1
|
Lalande A, Canus L, Bourgeais A, Mathieu C, Ogire E. The liver as a potential gate to the brain for encephalitic viruses. Curr Opin Virol 2025; 71:101463. [PMID: 40347828 DOI: 10.1016/j.coviro.2025.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/07/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
To model infection of viruses targeting the liver and the central nervous system, two-dimensional in vitro cultures rapidly show their limitations. Conversely, in vivo models do not easily allow the investigation of early events of the infection process. In between, ex vivo models, comprising mainly organoids and organotypic cultures, mimic or retain the cytoarchitecture of the organ while being relatively simple to handle and analyze. Here, we summarize the main features of brain and liver ex vivo models and pinpoint examples of their utilization for studying encephalitogenic and hepatotropic viruses. We highlight a gap of development and application of liver compared to ex vivo models in virology. Many hepatotropic viruses can also infect and/or have impacts on the central nervous system. In this sense, we sought to present these ex vivo models while providing a conceptual framework for the modeling of the hepatocerebral axis in the context of viral infections.
Collapse
Affiliation(s)
- Alexandre Lalande
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Lola Canus
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Amélie Bourgeais
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Eva Ogire
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France.
| |
Collapse
|
2
|
Widerspick L, Steffen JF, Tappe D, Muñoz-Fontela C. Animal Model Alternatives in Filovirus and Bornavirus Research. Viruses 2023; 15:158. [PMID: 36680198 PMCID: PMC9863967 DOI: 10.3390/v15010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The order Mononegavirales contains a variety of highly pathogenic viruses that may infect humans, including the families Filoviridae, Bornaviridae, Paramyxoviridae, and Rhabodoviridae. Animal models have historically been important to study virus pathogenicity and to develop medical countermeasures. As these have inherent shortcomings, the rise of microphysiological systems and organoids able to recapitulate hallmarks of the diseases caused by these viruses may have enormous potential to add to or partially replace animal modeling in the future. Indeed, microphysiological systems and organoids are already used in the pharmaceutical R&D pipeline because they are prefigured to overcome the translational gap between model systems and clinical studies. Moreover, they may serve to alleviate ethical concerns related to animal research. In this review, we discuss the value of animal model alternatives in human pathogenic filovirus and bornavirus research. The current animal models and their limitations are presented followed by an overview of existing alternatives, such as organoids and microphysiological systems, which might help answering open research questions.
Collapse
Affiliation(s)
- Lina Widerspick
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 38124 Braunschweig, Germany
| | | | - Dennis Tappe
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- National Reference Center for Tropical Pathogens, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 38124 Braunschweig, Germany
| |
Collapse
|
3
|
Rodrigues D, Herpers B, Ferreira S, Jo H, Fisher C, Coyle L, Chung SW, Kleinjans JCS, Jennen DGJ, de Kok TM. A Transcriptomic Approach to Elucidate the Mechanisms of Gefitinib-Induced Toxicity in Healthy Human Intestinal Organoids. Int J Mol Sci 2022; 23:ijms23042213. [PMID: 35216325 PMCID: PMC8876167 DOI: 10.3390/ijms23042213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Gefitinib is a tyrosine kinase inhibitor (TKI) that selectively inhibits the epidermal growth factor receptor (EGFR), hampering cell growth and proliferation. Due to its action, gefitinib has been used in the treatment of cancers that present abnormally increased expression of EGFR. However, side effects from gefitinib therapy may occur, among which diarrhoea is most common, that can lead to interruption of the planned therapy in the more severe cases. The mechanisms underlying intestinal toxicity induced by gefitinib are not well understood. Therefore, this study aims at providing insight into these mechanisms based on transcriptomic responses induced in vitro. A 3D culture of healthy human colon and small intestine (SI) organoids was exposed to 0.1, 1, 10 and 30 µM of gefitinib, for a maximum of three days. These drug concentrations were selected using physiologically-based pharmacokinetic simulation considering patient dosing regimens. Samples were used for the analysis of viability and caspase 3/7 activation, image-based analysis of structural changes, as well as RNA isolation and sequencing via high-throughput techniques. Differential gene expression analysis showed that gefitinib perturbed signal transduction pathways, apoptosis, cell cycle, FOXO-mediated transcription, p53 signalling pathway, and metabolic pathways. Remarkably, opposite expression patterns of genes associated with metabolism of lipids and cholesterol biosynthesis were observed in colon versus SI organoids in response to gefitinib. These differences in the organoids’ responses could be linked to increased activated protein kinase (AMPK) activity in colon, which can influence the sensitivity of the colon to the drug. Therefore, this study sheds light on how gefitinib induces toxicity in intestinal organoids and provides an avenue towards the development of a potential tool for drug screening and development.
Collapse
Affiliation(s)
- Daniela Rodrigues
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.G.J.J.); (T.M.d.K.)
- Correspondence:
| | - Bram Herpers
- Crown Bioscience Netherlands B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands;
| | - Sofia Ferreira
- Simcyp Division, Certara UK Limited, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Heeseung Jo
- Simcyp Division, Certara UK Limited, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Ciarán Fisher
- Simcyp Division, Certara UK Limited, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Luke Coyle
- Boehringer Ingelheim International GmbH, Pharmaceuticals Inc., Ridgefield, CT 06877, USA; (L.C.); (S.-W.C.)
| | - Seung-Wook Chung
- Boehringer Ingelheim International GmbH, Pharmaceuticals Inc., Ridgefield, CT 06877, USA; (L.C.); (S.-W.C.)
| | - Jos C. S. Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.G.J.J.); (T.M.d.K.)
| | - Danyel G. J. Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.G.J.J.); (T.M.d.K.)
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.G.J.J.); (T.M.d.K.)
| |
Collapse
|
4
|
Kofman S, Mohan N, Sun X, Ibric L, Piermarini E, Qiang L. Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. J Tissue Eng 2022; 13:20417314221113391. [PMID: 35898331 PMCID: PMC9310295 DOI: 10.1177/20417314221113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Engineered three-dimensional (3D) in vitro and ex vivo neural tissues, also known as "mini brains and spinal cords in a dish," can be derived from different types of human stem cells via several differentiation protocols. In general, human mini brains are micro-scale physiological systems consisting of mixed populations of neural progenitor cells, glial cells, and neurons that may represent key features of human brain anatomy and function. To date, these specialized 3D tissue structures can be characterized into spheroids, organoids, assembloids, organ-on-a-chip and their various combinations based on generation procedures and cellular components. These 3D CNS models incorporate complex cell-cell interactions and play an essential role in bridging the gap between two-dimensional human neuroglial cultures and animal models. Indeed, they provide an innovative platform for disease modeling and therapeutic cell replacement, especially shedding light on the potential to realize personalized medicine for neurological disorders when combined with the revolutionary human induced pluripotent stem cell technology. In this review, we highlight human 3D CNS models developed from a variety of experimental strategies, emphasize their advances and remaining challenges, evaluate their state-of-the-art applications in recapitulating crucial phenotypic aspects of many CNS diseases, and discuss the role of contemporary technologies in the prospective improvement of their composition, consistency, complexity, and maturation.
Collapse
Affiliation(s)
- Simeon Kofman
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Neha Mohan
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Xiaohuan Sun
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Larisa Ibric
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|