1
|
Hu Y, Xie Y, Sun Y, Luo L, Wang H, Zhang R, Ge M. Anti-inflammatory effects of apigenin on LPS-induced mastitis in lactating SD rats through inhibiting TLR4/NF-κB signaling pathway. Cytokine 2025; 191:156944. [PMID: 40288318 DOI: 10.1016/j.cyto.2025.156944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/05/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Mastitis is an important disease of the mammary gland in all kinds of lactating mammals, endangering the development of animal husbandry and human health. Apigenin is one chemical constituent of Taraxacum and Philippine Violet Herb which are effective Chinese herbs for the treatment of mastitis. It is reported that apigenin possesses anti-inflammatory activity and other pharmacological effects. However, the attenuation of apigenin on mastitis has not yet been reported. The present study investigated the protection of apigenin against lipopolysaccharide (LPS)-induced mastitis in SD rats both in vivo and in vitro. The results suggested that apigenin relieved the lesions of mammary tissues induced by LPS, decreased mRNA and protein levels of pro-inflammatory cytokines:tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Simultaneously, apigenin reduced the increasing content of myeloperoxidase (MPO) and Toll-like receptor 4 (TLR4), and phosphorylation of nuclear factor kappa B (NF-κB) induced by LPS. The results showed that apigenin was able to attenuate the LPS-induced mastitis in rats by inhibiting the TLR4/NF-κB signaling pathway in vivo and in vitro, which provides scientific references for further research.
Collapse
Affiliation(s)
- Yihan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Yingying Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Yiming Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Linghuan Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| |
Collapse
|
2
|
Srithanasuwan A, Pangprasit N, Mektrirat R, Suriyasathaporn W, Chuammitri P. Divergent Immune Responses to Minor Bovine Mastitis-Causing Pathogens. Vet Sci 2024; 11:262. [PMID: 38922009 PMCID: PMC11209595 DOI: 10.3390/vetsci11060262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Traditionally, non-aureus staphylococci and mammaliicocci (NASM) were not considered significant players in bovine mastitis. This study investigated the involvement of NASM (Staphylococcus hominis and Staphylococcus chromogenes) and lactic acid bacteria (LAB) strains (Weissella paramesenteroides) through bovine neutrophil responses. Bovine neutrophils displayed minimal apoptosis upon NASM and LAB challenge. Neutrophils expressed high TLR2 after challenge, but TLR6 expression varied and remained low in NASM pathogen recognition. Bovine neutrophils effectively engulfed and killed LAB, but their activity was significantly impaired against NASM. This was evident in S. chromogenes, where reduced TLR6 recognition and a weakened phagocytic response likely contributed to a lower bactericidal effect. Regardless of the bacteria encountered, intracellular ROS production remained high. S. chromogenes-challenged neutrophils displayed upregulation in genes for pathogen recognition (TLRs), ROS production, and both pro- and anti-apoptotic pathways. This response mirrored that of Weissella. except for CASP9 and BCL2, suggesting these bacteria have divergent roles in triggering cell death. Our findings suggest that S. chromogenes manipulates bovine neutrophil defenses through coordinated changes in functional responses and gene expression, while LAB strains have a weaker influence on apoptosis.
Collapse
Affiliation(s)
- Anyaphat Srithanasuwan
- Veterinary Science Unit, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Animal Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Noppason Pangprasit
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Raktham Mektrirat
- Veterinary Bioscience Unit, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Witaya Suriyasathaporn
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
- Nagoya University Asian Satellite Campuses, Institute-Cambodian Campus, Royal University of Agriculture, Dangkor District, Phnom Penh 370, Cambodia
| | - Phongsakorn Chuammitri
- Veterinary Bioscience Unit, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
3
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
4
|
Shang L, Chen C, Sun R, Guo J, Liu J, Wang M, Zhang L, Fei C, Xue F, Liu Y, Gu F. Engineered Peptides Harboring Cation Motifs Against Multidrug-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5522-5535. [PMID: 38266749 DOI: 10.1021/acsami.3c15913] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Multidrug-resistant (MDR) pathogens pose a serious threat to the health and life of humans, necessitating the development of new antimicrobial agents. Herein, we develop and characterize a panel of nine amino acid peptides with a cation end motif. Bioactivity analysis revealed that the short peptide containing "RWWWR" as a central motif harboring mirror structure "KXR" unit displayed not only high activity against MDR planktonic bacteria but also a clearance rate of 92.33% ± 0.58% against mature biofilm. Mechanically, the target peptide (KLR) killed pathogens by excessively accumulating reactive oxygen species and physically disrupting membranes, thereby enhancing its robustness for controlling drug resistance. In the animal model of sepsis infection by MDR bacteria, the peptide KLR exhibited strong therapeutic effects. Collectively, this study provided the dominant structure of short antimicrobial peptides (AMPs) to replenish our arsenals for combating bacterial infections and illustrated what could be harnessed as a new agent for fighting MDR bacteria.
Collapse
Affiliation(s)
- Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chan Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Rui Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Juan Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Jing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feiqun Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| |
Collapse
|
5
|
Crippa BL, de Matos LG, Souza FN, Silva NCC. Non- aureus staphylococci and mammaliicocci (NASM): their role in bovine mastitis and One Health. J DAIRY RES 2024; 91:44-56. [PMID: 38584301 DOI: 10.1017/s0022029924000165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Non-aureus staphylococci (NAS) are gaining importance in mastitis and public health, and some NAS have been reclassified as mammaliicocci (NASM). Bovine milk production has a major influence on the world economy, being an essential source of income for small, medium and large producers, and bovine mastitis caused by NASM can cause an economic impact. Mastitis generates financial losses due to reduced revenue, increased veterinary costs and expenses associated with animal slaughter. However, it is also a public health issue involving animal health and welfare, human health and the ecosystem. Furthermore, it is an increasingly common infection caused by NASM, including antimicrobial-resistant strains. Despite all these adverse effects that NASM can cause, some studies also point to its protective role against mastitis. Therefore, this review article addresses the negative and positive aspects that NASM can cause in bovine mastitis, the virulence of the disease and resistance factors that make it difficult to treat and, through the One Health approach, presents a holistic view of how mastitis caused by NASM can affect both animal and human health at one and the same time.
Collapse
Affiliation(s)
- Bruna Lourenço Crippa
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Luiz Gustavo de Matos
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Lombardia, Italy
| | - Fernando Nogueira Souza
- Department of Clinical Science, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, Brazil
- Department of Veterinary Medicine, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| |
Collapse
|
6
|
Toledo-Silva B, Oliveira ACD, Souza FN, Haesebrouck F, De Vliegher S. Metabolites of non-aureus staphylococci affect the ability of Staphylococcus aureus to adhere to and internalize into bovine mammary epithelial cells. Vet Res 2023; 54:100. [PMID: 37884947 PMCID: PMC10605872 DOI: 10.1186/s13567-023-01232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
This study investigated whether cell-free supernatants (SN) from four bovine non-aureus staphylococcal (NAS) isolates prevent Staphylococcus aureus adhesion to and internalization into bovine mammary epithelial cells (MAC-T cells) and if so, to determine whether such effects were potentially associated with the S. aureus accessory gene regulator (agr) system. Overall, we demonstrated that all SN obtained from the NAS isolates promoted adhesion of a S. aureus agr+ strain to, yet reduced the internalization into MAC-T cells, while similar effects were not observed for its agr- mutant strain. Our findings provide novel anti-virulence strategies for treating and controlling bovine S. aureus mastitis.
Collapse
Affiliation(s)
- Bruno Toledo-Silva
- M-team & Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ana Cláudia Dumont Oliveira
- M-team & Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 05508-270, Brazil
| | - Fernando N Souza
- M-team & Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 05508-270, Brazil.
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sarne De Vliegher
- M-team & Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
7
|
Srithanasuwan A, Tata L, Tananupak W, Jaraja W, Suriyasathaporn W, Chuammitri P. Exploring the distinct immunological reactions of bovine neutrophils towards major and minor pathogens responsible for mastitis. Int J Vet Sci Med 2023; 11:106-120. [PMID: 37841527 PMCID: PMC10569347 DOI: 10.1080/23144599.2023.2262250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Bovine mastitis is primarily caused by a group of bacteria known as Staphylococcus and Streptococcus. However, additional types of bacteria, such as bovine non-aureus staphylococci and mammaliicocci (NASM) as well as lactic acid bacteria (LAB), are considered minor pathogens and have less impact on cows. Modulating bovine neutrophil activities and gene expressions in response to bacterial stimuli prompted the cells to execute effector functions to combat udder infections. Although neutrophils can manage major mastitis-causing bacteria, this strategy has not been tested against minor pathogens, i.e. NASM, Weissella spp. Our main objective was to investigate how neutrophils interacted with major and minor pathogens during in vitro bacterial stimulation. The results reveal that neutrophils performed offensive duties regardless of the type of bacteria encountered. Neutrophils generated high levels of reactive oxygen species, efficiently phagocytosed both types of bacteria, and facilitated extracellular killing by releasing NET structures against all bacteria. In addition, neutrophils migrated preferentially towards the majors rather than the minors, although myeloperoxidase (MPO) degranulation did not differ substantially across bacteria. Furthermore, the killing capacity of neutrophils was not dependent on any particular bacterium. The correlation of effector functions is intimately linked to the up-regulation of genes associated with the above functions, except for IL6, which was down-regulated. Furthermore, neutrophil apoptosis can be modulated by altering apoptosis-associated genes in response to harmful stimuli. These findings provide valuable information on how neutrophils react to major and minor mastitis-causing bacteria. However, future research should explore the interplay between minor pathogens and the host's responses.
Collapse
Affiliation(s)
- Anyaphat Srithanasuwan
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
- Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Laorat Tata
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
| | - Warunya Tananupak
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
| | - Weerin Jaraja
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
| | - Witaya Suriyasathaporn
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Nagoya University Asian Satellite Campuses, Institute-Cambodian Campus, Royal University of Agriculture, Phnom Penh, Cambodia
| | - Phongsakorn Chuammitri
- Research center of producing and development of products and innovations for animal health and production, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Mohamad EA, Ramadan MA, Mostafa MM, Elneklawi MS. Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against S. aureus. Electromagn Biol Med 2023; 42:99-113. [PMID: 37154170 DOI: 10.1080/15368378.2023.2208610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/05/2023] [Indexed: 05/10/2023]
Abstract
Staphylococcus aureus is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of Staphylococcus aureus using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of Staphylococcus aureus were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of Staphylococcus aureus bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa A Ramadan
- Department of laser application in metrology photochemistry and agriculture, National institute of laser Enhanced science NILES Cairo University Egypt, Giza, Egypt
| | - Marwa M Mostafa
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mona S Elneklawi
- Department of Biomedical Equipments & Systems, Faculty of Applied Medical Sciences, October 6 University, Giza, Egypt
| |
Collapse
|
9
|
Biology and Regulation of Staphylococcal Biofilm. Int J Mol Sci 2023; 24:ijms24065218. [PMID: 36982293 PMCID: PMC10049468 DOI: 10.3390/ijms24065218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Despite continuing progress in medical and surgical procedures, staphylococci remain the major Gram-positive bacterial pathogens that cause a wide spectrum of diseases, especially in patients requiring the utilization of indwelling catheters and prosthetic devices implanted temporarily or for prolonged periods of time. Within the genus, if Staphylococcus aureus and S. epidermidis are prevalent species responsible for infections, several coagulase-negative species which are normal components of our microflora also constitute opportunistic pathogens that are able to infect patients. In such a clinical context, staphylococci producing biofilms show an increased resistance to antimicrobials and host immune defenses. Although the biochemical composition of the biofilm matrix has been extensively studied, the regulation of biofilm formation and the factors contributing to its stability and release are currently still being discovered. This review presents and discusses the composition and some regulation elements of biofilm development and describes its clinical importance. Finally, we summarize the numerous and various recent studies that address attempts to destroy an already-formed biofilm within the clinical context as a potential therapeutic strategy to avoid the removal of infected implant material, a critical event for patient convenience and health care costs.
Collapse
|
10
|
Souza FN, Santos KR, Ferronatto JA, Ramos Sanchez EM, Toledo-Silva B, Heinemann MB, De Vliegher S, Della Libera AMMP. Bovine-associated staphylococci and mammaliicocci trigger T-lymphocyte proliferative response and cytokine production differently. J Dairy Sci 2023; 106:2772-2783. [PMID: 36870844 DOI: 10.3168/jds.2022-22529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/04/2022] [Indexed: 03/05/2023]
Abstract
We examined whether distinct staphylococcal and mammaliicoccal species and strains trigger B- and T-lymphocyte proliferation and interleukin (IL)-17A and interferon (IFN)-γ production by peripheral blood mononuclear cells in nulliparous, primiparous, and multiparous dairy cows. Flow cytometry was used to measure lymphocyte proliferation with the Ki67 antibody, and specific monoclonal antibodies were used to identify CD3, CD4, and CD8 T lymphocyte and CD21 B lymphocyte populations. The supernatant of the peripheral blood mononuclear cell culture was used to measure IL-17A and IFN-γ production. Two distinct, inactivated strains of bovine-associated Staphylococcus aureus [one causing a persistent intramammary infection (IMI) and the other from the nose], 2 inactivated Staphylococcus chromogenes strains [one causing an IMI and the other from a teat apex), as well as an inactivated Mammaliicoccus fleurettii strain originating from sawdust from a dairy farm, and the mitogens concanavalin A and phytohemagglutinin M-form (both specifically to measure lymphocyte proliferation) were studied. In contrast to the "commensal" Staph. aureus strain originating from the nose, the Staph. aureus strain causing a persistent IMI triggered proliferation of CD4+ and CD8+ subpopulations of T lymphocytes. The M. fleurettii strain and the 2 Staph. chromogenes strains had no effect on T- or B-cell proliferation. Furthermore, both Staph. aureus and Staph. chromogenes strains causing persistent IMI significantly increased IL-17A and IFN-γ production by peripheral blood mononuclear cells. Overall, multiparous cows tended to have a higher B-lymphocyte and a lower T-lymphocyte proliferative response than primiparous and nulliparous cows. Peripheral blood mononuclear cells of multiparous cows also produced significantly more IL-17A and IFN-γ. In contrast to concanavalin A, phytohemagglutinin M-form selectively stimulated T-cell proliferation.
Collapse
Affiliation(s)
- Fernando N Souza
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, Brazil; M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium; Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil.
| | - Kamila R Santos
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, Brazil
| | - José A Ferronatto
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, Brazil
| | - Eduardo M Ramos Sanchez
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil; Laboratório de Sorologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil; Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Bruno Toledo-Silva
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Marcos B Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Sarne De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Alice M M P Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, Brazil
| |
Collapse
|
11
|
Karahutová L, Bujňáková D. Occurrence and molecular surveillance of pathogenesis risk-associated factors in Staphylococcus aureus recovered from raw sheep's milk cheese. Small Rumin Res 2023. [DOI: 10.1016/j.smallrumres.2023.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Reydams H, Wuytack A, Piepers S, Mertens K, Boyen F, de Souza FN, Haesebrouck F, De Vliegher S. Genetic diversity and iron metabolism of Staphylococcus hominis isolates originating from bovine quarter milk, rectal feces, and teat apices. J Dairy Sci 2022; 105:9995-10006. [PMID: 36270870 DOI: 10.3168/jds.2022-22216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/25/2022] [Indexed: 03/02/2024]
Abstract
Staphylococcus hominis, a member of the non-aureus staphylococci (NAS) group, is part of the human and animal microbiota. Although it has been isolated from multiple bovine-associated habitats, its relevance as a cause of bovine mastitis is currently not well described. To successfully colonize and proliferate in the bovine mammary gland, a bacterial species must be able to acquire iron from host iron-binding proteins. The aims of this study were (1) to assess the genetic diversity of S. hominis isolated from bovine quarter milk, rectal feces, and teat apices, and (2) to investigate the capacity of bovine S. hominis isolates belonging to these different habitats to utilize ferritin and lactoferrin as iron sources. To expand on an available collection of bovine S. hominis isolates (2 from quarter milk, 8 from rectal feces, and 19 from teat apices) from one commercial dairy herd, a subsequent single cross-sectional quarter milk sampling (n = 360) was performed on all lactating cows (n = 90) of the same herd. In total, 514 NAS isolates were recovered and identified by MALDI-TOF mass spectrometry; the 6 most prevalent NAS species were S. cohnii (33.9%), S. sciuri (16.7%), S. haemolyticus (16.3%), S. xylosus (9.6%), S. equorum (9.4%), and S. hominis (3.5%). A random amplified polymorphic DNA (RAPD) analysis was performed on 46 S. hominis isolates (19 from quarter milk, 8 from rectal feces, and 19 from teat apices). Eighteen distinct RAPD fingerprint groups were distinguished although we were unable to detect the presence of the same RAPD type in all 3 habitats. One S. hominis isolate of a distinct RAPD type unique to a specific habitat (8 from quarter milk, 3 from rectal feces, and 4 from teat apices) along with the quality control strain Staphylococcus aureus ATCC 25923 and 2 well-studied Staphylococcus chromogenes isolates ("IM" and "TA") were included in the phenotypical iron test. All isolates were grown in 4 types of media: iron-rich tryptic soy broth, iron-rich tryptic soy broth deferrated by 2,2'-bipyridyl, and deferrated tryptic soy broth supplemented with human recombinant lactoferrin or equine spleen-derived ferritin. The growth of the different strains was modified by the medium in which they were grown. Staphylococcus chromogenes TA showed significantly lower growth under iron-deprived conditions, and adding an iron supplement (lactoferrin or ferritin) resulted in no improvement in growth; in contrast, growth of S. chromogenes IM was significantly recovered with iron supplementation. Staphylococcus hominis strains from all 3 habitats were able to significantly utilize ferritin but not lactoferrin as an iron source to reverse the growth inhibition, in varying degrees, caused by the chelating agent 2,2'-bipyridyl.
Collapse
Affiliation(s)
- H Reydams
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - A Wuytack
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - S Piepers
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - K Mertens
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - F Boyen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - F N de Souza
- Veterinary Clinical Immunology Research Group, Department of Clinical Science, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Prof. Orlando Marques de Paiva Av. 87, São Paulo 05508-270, Brazil; Postgraduate Program in Animal Science, Department of Veterinary Medicine, Federal University of Paraiba, Rodovia PB-079 12, Areia, João Pessoa 58397-000, Brazil
| | - F Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - S De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
13
|
Tian F, Li J, Li L, Li F, Tong Y. Molecular dissection of the first Staphylococcus cohnii temperate phage IME1354_01. Virus Res 2022; 318:198812. [DOI: 10.1016/j.virusres.2022.198812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
|
14
|
Characterization of Biofilm Producing Coagulase-Negative Staphylococci Isolated from Bulk Tank Milk. Vet Sci 2022; 9:vetsci9080430. [PMID: 36006345 PMCID: PMC9416249 DOI: 10.3390/vetsci9080430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are considered less virulent as they do not produce a large number of toxic enzymes and toxins; however, they have been increasingly recognized as an important cause of bovine mastitis. In particular, the ability to form biofilms appears to be an important factor in CoNS pathogenicity, and it contributes more resistance to antimicrobials. The aim of this study was to investigate the pathogenic potential by assessing the biofilm-forming ability of CoNS isolated from normal bulk tank milk using the biofilm formation assay and to analyze the biofilm-associated resistance to antimicrobial agents using the disc diffusion method. One hundred and twenty-seven (78.4%) among 162 CoNS showed the ability of biofilm formation, and all species showed a significantly high ability of biofilm formation (p < 0.05). Although the prevalence of weak biofilm formers (39.1% to 80.0%) was significantly higher than that of other biofilm formers in all species (p < 0.05), the prevalence of strong biofilm formers was significantly higher in Staphylococcus haemolyticus (36.4%), Staphylococcus chromogenes (24.6%), and Staphylococcus saprophyticus (21.7%) (p < 0.05). Also, 4 (11.4%) among 35 non-biofilm formers did not harbor any biofilm-associated genes, whereas all 54 strong or moderate biofilm formers harbored 1 or more of these genes. The prevalence of MDR was significantly higher in biofilm formers (73.2%) than in non-formers (20.0%) (p < 0.05). Moreover, the distribution of MDR in strong or moderate biofilm formers was 81.5%, which was significantly higher than in weak (67.1%) and non-formers (20.0%) (p < 0.05). Our results indicated that various CoNS isolated from bulk tank milk, not from bovine with mastitis, have already showed a high ability to form biofilms, while also displaying a high prevalence of MDR.
Collapse
|
15
|
Efficacy Assessment of Phage Therapy in Treating Staphylococcus aureus-Induced Mastitis in Mice. Viruses 2022; 14:v14030620. [PMID: 35337027 PMCID: PMC8954217 DOI: 10.3390/v14030620] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
The primary aim of this study was to evaluate the efficacy of phage against mastitis induced by drug-resistant S. aureus in a mouse model. In this study, five S. aureus phages—4086-1, 4086-2, 4086-3, 4086-4, and 4086-6—were isolated from milk samples secreted by mastitis cows. Transmission electron microscopy showed that all the five phages had icosahedral heads and short non-contractile tails, which are typical characteristics of the family Podoviridae. All these phages were species-specific against S. aureus. The one-step growth curve showed a short latency period (10–20 min) and high burst size (up to 400 PFU/infected cell). To evaluate the effectiveness of the phage 4086-1 in the treatment against mastitis, a mouse model of mastitis was challenged with drug-resistant S. aureus. The results showed the proliferation of S. aureus in the mammary glands was significantly inhibited after treating by phage 4086-1. The concentrations of TNF-α and IL-6 decreased significantly, which demonstrated the phages could effectively alleviate the inflammatory responses. Furthermore, the histopathological analysis showed that inflammatory infiltration in the mammary glands was significantly reduced. These results demonstrate that phage may be a promising alternative therapy against mastitis caused by drug-resistant S. aureus.
Collapse
|
16
|
Toledo-Silva B, Beuckelaere L, De Visscher A, Geeroms C, Meyer E, Piepers S, Thiry D, Haesebrouck F, De Vliegher S. Novel Quantitative Assay to Describe In Vitro Bovine Mastitis Bacterial Pathogen Inhibition by Non-aureus Staphylococci. Pathogens 2022; 11:pathogens11020264. [PMID: 35215206 PMCID: PMC8879122 DOI: 10.3390/pathogens11020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, we describe a new quantitative method to evaluate and quantify in vitro growth inhibition of mastitis-related bacteria. Colony-forming units of Staphylococcus (S.) aureus (n = 10), Escherichia (E.) coli (n = 10), and Streptococcus (S.) uberis (n = 10) were quantified after their growth on top of layers of trypticase soy agar (TSA) containing six different concentrations (varying from 102 to 107 CFU/mL) of bovine non-aureus staphylococci (NAS), i.e., S. chromogenes (n = 3) and S. simulans (n = 3) isolates. Growth inhibition of the mastitis-related major bacterial pathogens, including E. coli, was confirmed by all NAS, an effect that varied highly among NAS isolates and was not evident from the semiquantitative method with which the new method was compared. By subsequent application of the new method on a larger set of 14 bovine NAS isolates, we observed that S. simulans and NAS originating from teat apices (especially S. epidermidis) required lower concentrations to inhibit both methicillin-sensitive (MSSA) (n = 5) and methicillin-resistant S. aureus (MRSA) isolates (n = 5) originating from milk. Therefore, the new assay is a promising tool to precisely quantify the intra- and inter-species differences in growth inhibition between NAS.
Collapse
Affiliation(s)
- Bruno Toledo-Silva
- M-Team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.B.); (C.G.); (S.P.); (S.D.V.)
- Correspondence:
| | - Lisa Beuckelaere
- M-Team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.B.); (C.G.); (S.P.); (S.D.V.)
| | - Anneleen De Visscher
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science, Agricultural Engineering, 9820 Merelbeke, Belgium;
| | - Chloë Geeroms
- M-Team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.B.); (C.G.); (S.P.); (S.D.V.)
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Evelyne Meyer
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Sofie Piepers
- M-Team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.B.); (C.G.); (S.P.); (S.D.V.)
| | - Damien Thiry
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège, 4000 Liège, Belgium;
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Sarne De Vliegher
- M-Team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.B.); (C.G.); (S.P.); (S.D.V.)
| |
Collapse
|
17
|
Beuckelaere L, De Visscher A, Souza FN, Meyer E, Haesebrouck F, Piepers S, De Vliegher S. Colonization and local host response following intramammary Staphylococcus chromogenes challenge in dry cows. Vet Res 2021; 52:137. [PMID: 34711282 PMCID: PMC8554945 DOI: 10.1186/s13567-021-01007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Although extensive research has been performed on bovine non-aureus staphylococci (NAS), several aspects such as bacteria-host interaction remain largely unstudied. Moreover, only a few mastitis pathogen challenge studies in cows have been conducted in the dry period, an important period that allows intramammary infection (IMI) to cure and new IMI to occur. We challenged 16 quarters of 4 Holstein Friesian cows at dry off with 100; 100 000 or 10 000 000 CFU of the udder-adapted S. chromogenes IM strain. Four quarters from one cow served as negative controls. Internally sealed quarters remained untouched, whereas non-sealed quarters were sampled 3 times during the dry period. After parturition, colostrum and daily milk samples were taken during the first week of lactation of all quarters. In total, 8 quarters appeared to be colonized, since S. chromogenes IM was recovered at least once during the experiment, as substantiated using Multilocus Sequence Typing. S. chromogenes IM shedding was highest in dry quarters inoculated with 10 000 000 CFU. Colonized quarters had the highest quarter somatic cell count (qSCC) in early lactation. Inoculated quarters (both colonized and non-colonized) had lower IL-6 and IL-10 concentrations in the dry period, whilst IFN-γ levels tended to be higher in colonized quarters compared to non-inoculated quarters. Also, IgG2 levels were higher in inoculated compared to non-inoculated quarters and the IgG2/IgG1 ratio was on average above 1. To conclude, we showed that dry quarters can be colonized with S. chromogenes IM, resulting in a shift towards a Th1 response in late gestation and early lactation characterised by an increased IgG2 concentration. However, further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Lisa Beuckelaere
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Anneleen De Visscher
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science, Burgemeester Van Gansberghelaan 115 bus 1, 9820, Merelbeke, Belgium
| | - Fernando Nogueira Souza
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo, 05508-270, Brazil.,Programa de Pós-Graduação Em Ciência Animal, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, 58397-000, Brazil
| | - Evelyne Meyer
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sofie Piepers
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sarne De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|