1
|
Deng Y, Yuan X, Lu X, Wu J, Luo C, Zhang T, Liu Q, Tang S, Li Z, Mu X, Hu Y, Du Q, Xu J, Xie R. The Use of Gut Organoids: To Study the Physiology and Disease of the Gut Microbiota. J Cell Mol Med 2025; 29:e70330. [PMID: 39968926 PMCID: PMC11836903 DOI: 10.1111/jcmm.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/02/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025] Open
Abstract
The intestinal flora has attracted much attention in recent years. An imbalance in the intestinal flora can cause not only intestinal diseases but also cause a variety of parenteral diseases, such as endocrine diseases, nervous system diseases and cardiovascular diseases. Research on the mechanism of disease is likely to be hampered by sample accessibility, ethical issues, and differences between cellular animal and physiological studies. However, advances in stem cell culture have made it possible to reproduce 3D human tissues in vitro that mimic the cellular, anatomical and functional characteristics of real organs. Recent studies have shown that organoids can be used to simulate the development and disease of the gut and intestinal flora and have a wide range of applications in intestinal flora physiology and disease. Intestinal organoids provide a preeminent in vitro model system for cultivating microbiota that influence GI physiology, as well as for understanding how they encounter intestinal epithelial cells and cause disease. The mechanistic details obtained from such modelling may provide new avenues for the prevention and treatment of many gastrointestinal (GI) disorders. Researchers are now starting to take inspiration from other fields, such as bioengineering, and the rise of interdisciplinary approaches, including organoid chip technology and microfluidics, has greatly accelerated the development of organoids to generate intestinal organoids that are more physiologically relevant and suitable for gut microbiota studies. Here, we describe the development of organoid models of gut biology and the application of organoids to study the pathophysiology of diseases caused by intestinal dysbiosis.
Collapse
Affiliation(s)
- Ya Deng
- Department of Endoscopy and Digestive SystemGuizhou Provincial People's HospitalGuiyangGuizhouChina
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiaolu Yuan
- The Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - XianMin Lu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Jiangbo Wu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Chen Luo
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Ting Zhang
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Qi Liu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Siqi Tang
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhuo Li
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Xingyi Mu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Yanxia Hu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Qian Du
- Department of Endoscopy and Digestive SystemGuizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Jingyu Xu
- Guizhou Medical UniversityGuiyangGuizhouChina
| | - Rui Xie
- Department of Endoscopy and Digestive SystemGuizhou Provincial People's HospitalGuiyangGuizhouChina
| |
Collapse
|
2
|
Sreenivasan CC, Naveed A, Uprety T, Soni S, Jacob O, Adam E, Wang D, Li F. Epidemiological investigation of equine rotavirus B outbreaks in horses in central Kentucky. Vet Microbiol 2024; 298:110278. [PMID: 39437661 DOI: 10.1016/j.vetmic.2024.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Using metagenomic sequencing we identified equine rotavirus group B (ERVB) of ruminant origin in foal diarrhea outbreaks in the 2021 foaling season. To further investigate ERVB occurrence and determine its environmental stability, we collected mare and foal fecal samples from different farms in Central Kentucky during the 2022 foaling season. The RT-qPCR-based analyses showed that ERVB genome was detected in 16.67 % (42/252) of surveyed mare samples and 26.56 % (34/128) of foal samples. Furthermore, 94.12 % (16/17) of collected soil samples and 100 % (13/13) of water samples obtained from the ERVB-positive farm premises also tested weakly positive. In addition, ERVB genome fragments were detected in 58.33 % (7/12) of indoor samples collected from the equipment/barn/hospital wards during the outbreak period. Finally, the seroprevalence study showed 87 % (113/130) of surveyed horse serum samples were positive for ERVB antibodies. Despite unsuccessful attempts in ERVB cultivation, phylogenetic analyses showed that fecal ERVB strains representing 2022 and 2023 foal diarrhea outbreaks, like 2021 strains, were more closely related to ruminant rotavirus B than other viruses. Further sequence analyses revealed that none of the three viral capsid proteins, the primary targets of virus-neutralizing antibodies, exhibited notable mutations among ERVB strains circulated over the past three years. Our data demonstrated that ERVB was widespread in horses on affected farms with extreme stability in the farm environment. These findings continue to support the need for future surveillance of ERVB in horses and the surrounding environment, and the development of effective countermeasures to protect horses against this new viral disease.
Collapse
Affiliation(s)
- Chithra C Sreenivasan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Ahsan Naveed
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Tirth Uprety
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Shalini Soni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Olivia Jacob
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Emma Adam
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
3
|
Stewart AS, Kopper JJ, McKinney-Aguirre C, Veerasamy B, Sahoo DK, Freund JM, Gonzalez LM. Assessment of equine intestinal epithelial junctional complexes and barrier permeability using a monolayer culture system. Front Vet Sci 2024; 11:1455262. [PMID: 39502947 PMCID: PMC11536341 DOI: 10.3389/fvets.2024.1455262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/06/2024] [Indexed: 11/08/2024] Open
Abstract
Gastrointestinal disease is a leading cause of death in mature horses. A lack of in vitro modeling has impeded the development of novel therapeutics. The objectives of this study were to develop and further characterize a small intestinal monolayer cell culture derived from equine jejunum including establishing normal measurements of intestinal permeability and restitution. Three-dimensional enteroids, derived from postmortem sampling of equine jejunum, were utilized to develop confluent epithelial monolayers. The presence of differentiated intestinal epithelial cell types and tight junctions were confirmed using histology, reverse transcription PCR (RT-PCR), RNAscope, protein immunofluorescence and transmission electron microscopy. Transepithelial resistance (TER) and macromolecule flux were assessed as measurements of paracellular and transcellular permeability. Scratch assays were utilized to model and assess intestinal restitution. Monolayer cell cultures reached 100% confluency by ~5-7 days. Equine jejunum monolayers were confirmed as epithelial in origin, with identification of differentiated intestinal epithelial cell types and evidence of tight junction proteins. Function of the intestinal barrier was supported by acquisition of physiologically normal TER values (179.9 ± 33.7 ohms*cm2) and limited macromolecule flux (22 ± 8.8% at 60 min). Additionally, following a scratch wound, epithelial cell monolayers migrated to close gap defects within 24 h. In conclusion, this study describes the development of a novel intestinal epithelial monolayer cell culture for equine jejunum, and provides evidence of intestinal epithelial cell differentiation, formation of physiologically relevant barrier function and use as a model of intestinal restitution to test potential therapeutics for equine colic.
Collapse
Affiliation(s)
- Amy Stieler Stewart
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jamie J. Kopper
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Caroline McKinney-Aguirre
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Brittany Veerasamy
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - John M. Freund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Liara M. Gonzalez
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Kambayashi Y, Nemoto M, Ochi A, Kishi D, Ueno T, Tsujimura K, Bannai H, Kawanishi N, Ohta M, Suzuki T. Equine coronavirus infection and replication in equine intestinal enteroids. Vet Res 2024; 55:135. [PMID: 39390558 PMCID: PMC11468410 DOI: 10.1186/s13567-024-01381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/01/2024] [Indexed: 10/12/2024] Open
Abstract
In this study, equine intestinal enteroids (EIEs) were generated from the duodenum, jejunum, and ileum and inoculated with equine coronavirus (ECoV) to investigate their suitability as in vitro models with which to study ECoV infection. Immunohistochemistry revealed that the EIEs were composed of various cell types expressed in vivo in the intestinal epithelium. Quantitative reverse-transcription PCR (qRT-PCR) and virus titration showed that ECoV had infected and replicated in the EIEs. These results were corroborated by electron microscopy. This study suggests that EIEs can be novel in vitro tools for studying the interaction between equine intestinal epithelium and ECoV.
Collapse
Affiliation(s)
- Yoshinori Kambayashi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Manabu Nemoto
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Akihiro Ochi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Daiki Kishi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Takanori Ueno
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Nanako Kawanishi
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Minoru Ohta
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Tohru Suzuki
- Division of Zoonosis Research, Sapporo Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan.
| |
Collapse
|
5
|
Haywood LMB, Sheahan BJ. A Review of Epithelial Ion Transporters and Their Roles in Equine Infectious Colitis. Vet Sci 2024; 11:480. [PMID: 39453072 PMCID: PMC11512231 DOI: 10.3390/vetsci11100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024] Open
Abstract
Equine colitis is a devastating disease with a high mortality rate. Infectious pathogens associated with colitis in the adult horse include Clostridioides difficile, Clostridium perfringens, Salmonella spp., Neorickettsia risticii/findlaynesis, and equine coronavirus. Antimicrobial-associated colitis can be associated with the presence of infectious pathogens. Colitis can also be due to non-infectious causes, including non-steroidal anti-inflammatory drug administration, sand ingestion, and infiltrative bowel disease. Current treatments focus on symptomatic treatment (restoring fluid and electrolyte balance, preventing laminitis and sepsis). Intestinal epithelial ion channels are key regulators of electrolyte (especially sodium and chloride) and water movement into the lumen. Dysfunctional ion channels play a key role in the development of diarrhea. Infectious pathogens, including Salmonella spp. and C. difficile, have been shown to regulate ion channels in a variety of ways. In other species, there has been an increased interest in ion channel manipulation as an anti-diarrheal treatment. While targeting ion channels also represents a promising way to manage diarrhea associated with equine colitis, ion channels have not been well studied in the equine colon. This review provides an overview of what is known about colonic ion channels and their known or putative role in specific types of equine colitis due to various pathogens.
Collapse
Affiliation(s)
| | - Breanna J. Sheahan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA;
| |
Collapse
|
6
|
Windhaber C, Heckl A, Csukovich G, Pratscher B, Burgener IA, Biermann N, Dengler F. A matter of differentiation: equine enteroids as a model for the in vivo intestinal epithelium. Vet Res 2024; 55:30. [PMID: 38493107 PMCID: PMC10943904 DOI: 10.1186/s13567-024-01283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
Epithelial damage due to gastrointestinal disorders frequently causes severe disease in horses. To study the underlying pathophysiological processes, we aimed to establish equine jejunum and colon enteroids (eqJE, eqCE) mimicking the in vivo epithelium. Therefore, enteroids were cultivated in four different media for differentiation and subsequently characterized histomorphologically, on mRNA and on protein level in comparison to the native epithelium of the same donor horses to identify ideal culture conditions for an in vitro model system. With increasing enterocyte differentiation, the enteroids showed a reduced growth rate as well as a predominantly spherical morphology and less budding compared to enteroids in proliferation medium. Combined or individual withdrawal of stem cell niche pathway components resulted in lower mRNA expression levels of stem cell markers and concomitant differentiation of enterocytes, goblet cells and enteroendocrine cells. For eqCE, withdrawal of Wnt alone was sufficient for the generation of differentiated enterocytes with a close resemblance to the in vivo epithelium. Combined removal of Wnt, R-spondin and Noggin and the addition of DAPT stimulated differentiation of eqJE at a similar level as the in vivo epithelium, particularly with regard to enterocytes. In summary, we successfully defined a medium composition that promotes the formation of eqJE and eqCE consisting of multiple cell types and resembling the in vivo epithelium. Our findings emphasize the importance of adapting culture conditions to the respective species and the intestinal segment. This in vitro model will be used to investigate the pathological mechanisms underlying equine gastrointestinal disorders in future studies.
Collapse
Affiliation(s)
- Christina Windhaber
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Anna Heckl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Georg Csukovich
- Division of Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Pratscher
- Division of Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Iwan Anton Burgener
- Division of Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Nora Biermann
- Clinical Unit of Equine Surgery, University of Veterinary Medicine, Vienna, Austria
| | - Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
7
|
Hellman S, Martin F, Tydén E, Sellin ME, Norman A, Hjertner B, Svedberg P, Fossum C. Equine enteroid-derived monolayers recapitulate key features of parasitic intestinal nematode infection. Vet Res 2024; 55:25. [PMID: 38414039 PMCID: PMC10900620 DOI: 10.1186/s13567-024-01266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024] Open
Abstract
Stem cell-derived organoid cultures have emerged as attractive experimental models for infection biology research regarding various types of gastro-intestinal pathogens and host species. However, the large size of infectious nematode larvae and the closed structure of 3-dimensional organoids often hinder studies of the natural route of infection. To enable easy administration to the apical surface of the epithelium, organoids from the equine small intestine, i.e. enteroids, were used in the present study to establish epithelial monolayer cultures. These monolayers were functionally tested by stimulation with IL-4 and IL-13, and/or exposure to infectious stage larvae of the equine nematodes Parascaris univalens, cyathostominae and/or Strongylus vulgaris. Effects were recorded using transcriptional analysis combined with histochemistry, immunofluorescence-, live-cell- and scanning electron microscopy. These analyses revealed heterogeneous monolayers containing both immature and differentiated cells including tuft cells and mucus-producing goblet cells. Stimulation with IL-4/IL-13 increased tuft- and goblet cell differentiation as demonstrated by the expression of DCLK1 and MUC2. In these cytokine-primed monolayers, the expression of MUC2 was further promoted by co-culture with P. univalens. Moreover, live-cell imaging revealed morphological alterations of the epithelial cells following exposure to larvae even in the absence of cytokine stimulation. Thus, the present work describes the design, characterization and usability of an experimental model representing the equine nematode-infected small intestinal epithelium. The presence of tuft cells and goblet cells whose mucus production is affected by Th2 cytokines and/or the presence of larvae opens up for mechanistic studies of the physical interactions between nematodes and the equine intestinal mucosa.
Collapse
Affiliation(s)
- Stina Hellman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden.
| | - Frida Martin
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Albin Norman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Bernt Hjertner
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Pia Svedberg
- Vidilab AB, P.O. Box 33, 745 21, Enköping, Sweden
| | - Caroline Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| |
Collapse
|
8
|
Cui C, Li L, Wu L, Wang X, Zheng Y, Wang F, Wei H, Peng J. Paneth cells in farm animals: current status and future direction. J Anim Sci Biotechnol 2023; 14:118. [PMID: 37582766 PMCID: PMC10426113 DOI: 10.1186/s40104-023-00905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/04/2023] [Indexed: 08/17/2023] Open
Abstract
A healthy intestine plays an important role in the growth and development of farm animals. In small intestine, Paneth cells are well known for their regulation of intestinal microbiota and intestinal stem cells (ISCs). Although there has been a lot of studies and reviews on human and murine Paneth cells under intestinal homeostasis or disorders, little is known about Paneth cells in farm animals. Most farm animals possess Paneth cells in their small intestine, as identified by various staining methods, and Paneth cells of various livestock species exhibit noticeable differences in cell shape, granule number, and intestinal distribution. Paneth cells in farm animals and their antimicrobial peptides (AMPs) are susceptible to multiple factors such as dietary nutrients and intestinal infection. Thus, the comprehensive understanding of Paneth cells in different livestock species will contribute to the improvement of intestinal health. This review first summarizes the current status of Paneth cells in pig, cattle, sheep, horse, chicken and rabbit, and points out future directions for the investigation of Paneth cells in the reviewed animals.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangke Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 400700, China.
| |
Collapse
|
9
|
Penning LC, van den Boom R. Companion animal organoid technology to advance veterinary regenerative medicine. Front Vet Sci 2023; 10:1032835. [PMID: 37008367 PMCID: PMC10063859 DOI: 10.3389/fvets.2023.1032835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
First year medical and veterinary students are made very aware that drugs can have very different effects in various species or even in breeds of one specific species. On the other hand, the “One Medicine” concept implies that therapeutic and technical approaches are exchangeable between man and animals. These opposing views on the (dis)similarities between human and veterinary medicine are magnified in regenerative medicine. Regenerative medicine promises to stimulate the body's own regenerative capacity via activation of stem cells and/or the application of instructive biomaterials. Although the potential is enormous, so are the hurdles that need to be overcome before large scale clinical implementation is realistic. It is in the advancement of regenerative medicine that veterinary regenerative medicine can play an instrumental and crucial role. This review describes the discovery of (adult) stem cells in domesticated animals, mainly cats and dogs. The promise of cell-mediated regenerative veterinary medicine is compared to the actual achievements, and this will lead to a set of unanswered questions (controversies, research gaps, potential developments in relation to fundamental, pre-clinical, and clinical research). For veterinary regenerative medicine to have impact, either for human medicine and/or for domesticated animals, answering these questions is pivotal.
Collapse
|
10
|
Chatterjee G, Negi S, Basu S, Faintuch J, O'Donovan A, Shukla P. Microbiome systems biology advancements for natural well-being. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155915. [PMID: 35568180 DOI: 10.1016/j.scitotenv.2022.155915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Throughout the years all data from epidemiological, physiological and omics have suggested that the microbial communities play a considerable role in modulating human health. The population of microorganisms residing in the human intestine collectively known as microbiota presents a genetic repertoire that is higher in magnitude than the human genome. They play an essential role in host immunity and neuronal signaling. Rapid enhancement of sequence based screening and development of humanized gnotobiotic model has sparked a great deal of interest among scientists to probe the dynamic interactions of the commensal bacteria. This review focuses on systemic analysis of the gut microbiome to decipher the complexity of the host-microbe intercommunication and gives a special emphasis on the evolution of targeted precision medicine through microbiome engineering. In addition, we have also provided a comprehensive description of how interconnection between metabolism and biochemical reactions in a specific organism can be obtained from a metabolic network or a flux balance analysis and combining multiple datasets helps in the identification of a particular metabolite. The review highlights how genetic modification of the critical components and programming the resident microflora can be employed for targeted precision medicine. Inspite of the ongoing debate on the utility of gut microbiome we have explored on the probable new therapeutic avenues like FMT (Fecal microbiota transplant) can be utilized. This review also recapitulates integrating human-relevant 3D cellular models coupled with computational models and the metadata obtained from interventional and epidemiological studies may decipher the complex interactome of diet-microbiota-disease pathophysiology. In addition, it will also open new avenues for the development of therapeutics derived from microbiome or implementation of personalized nutrition. In addition, the identification of biomarkers can also help towards the development of new diagnostic tools and eventually will lead to strategic management of the disease. Inspite of the ongoing debate on the utility of the gut microbiome we have explored how probable new therapeutic avenues like FMT (Fecal microbiota transplant) can be utilized. This review also summarises integrating human-relevant 3D cellular models coupled with computational models and the metadata obtained from interventional and epidemiological studies may decipher the complex interactome of diet- microbiota-disease pathophysiology. In addition, it will also open new avenues for the development of therapeutics derived from the microbiome or implementation of personalized nutrition. In addition, the identification of biomarkers can also help towards the development of new diagnostic tools and eventually will lead to strategic management of disease.
Collapse
Affiliation(s)
| | - Sangeeta Negi
- NMC Biolab, New Mexico Consortium, Los Alamos, NM, USA; Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Supratim Basu
- NMC Biolab, New Mexico Consortium, Los Alamos, NM, USA
| | - Joel Faintuch
- Department of Gastroenterology, Sao Paulo University Medical School, São Paulo, SP 01246-903, Brazil
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
11
|
Low Flow versus No Flow: Ischaemia Reperfusion Injury Following Different Experimental Models in the Equine Small Intestine. Animals (Basel) 2022; 12:ani12162158. [PMID: 36009747 PMCID: PMC9405230 DOI: 10.3390/ani12162158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary One of the main causes of colic in horses is the occlusion of the intestinal blood vessels after displacement or entrapment of the small intestine. In search of new therapies to treat this lethal disease, experimental models have been used to simulate the clinical situation. Both low flow (LF) models with partial blood flow occlusion as well as no flow (NF) models with complete occlusion have been implemented in different studies. This has led to conflicting results and comparative studies are lacking. The objective of this study was to characterize the development of intestinal injury over time in two different experimental models implementing either partial or complete vessel occlusion. Under general anaesthesia, local intestinal blood flow was reduced by 80% in seven horses (LF), and by 100% in another seven horses (NF). The LF group exhibited more bleeding in the intestinal wall and a relatively high variability in intestinal oxygen levels and tissue damage. The NF group showed lower oxygen levels and decreased barrier function of the intestinal wall. These results aid in the selection of the suitable experimental model for future studies. The high variability following LF suggests that an NF model may produce more consistent intestinal damage. Abstract In experimental studies investigating strangulating intestinal lesions in horses, different ischaemia models have been used with diverging results. Therefore, the aim was to comparatively describe ischaemia reperfusion injury (IRI) in a low flow (LF) and no flow (NF) model. Under general anaesthesia, 120 min of jejunal ischaemia followed by 120 min of reperfusion was induced in 14 warmbloods. During ischaemia, blood flow was reduced by 80% (LF, n = 7) or by 100% (NF, n = 7). Intestinal blood flow and oxygen saturation were measured by Laser Doppler fluxmetry and spectrophotometry. Clinical, histological, immunohistochemical and Ussing chamber analyses were performed on intestinal samples collected hourly. Tissue oxygen saturation was significantly lower in NF ischaemia. The LF group exhibited high variability in oxygen saturation and mucosal damage. Histologically, more haemorrhage was found in the LF group at all time points. Cleaved-caspase-3 and calprotectin-stained cells increased during reperfusion in both groups. After NF ischaemia, the tissue conductance was significantly higher during reperfusion. These results aid in the selection of suitable experimental models for future studies. Although the LF model has been suggested to be more representative for clinical strangulating small intestinal disease, the NF model produced more consistent IRI.
Collapse
|
12
|
Guo Y, Raev S, Kick MK, Raque M, Saif LJ, Vlasova AN. Rotavirus C Replication in Porcine Intestinal Enteroids Reveals Roles for Cellular Cholesterol and Sialic Acids. Viruses 2022; 14:v14081825. [PMID: 36016447 PMCID: PMC9416568 DOI: 10.3390/v14081825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rotaviruses (RVs) are a significant cause of severe diarrheal illness in infants and young animals, including pigs. Group C rotavirus (RVC) is an emerging pathogen increasingly reported in pigs and humans worldwide, and is currently recognized as the major cause of gastroenteritis in neonatal piglets that results in substantial economic losses to the pork industry. However, little is known about RVC pathogenesis due to the lack of a robust cell culture system, with the exception of the RVC Cowden strain. Here, we evaluated the permissiveness of porcine crypt-derived 3D and 2D intestinal enteroid (PIE) culture systems for RVC infection. Differentiated 3D and 2D PIEs were infected with porcine RVC (PRVC) Cowden G1P[1], PRVC104 G3P[18], and PRVC143 G6P[5] virulent strains, and the virus replication was measured by qRT-PCR. Our results demonstrated that all RVC strains replicated in 2D-PIEs poorly, while 3D-PIEs supported a higher level of replication, suggesting that RVC selectively infects terminally differentiated enterocytes, which were less abundant in the 2D vs. 3D PIE cultures. While cellular receptors for RVC are unknown, target cell surface carbohydrates, including histo-blood-group antigens (HBGAs) and sialic acids (SAs), are believed to play a role in cell attachment/entry. The evaluation of the selective binding of RVCs to different HBGAs revealed that PRVC Cowden G1P[1] replicated to the highest titers in the HBGA-A PIEs, while PRVC104 or PRVC143 achieved the highest titers in the HBGA-H PIEs. Further, contrasting outcomes were observed following sialidase treatment (resulting in terminal SA removal), which significantly enhanced Cowden and RVC143 replication, but inhibited the growth of PRVC104. These observations suggest that different RVC strains may recognize terminal (PRVC104) as well as internal (Cowden and RVC143) SAs on gangliosides. Finally, several cell culture additives, such as diethylaminoethyl (DEAE)-dextran, cholesterol, and bile extract, were tested to establish if they could enhance RVC replication. We observed that only DEAE-dextran significantly enhanced RVC attachment, but it had no effect on RVC replication. Additionally, the depletion of cellular cholesterol by MβCD inhibited Cowden replication, while the restoration of the cellular cholesterol partially reversed the MβCD effects. These results suggest that cellular cholesterol plays an important role in the replication of the PRVC strain tested. Overall, our study has established a novel robust and physiologically relevant system to investigate RVC pathogenesis. We also generated novel, experimentally derived evidence regarding the role of host glycans, DEAE, and cholesterol in RVC replication, which is critical for the development of control strategies.
Collapse
Affiliation(s)
- Yusheng Guo
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Sergei Raev
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Maryssa K. Kick
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Molly Raque
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J. Saif
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Correspondence:
| |
Collapse
|
13
|
Smith D, Price DRG, Faber MN, Chapuis AF, McNeilly TN. Advancing animal health and disease research in the lab with three-dimensional cell culture systems. Vet Rec 2022; 191:e1528. [PMID: 35338777 DOI: 10.1002/vetr.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
The development of three-dimensional cell culture systems representative of tissues from animals of veterinary interest is accelerating research that seeks to address specific questions tied to animal health. In terms of their relevance and complexity, these in vitro models can be seen as a midpoint between the more reductionist single-cell culture systems and complex live animals. Organoids in particular represent a significant development due to their organised multicellular structure that more closely represents in vivo tissues than any other cell culture technology previously developed. In this review, we provide an overview of the different three-dimensional cell culture systems available to veterinary researchers and give examples of their application in contexts relating to animal health.
Collapse
Affiliation(s)
- David Smith
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Marc N Faber
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Ambre F Chapuis
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| |
Collapse
|
14
|
Sutton KM, Orr B, Hope J, Jensen SR, Vervelde L. Establishment of bovine 3D enteroid-derived 2D monolayers. Vet Res 2022; 53:15. [PMID: 35236416 PMCID: PMC8889782 DOI: 10.1186/s13567-022-01033-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/03/2022] [Indexed: 12/28/2022] Open
Abstract
Three-dimensional (3D) intestinal enteroids are powerful in vitro models for studying intestinal biology. However, due to their closed structure direct access to the apical surface is impeded, limiting high-throughput applications of exogenous compounds and pathogens. In this study, we describe a method for generating confluent 2D enteroids from single-cell suspensions of enzymatically-dissociated ileum-derived bovine 3D enteroids. Confluent monolayers were first achieved using IntestiCult media but to establish a defined, cost-effective culture media, we also developed a bovine enteroid monolayer (BEM) medium. The monolayers cultured in BEM media proliferated extensively and formed confluent cell layers on both Matrigel-coated plastic plates and transwell inserts by day 3 of culture. The 2D enteroids maintained the epithelial cell lineages found in 3D enteroids and ileum tissue. In addition, the monolayers formed a functional epithelial barrier based on the presence of the adherens and tight junction proteins, E-cadherin and ZO-1, and electrical resistance across the monolayer was measured from day 3 and maintained for up to 7 days in culture. The method described here will provide a useful model to study bovine epithelial cell biology with ease of access to the apical surface of epithelial cells and has potential to investigate host-pathogen interactions and screen bioactive compounds.
Collapse
Affiliation(s)
- Kate M Sutton
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Brigid Orr
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jayne Hope
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Stina R Jensen
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|