1
|
Hong HW, Kim YD, Jang J, Kim MS, Song M, Myung H. Combination Effect of Engineered Endolysin EC340 With Antibiotics. Front Microbiol 2022; 13:821936. [PMID: 35242119 PMCID: PMC8886149 DOI: 10.3389/fmicb.2022.821936] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
Bacteriophage lysins, also known as endolysins or murein hydrolases, are hydrolytic enzymes produced by bacteriophages during the final stage of the lytic cycle to enable cleavage through the host's cell wall, thus allowing the phages to burst out of their host bacteria after multiplication inside them. When applied externally to Gram-negative bacteria as recombinant proteins, lysins cannot easily reach the cell wall due to the presence of an outer membrane (OM). In this study, endolysin EC340 obtained from phage PBEC131 infecting Escherichia coli was engineered for improved OM permeability and increased activity against Gram-negative bacteria. The engineered endolysin, LNT113, was tested for potential synergistic effects with standard-of-care antibiotics. A synergistic effect was demonstrated with colistin, while an additive effect was seen with meropenem, tigecycline, chloramphenicol, azithromycin, and ciprofloxacin. Neither ceftazidime nor kanamycin showed any synergy or additive effects with the LNT113 endolysin. Moreover, synergy and additive effects could not be generalized by antibiotic class, OM traverse mechanism, molecular weight, or the bactericidal nature of each antibiotic tested.
Collapse
Affiliation(s)
- Hye-Won Hong
- LyseNTech Co., Ltd., Seongnam-si, South Korea
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin-si, South Korea
| | | | | | - Min Soo Kim
- LyseNTech Co., Ltd., Seongnam-si, South Korea
| | - Miryoung Song
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin-si, South Korea
| | - Heejoon Myung
- LyseNTech Co., Ltd., Seongnam-si, South Korea
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin-si, South Korea
- The Bacteriophage Bank of Korea, Hankuk University of Foreign Studies, Yongin-si, South Korea
| |
Collapse
|
2
|
Baliga P, Goolappa PT, Shekar M, Kallappa GS. Cloning, Characterization, and Antibacterial Properties of Endolysin LysE Against Planktonic Cells and Biofilms of Aeromonas hydrophila. Probiotics Antimicrob Proteins 2022; 15:646-654. [PMID: 34993932 DOI: 10.1007/s12602-021-09880-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Multidrug-resistant bacteria are emerging as a major global threat to public health. Bacteriophages are an important source of antimicrobial enzymes and could be developed as an alternative antibiotic candidate. This study investigates the antibacterial capacity of the endolysin LysE against Aeromonas hydrophila. The endolysin LysE gene was cloned and expressed in Escherichia coli BL21 (DE3) cells. Purified recombinant LysE protein was tested for its antimicrobial activity against A. hydrophila. The study reveals that recombinant LysE protein was highly effective against Gram-negative bacteria when combined with antimicrobials that alter the permeability of the outer membrane. Specifically, the enzyme had the highest muralytic activity at pH 4, and maintained over 50% of the activity at pH 10. Moreover, endolysin displayed more than 50% activity even after 30 min of incubation at 100 °C. Also, endolysin LysE resulted in one log reduction in CFU/mL in 30 min and demonstrated antibiofilm capabilities when combined with EDTA. Interestingly, checkerboard assay showed its synergistic effects in combination with lower concentrations of colistin against A. hydrophila. Additionally, in vitro tests with Channa striatus kidney (CSK) cell lines do not show cytotoxic effects. Taken together, these findings suggest that LysE can be employed with outer membrane permeabilizers to expand the arsenal repertoire against Gram-negative bacteria in the aquaculture, food, and medical industries.
Collapse
Affiliation(s)
- Pallavi Baliga
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002, India
| | - Puneeth Thadooru Goolappa
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002, India
| | - Malathi Shekar
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002, India
| | - Girisha Shivani Kallappa
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575 002, India
| |
Collapse
|
3
|
Kim N, Kim HJ, Oh MH, Kim SY, Kim MH, Son JH, Kim SI, Shin M, Lee YC, Lee JC. The role of Zur-regulated lipoprotein A in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles in Acinetobacter baumannii. BMC Microbiol 2021; 21:27. [PMID: 33461493 PMCID: PMC7812711 DOI: 10.1186/s12866-020-02083-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 12/29/2020] [Indexed: 11/21/2022] Open
Abstract
Background Zinc uptake-regulator (Zur)-regulated lipoprotein A (ZrlA) plays a role in bacterial fitness and overcoming antimicrobial exposure in Acinetobacter baumannii. This study further characterized the zrlA gene and its encoded protein and investigated the roles of the zrlA gene in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles (OMVs) in A. baumannii ATCC 17978. Results In silico and polymerase chain reaction analyses showed that the zrlA gene was conserved among A. baumannii strains with 97–100% sequence homology. Recombinant ZrlA protein exhibited a specific enzymatic activity of D-alanine-D-alanine carboxypeptidase. Wild-type A. baumannii exhibited more morphological heterogeneity than a ΔzrlA mutant strain during stationary phase. The ΔzrlA mutant strain was more susceptible to gentamicin than the wild-type strain. Sizes and protein profiles of OMVs were similar between the wild-type and ΔzrlA mutant strains, but the ΔzrlA mutant strain produced 9.7 times more OMV particles than the wild-type strain. OMVs from the ΔzrlA mutant were more cytotoxic in cultured epithelial cells than OMVs from the wild-type strain. Conclusions The present study demonstrated that A. baumannii ZrlA contributes to bacterial morphogenesis and antimicrobial resistance, but its deletion increases OMV production and OMV-mediated host cell cytotoxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02083-0.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Hyo Jeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, South Korea
| | - Se Yeon Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Mi Hyun Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Joo Hee Son
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seung Il Kim
- Drug & Disease Target Team, Korea Basic Science Institute, Ochang, South Korea.,Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, South Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Yoo Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
4
|
Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, Zhang Z, Zhang Y, Chang D, Shi Y. A Novel Phage PD-6A3, and Its Endolysin Ply6A3, With Extended Lytic Activity Against Acinetobacter baumannii. Front Microbiol 2019; 9:3302. [PMID: 30687281 PMCID: PMC6333635 DOI: 10.3389/fmicb.2018.03302] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/18/2018] [Indexed: 01/21/2023] Open
Abstract
With widespread abuse of antibiotics, bacterial resistance has increasingly become a serious threat. Acinetobacter baumannii has emerged as one of the most important hospital-acquired pathogens worldwide. Bacteriophages (also called “phages”) could be used as a potential alternative therapy to meet the challenges posed by such pathogens. Endolysins from phages have also been attracting increasing interest as potential antimicrobial agents. Here, we isolated 14 phages against A. baumannii, determined the lytic spectrum of each phage, and selected one with a relatively broad host range, named vB_AbaP_PD-6A3 (PD-6A3 for short), for its biological characteristics. We over-expressed and purified the endolysin (Ply6A3) from this phage and tested its biological characteristics. The PD-6A3 is a novel phage, which can kill 32.4% (179/552) of clinical multidrug resistant A. baumannii (MDRAB) isolates. Interestingly, in vitro, this endolysin could not only inhibit A. baumannii, but also that of other strains, such as Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). We found that lethal A. baumannii sepsis mice could be effectively rescued in vivo by phage PD-6A3 and endolysin Ply6A3 intraperitoneal injection. These characteristics reveal the promising potential of phage PD-6A3 and endolysin Ply6A3 as attractive candidates for the control of A. baumannii-associated nosocomial infections.
Collapse
Affiliation(s)
- Minle Wu
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yili Liu
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Shanghai, China
| | - Di Mu
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| | - Huimin Guo
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhifan Zhang
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| | - Yingcong Zhang
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Dong Chang
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Yi Shi
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| |
Collapse
|
5
|
Ha E, Son B, Ryu S. Clostridium perfringens Virulent Bacteriophage CPS2 and Its Thermostable Endolysin LysCPS2. Viruses 2018; 10:v10050251. [PMID: 29751651 PMCID: PMC5977244 DOI: 10.3390/v10050251] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022] Open
Abstract
Clostridium perfringens is one of the most common causes of food-borne illness. The increasing prevalence of multidrug-resistant bacteria requires the development of alternatives to typical antimicrobial treatments. Here, we isolated and characterized a C. perfringens-specific virulent bacteriophage CPS2 from chicken feces. The CPS2 phage contains a 17,961 bp double-stranded DNA genome with 25 putative ORFs, and belongs to the Picovirinae, subfamily of Podoviridae. Bioinformatic analysis of the CPS2 genome revealed a putative endolysin, LysCPS2, which is homologous to the endolysin of Clostridium phage phiZP2 and phiCP7R. The enzyme showed strong lytic activity against C. perfringens with optimum conditions at pH 7.5–10, 25–65 °C, and over a broad range of NaCl concentrations. Interestingly, LysCPS2 was found to be highly thermostable, with up to 30% of its lytic activity remaining after 10 min of incubation at 95 °C. The cell wall binding domain in the C-terminal region of LysCPS2 showed a binding spectrum specific to C. perfringens strains. This is the first report to characterize highly thermostable endolysin isolated from virulent C. perfringens bacteriophage. The enzyme can be used as an alternative biocontrol and detection agent against C. perfringens.
Collapse
Affiliation(s)
- Eunsu Ha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Bokyung Son
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|