-2 replication. Viral load quantification by RT-PCR showed that the P65-CFS inhibited SARS-CoV-2 replication in human embryonic kidney (HEK) 293 cells in a dose-dependent manner, with 150 mg/mL being the most effective concentration (60.16% replication inhibition) (p < 0.05). No cytotoxicity was inflicted on the HEK 293 cells, human corneal epithelial (HCE) cells, or human cervical (HeLa) cells, as confirmed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The P65-CFS (150 mg/mL) also reduced 83.40% of reactive oxidizing species (ROS) and extracellular signal-regulated kinases (ERK) phosphorylation in virus-infected cells, both of which function as important biomarkers for the pathogenesis of SARS-CoV-2. Furthermore, inflammatory markers, including interferon-α (IFN-α), IFN-ß, and interleukin-6 (IL-6), were all downregulated by P65-CFS in virus-infected cells as compared to the untreated control (p < 0.05). It was conclusively found that L. sakei Probio65 showed notable therapeutic efficacy in vitro by controlling not only viral multiplication but also pathogenicity; this finding suggests its potential to prevent severe COVID-19 and shorten the duration of infectiousness, thus proving useful as an adjuvant along with the currently available treatments.
Collapse
Affiliation(s)
- Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.A.R.); (Y.-Y.H.)
| | - Lee-Ching Lew
- Probionic Corporation Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 54810, Republic of Korea
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka 1341, Bangladesh
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yong-Ha Park
- Probionic Corporation Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 54810, Republic of Korea
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- PYH Lab, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Yan-Yan Hor
- Probionic Corporation Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 54810, Republic of Korea
- Correspondence: (I.A.R.); (Y.-Y.H.)
| |
Collapse
|
10
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. RNA-seq and LC-MS/MS analysis of antiviral effects mediated by cold stress and stress hormone corticosterone in chicken DF-1 cells. Vet Microbiol 2022; 275:109580. [DOI: 10.1016/j.vetmic.2022.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
|
11
|
Wu X, Wang J, Kang Y, Wang Q, Qu J, Sun X, Ji D, Li Y. Regulation of Proliferation and Apoptosis of Hair Follicle Stem Cells by miR-145-5p in Yangtze River Delta White Goats. Genes (Basel) 2022; 13:1973. [PMID: 36360210 PMCID: PMC9689699 DOI: 10.3390/genes13111973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2024] Open
Abstract
Yangtze River Delta white goats are the sole goat breed producing brush hair of high quality. The gene DUSP6 has been extensively studied in tumor cells but rarely in hair follicle stem cells (HFSCs). Per the previous sequencing data, it was determined that DUSP6 expression was up-regulated in superior-quality brush hair tissues, confirming it as a candidate gene associated with this trait. The targeting relationship of miR-145-5p with DUSP6 was determined based on online database prediction and was authenticated using a dual-luciferase gene reporter assay and quantitative reverse-transcription PCR (RT-qPCR). The regulatory effect of miR-145-5p on the growth of HFSCs was determined by targeting DUSP6 with RT-qPCR, 5-ethynyl-2'-deoxyuridine assays, Western blotting, and flow cytometry. The proliferation of HFSCs was inhibited and their apoptosis capacity was enhanced due to the presence of miR-145-5p. Therefore, it was proposed that this may have occurred through a repression effect of DUSP6 on the MAPK signaling pathway. The regulatory network of the HFSCs can be further understood using the theoretical basis established by the findings derived from this study.
Collapse
Affiliation(s)
- Xi Wu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yan Kang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dejun Ji
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Ding C, Luo T, Qiu X. Non-Targeted Metabolomic Analysis of Chicken Kidneys in Response to Coronavirus IBV Infection Under Stress Induced by Dexamethasone. Front Cell Infect Microbiol 2022; 12:945865. [PMID: 35909955 PMCID: PMC9335950 DOI: 10.3389/fcimb.2022.945865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Stress in poultry can lead to changes in body metabolism and immunity, which can increase susceptibility to infectious diseases. However, knowledge regarding chicken responses to viral infection under stress is limited. Dexamethasone (Dex) is a synthetic glucocorticoid similar to that secreted by animals under stress conditions, and has been widely used to induce stress in chickens. Herein, we established a stress model in 7-day-old chickens injected with Dex to elucidate the effects of stress on IBV replication in the kidneys. The metabolic changes, immune status and growth of the chickens under stress conditions were comprehensively evaluated. Furthermore, the metabolic profile, weight gain, viral load, serum cholesterol levels, cytokines and peripheral blood lymphocyte ratio were compared in chickens treated with Dex and infected with IBV. An LC-MS/MS-based metabolomics method was used to examine differentially enriched metabolites in the kidneys. A total of 113 metabolites whose abundance was altered after Dex treatment were identified, most of which were lipids and lipid-like molecules. The principal metabolic alterations in chicken kidneys caused by IBV infection included fatty acid, valine, leucine and isoleucine metabolism. Dex treatment before and after IBV infection mainly affected the host’s tryptophan, phenylalanine, amino sugar and nucleotide sugar metabolism. In addition, Dex led to up-regulation of serum cholesterol levels and renal viral load in chickens, and to the inhibition of weight gain, peripheral blood lymphocytes and IL-6 production. We also confirmed that the exogenous cholesterol in DF-1 cells promoted the replication of IBV. However, whether the increase in viral load in kidney tissue is associated with the up-regulation of cholesterol levels induced by Dex must be demonstrated in future experiments. In conclusion, chick growth and immune function were significantly inhibited by Dex. Host cholesterol metabolism and the response to IBV infection are regulated by Dex. This study provides valuable insights into the molecular regulatory mechanisms in poultry stress, and should support further research on the intrinsic link between cholesterol metabolism and IBV replication under stress conditions.
Collapse
Affiliation(s)
- Jun Dai
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tingrong Luo
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- *Correspondence: Xusheng Qiu, ; Tingrong Luo,
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Tingrong Luo,
| |
Collapse
|
13
|
Yuan L, Fung TS, He J, Chen RA, Liu DX. Modulation of Viral Replication, Apoptosis and Antiviral Response by Induction and Mutual Regulation of EGR and AP-1 Family Genes During Coronavirus Infection. Emerg Microbes Infect 2022; 11:1717-1729. [PMID: 35727266 PMCID: PMC9262369 DOI: 10.1080/22221751.2022.2093133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Coronaviruses have evolved a variety of strategies to exploit normal cellular processes and signalling pathways for their efficient reproduction in a generally hostile cellular environment. One immediate-early response gene (IEG) family, the AP-1 gene family, was previously shown to be activated by coronavirus infection. In this study, we report that another IEG family, the EGR family, is also activated in cells infected with four different coronaviruses in three genera, i.e. gammacoronavirus infectious bronchitis virus (IBV), alphacoronaviruses porcine epidemic diarrhoea virus (PEDV) and human coronavirus-229E (HCoV-229E), and betacoronavirus HCoV-OC43. Knockdown of EGR1 reduced the expression of cJUN and cFOS, and knockdown of cJUN and/or cFOS reduced the expression of EGR1, demonstrating that these two IEG families may be cross-activated and mutual regulated. Furthermore, ERK1/2 was identified as an upstream kinase, and JNK and p38 as inhibitors of EGR1 activation in coronavirus-infected cells. However, upregulation of EGR family genes, in particular EGR1, appears to play a differential role in regulating viral replication, apoptosis and antiviral response. EGR1 was shown to play a limited role in regulation of coronavirus replication, and an anti-apoptotic role in cells infected with IBV or PEDV, but not in cells infected with HCoV-229E. Upregulation of EGR1 may also play a differential role in the regulation of antiviral response against different coronaviruses. This study reveals a novel regulatory network shared by different coronaviruses in the immediate-early response of host cells to infection.
Collapse
Affiliation(s)
- Lixia Yuan
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - To Sing Fung
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Jiawen He
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| |
Collapse
|
14
|
Mao Z, Gao M, Zhao X, Li L, Peng J. Neuroprotective Effect of Dioscin against Parkinson's Disease via Adjusting Dual-Specificity Phosphatase 6 (DUSP6)-Mediated Oxidative Stress. Molecules 2022; 27:3151. [PMID: 35630630 PMCID: PMC9146847 DOI: 10.3390/molecules27103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Exploration of lead compounds against Parkinson's disease (PD), a neurodegenerative disease, is of great important. Dioscin, a bioactive natural product, shows various pharmacological effects. However, the activities and mechanisms of dioscin against PD have not been well investigated. In this study, the tests on 6-hydroxydopamine (6-OHDA)-induced PC12 cells and rats were carried out. The results showed that dioscin dramatically improved cell viability, decreased reactive oxygen species (ROS) levels, improved motor behavior and tyrosine hydroxylase(TH) levels and restored the levels of glutathione (GSH) and malondialdehyde (MDA) in rats. Mechanism investigation showed that dioscin not only markedly increased the expression level of dual- specificity phosphatase 6 (DUSP6) by 1.87-fold in cells and 2.56-fold in rats, and decreased phospho-extracellular regulated protein kinases (p-ERK) level by 2.12-fold in cells and 2.34-fold in rats, but also increased the levels of nuclear factor erythroid2-related factor 2 (Nrf2), hemeoxygenase-1 (HO-1), superoxide dismutase (SOD) and decreased the levels of kelch-1ike ECH-associated protein l (Keap1) in vitro and in vivo. Furthermore, DUSP6 siRNA transfection experiment in PC12 cells validated the protective effects of dioscin against PD via regulating DUSP6 to adjust the Keap1/Nrf2 pathway. Our data supported that dioscin has protection against PD in regulating oxidative stress via DUSP6 signal, which should be considered as an efficient candidate for the treatment of PD in the future.
Collapse
Affiliation(s)
- Zhang Mao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; (Z.M.); (M.G.); (X.Z.)
- College of Intergrative Medicine, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; (Z.M.); (M.G.); (X.Z.)
| | - Xuerong Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; (Z.M.); (M.G.); (X.Z.)
| | - Lili Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; (Z.M.); (M.G.); (X.Z.)
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
15
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. Coronavirus Infection and Cholesterol Metabolism. Front Immunol 2022; 13:791267. [PMID: 35529872 PMCID: PMC9069556 DOI: 10.3389/fimmu.2022.791267] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Host cholesterol metabolism remodeling is significantly associated with the spread of human pathogenic coronaviruses, suggesting virus-host relationships could be affected by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry, membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic mechanisms may be promising drug targets for coronavirus infections. Moreover, cholesterol and its metabolizing enzymes or corresponding natural products exert antiviral effects which are closely associated with individual viral steps during coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 infections are associated with clinically significant low cholesterol levels, suggesting cholesterol could function as a potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol dysregulation against viral infection could be an effective antiviral strategy. In this review, we comprehensively review the literature to clarify how coronaviruses exploit host cholesterol metabolism to accommodate viral replication requirements and interfere with host immune responses. We also focus on targeting cholesterol homeostasis to interfere with critical steps during coronavirus infection.
Collapse
Affiliation(s)
- Jun Dai
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Experimental Animal Center, Zunyi Medical University, Zunyi City, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| |
Collapse
|
16
|
The tyrosine phosphatase PTPN14 inhibits the activation of STAT3 in PEDV infected Vero cells. Vet Microbiol 2022; 267:109391. [DOI: 10.1016/j.vetmic.2022.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/23/2022]
|
17
|
Activation of the MKK3-p38-MK2-ZFP36 Axis by Coronavirus Infection Restricts the Upregulation of AU-Rich Element-Containing Transcripts in Proinflammatory Responses. J Virol 2022; 96:e0208621. [PMID: 34985993 DOI: 10.1128/jvi.02086-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronavirus infections induce the expression of multiple proinflammatory cytokines and chemokines. We have previously shown that in cells infected with gammacoronavirus infectious bronchitis virus (IBV), interleukin 6 (IL-6), and IL-8 were drastically upregulated, and the MAP kinase p38 and the integrated stress response pathways were implicated in this process. In this study, we report that coronavirus infection activates a negative regulatory loop that restricts the upregulation of a number of proinflammatory genes. As revealed by the initial transcriptomic and subsequent validation analyses, the anti-inflammatory adenine-uridine (AU)-rich element (ARE)-binding protein, zinc finger protein 36 (ZFP36), and its related family members were upregulated in cells infected with IBV and three other coronaviruses, alphacoronaviruses porcine epidemic diarrhea virus (PEDV), human coronavirus 229E (HCoV-229E), and betacoronavirus HCoV-OC43, respectively. Characterization of the functional roles of ZFP36 during IBV infection demonstrated that ZFP36 promoted the degradation of transcripts coding for IL-6, IL-8, dual-specificity phosphatase 1 (DUSP1), prostaglandin-endoperoxide synthase 2 (PTGS2) and TNF-α-induced protein 3 (TNFAIP3), through binding to AREs in these transcripts. Consistently, knockdown and inhibition of JNK and p38 kinase activities reduced the expression of ZFP36, as well as the expression of IL-6 and IL-8. On the contrary, overexpression of mitogen-activated protein kinase kinase 3 (MKK3) and MAPKAP kinase-2 (MK2), the upstream and downstream kinases of p38, respectively, increased the expression of ZFP36 and decreased the expression of IL-8. Taken together, this study reveals an important regulatory role of the MKK3-p38-MK2-ZFP36 axis in coronavirus infection-induced proinflammatory response. IMPORTANCE Excessive and uncontrolled induction and release of proinflammatory cytokines and chemokines, the so-called cytokine release syndrome (CRS), would cause life-threatening complications and multiple organ failure in severe coronavirus infections, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and COVID-19. This study reveals that coronavirus infection also induces the expression of ZFP36, an anti-inflammatory ARE-binding protein, promoting the degradation of ARE-containing transcripts coding for IL-6 and IL-8 as well as a number of other proteins related to inflammatory response. Furthermore, the p38 MAP kinase, its upstream kinase MKK3 and downstream kinase MK2 were shown to play a regulatory role in upregulation of ZFP36 during coronavirus infection cycles. This MKK3-p38-MK2-ZFP36 axis would constitute a potential therapeutic target for severe coronavirus infections.
Collapse
|
18
|
Semiz S. Vanadium as potential therapeutic agent for COVID-19: A focus on its antiviral, antiinflamatory, and antihyperglycemic effects. J Trace Elem Med Biol 2022; 69:126887. [PMID: 34798510 PMCID: PMC8555110 DOI: 10.1016/j.jtemb.2021.126887] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
An increasing evidence suggests that vanadium compounds are novel potential drugs in the treatment of diabetes, atherosclerosis, and cancer. Vanadium has also demonstrated activities against RNA viruses and is a promising candidate for treating acute respiratory diseases. The antidiabetic, antihypertensive, lipid-lowering, cardioprotective, antineoplastic, antiviral, and other potential effects of vanadium are summarized here. Given the beneficial antihyperglycemic and antiinflammatory effects as well as the potential mechanistic link between the COVID-19 and diabetes, vanadium compounds could be considered as a complement to the prescribed treatment of COVID-19. Thus, further clinical trials are warranted to confirm these favorable effects of vanadium treatment in COVID-19 patients, which appear not to be studied yet.
Collapse
Affiliation(s)
- Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Association South East European Network for Medical Research-SOVE.
| |
Collapse
|
19
|
Zhang Y, Xu Z, Cao Y. Host Antiviral Responses against Avian Infectious Bronchitis Virus (IBV): Focus on Innate Immunity. Viruses 2021; 13:1698. [PMID: 34578280 PMCID: PMC8473314 DOI: 10.3390/v13091698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
Avian infectious bronchitis virus (IBV) is an important gammacoronavirus. The virus is highly contagious, can infect chickens of all ages, and causes considerable economic losses in the poultry industry worldwide. In the last few decades, numerous studies have been published regarding pathogenicity, vaccination, and host immunity-virus interaction. In particular, innate immunity serves as the first line of defense against invasive pathogens and plays an important role in the pathogenetic process of IBV infection. This review focuses on fundamental aspects of host innate immune responses after IBV infection, including identification of conserved viral structures and different components of host with antiviral activity, which could provide useful information for novel vaccine development, vaccination strategies, and intervention programs.
Collapse
Affiliation(s)
| | | | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.Z.); (Z.X.)
| |
Collapse
|