1
|
Ning L, Xu Y, Luo L, Gong L, Liu Y, Wang Z, Wang W. Integrative analyses of metabolome and transcriptome reveal the dynamic accumulation and regulatory network in rhizomes and fruits of Polygonatum cyrtonema Hua. BMC Genomics 2024; 25:706. [PMID: 39030489 PMCID: PMC11264994 DOI: 10.1186/s12864-024-10608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND According to Chinese ancient books, both fruits and rhizomes of Polygonatum cyrtonema Hua have medicinal and edible values. Up to now, there is no report about the metabolite profiles and regulatory network in fruits and different year-old rhizomes of P. cyrtonema. RESULTS In this study, we performed integrative analyses of metabolome and transcriptome to reveal the dynamic accumulation and regulatory network of fruits and different year-old rhizomes in P. cyrtonema. The relative content of phenolic acids, lignans and coumarins, flavonoids and alkaloids increased with growth years, while steroids and lipids decreased with it. In addition, the relative content of nucleotides and derivatives, flavonoids, organic acids, steroids and lipids in fruits were higher than rhizomes. Genes that might relate to the biosynthesis of polysaccharides, flavonoids, triterpene saponins and alkaloids biosynthesis were further analyzed by transcriptome analysis, including sacA, GMPP, PMM, CCoAOMT, CHI, ANR, CHS, DXS, GGPS, ZEP, CYP72A219 and so on, for their expressions were positively correlated with the relative content of the metabolites. Additionally, the correlation network in sugar and aromatic amino acids metabolites were constructed to further illustrate the biosynthesis of polysaccharides, flavonoids and alkaloids in P. cyrtonema, and some transcription factors (TFs) were screened, such as C2C2, MYB, bZIP, GRAS and NAC. CONCLUSIONS This study can deepen our understanding of the accumulation patterns and molecular mechanism of the main compounds in P. cyrtonema, and provide reference for the standardize production of P. cyrtonema.
Collapse
Affiliation(s)
- Luyun Ning
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshu Xu
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lu Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Limin Gong
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yeman Liu
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
2
|
Jiang W, Chen J, Duan X, Li Y, Tao Z. Comparative Transcriptome Profiling Reveals Two WRKY Transcription Factors Positively Regulating Polysaccharide Biosynthesis in Polygonatum cyrtonema. Int J Mol Sci 2023; 24:12943. [PMID: 37629123 PMCID: PMC10454705 DOI: 10.3390/ijms241612943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Polygonatum cyrtonema (P. cyrtonema) is a valuable rhizome-propagating traditional Chinese medical herb. Polysaccharides (PCPs) are the major bioactive constituents in P. cyrtonema. However, the molecular basis of PCP biosynthesis in P. cyrtonema remains unknown. In this study, we measured the PCP contents of 11 wild P. cyrtonema germplasms. The results showed that PCP content was the highest in Lishui Qingyuan (LSQY, 11.84%) and the lowest in Hangzhou Lin'an (HZLA, 7.18%). We next analyzed the transcriptome profiles of LSQY and HZLA. Through a qRT-PCR analysis of five differential expression genes from the PCP biosynthesis pathway, phosphomannomutase, UDP-glucose 4-epimerase (galE), and GDP-mannose 4,6-dehydratase were determined as the key enzymes. A protein of a key gene, galE1, was localized in the chloroplast. The PCP content in the transiently overexpressed galE1 tobacco leaves was higher than in the wild type. Moreover, luciferase and Y1H assays indicated that PcWRKY31 and PcWRKY34 could activate galE1 by binding to its promoter. Our research uncovers the novel regulatory mechanism of PCP biosynthesis in P. cyrtonema and is critical to molecular-assisted breeding.
Collapse
Affiliation(s)
- Wu Jiang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (J.C.); (X.D.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China;
| | - Jiadong Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (J.C.); (X.D.)
| | - Xiaojing Duan
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (J.C.); (X.D.)
| | - Yaping Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China;
| | - Zhengming Tao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (J.C.); (X.D.)
| |
Collapse
|
3
|
Wang L, Xie Y, Chang J, Wang J, Liu H, Shi M, Zhong Y. A novel sucrose-inducible expression system and its application for production of biomass-degrading enzymes in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:23. [PMID: 36782304 PMCID: PMC9926565 DOI: 10.1186/s13068-023-02274-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Filamentous fungi are extensively exploited as important enzyme producers due to the superior secretory capability. However, the complexity of their secretomes greatly impairs the titer and purity of heterologous enzymes. Meanwhile, high-efficient evaluation and production of bulk enzymes, such as biomass-degrading enzymes, necessitate constructing powerful expression systems for bio-refinery applications. RESULTS A novel sucrose-inducible expression system based on the host strain Aspergillus niger ATCC 20611 and the β-fructofuranosidase promoter (PfopA) was constructed. A. niger ATCC 20611 preferentially utilized sucrose for rapid growth and β-fructofuranosidase production. Its secretory background was relatively clean because β-fructofuranosidase, the key enzyme responsible for sucrose utilization, was essentially not secreted into the medium and the extracellular protease activity was low. Furthermore, the PfopA promoter showed a sucrose concentration-dependent induction pattern and was not subject to glucose repression. Moreover, the strength of PfopA was 7.68-fold higher than that of the commonly used glyceraldehyde-3-phosphate dehydrogenase promoter (PgpdA) with enhanced green fluorescence protein (EGFP) as a reporter. Thus, A. niger ATCC 20611 coupled with the PfopA promoter was used as an expression system to express a β-glucosidase gene (bgla) from A. niger C112, allowing the production of β-glucosidase at a titer of 17.84 U/mL. The crude β-glucosidase preparation could remarkably improve glucose yield in the saccharification of pretreated corncob residues when added to the cellulase mixture of Trichoderma reesei QM9414. The efficacy of this expression system was further demonstrated by co-expressing the T. reesei-derived chitinase Chi46 and β-N-acetylglucosaminidase Nag1 to obtain an efficient chitin-degrading enzyme cocktail, which could achieve the production of N-acetyl-D-glucosamine from colloidal chitin with a conversion ratio of 91.83%. Besides, the purity of the above-secreted biomass-degrading enzymes in the crude culture supernatant was over 86%. CONCLUSIONS This PfopA-driven expression system expands the genetic toolbox of A. niger and broadens the application field of the traditional fructo-oligosaccharides-producing strain A. niger ATCC 20611, advancing it to become a high-performing enzyme-producing cell factory. In particular, the sucrose-inducible expression system possessed the capacity to produce biomass-degrading enzymes at a high level and evade endogenous protein interference, providing a potential purification-free enzyme production platform for bio-refinery applications.
Collapse
Affiliation(s)
- Lu Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yijia Xie
- Qingdao Academy, Qingdao, 266111 People’s Republic of China
| | - Jingjing Chang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Juan Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Hong Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
4
|
Successive Fermentation of Aguamiel and Molasses by Aspergillus oryzae and Saccharomyces cerevisiae to Obtain High Purity Fructooligosaccharides. Foods 2022; 11:foods11121786. [PMID: 35741984 PMCID: PMC9222578 DOI: 10.3390/foods11121786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Fructooligosaccharides (FOS) are usually synthesized with pure enzymes using highly concentrated sucrose solutions. In this work, low-cost aguamiel and molasses were explored as sucrose alternatives to produce FOS, via whole-cell fermentation, with an Aspergillus oryzae DIA-MF strain. FOS production process was optimized through a central composite experimental design, with two independent variables: initial sucrose concentration in a medium composed of aguamiel and molasses (AgMe), and inoculum concentration. The optimized process—165 g/L initial sucrose in AgMe (adjusted with concentrated molasses) and 1 × 107 spores/mL inoculum concentration—resulted in an FOS production of 119 ± 12 g/L and a yield of 0.64 ± 0.05 g FOS/g GFi. Among the FOSs produced were kestose, nystose, 1-fructofuranosyl-nystose, and potentially a novel trisaccharide produced by this strain. To reduce the content of mono- and disaccharides in the mixture, run a successive fermentation was run with two Saccharomyces cerevisiae strains. Fermentations run with S. cerevisiae S227 improved FOS purity in the mixture from 39 ± 3% to 61.0 ± 0.6% (w/w) after 16 h of fermentation. This study showed that agro-industrial wastes such as molasses with aguamiel are excellent alternatives as substrate sources for the production of prebiotic FOS, resulting in a lower-cost process.
Collapse
|
5
|
Li D, Wang Q, Chen S, Liu H, Pan K, Li J, Luo C, Wang H. De novo assembly and analysis of Polygonatum cyrtonema Hua and identification of genes involved in polysaccharide and saponin biosynthesis. BMC Genomics 2022; 23:195. [PMID: 35272619 PMCID: PMC8915509 DOI: 10.1186/s12864-022-08421-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/25/2022] [Indexed: 12/05/2022] Open
Abstract
Background The investigation of molecular mechanisms involved in polysaccharides and saponin metabolism is critical for genetic engineering of Polygonatum cyrtonema Hua to raise major active ingredient content. Up to now, the transcript sequences are available for different tissues of P. cyrtonema, a wide range scanning about temporal transcript at different ages’ rhizomes was still absent in P. cyrtonema. Results Transcriptome sequencing for rhizomes at different ages was performed. Sixty-two thousand six hundred thirty-five unigenes were generated by assembling transcripts from all samples. A total of 89 unigenes encoding key enzymes involved in polysaccharide biosynthesis and 56 unigenes encoding key enzymes involved in saponin biosynthesis. The content of total polysaccharide and total saponin was positively correlated with the expression patterns of mannose-6-phosphate isomerase (MPI), GDP-L-fucose synthase (TSTA3), UDP-apiose/xylose synthase (AXS), UDP-glucose 6-dehydrogenase (UGDH), Hydroxymethylglutaryl CoA synthase (HMGS), Mevalonate kinase (MVK), 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (ispF), (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ispG), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (ispH), Farnesyl diphosphate synthase (FPPS). Finally, a number of key genes were selected and quantitative real-time PCR were performed to validate the transcriptome analysis results. Conclusions These results create the link between polysaccharides and saponin biosynthesis and gene expression, provide insight for underlying key active substances, and reveal novel candidate genes including TFs that are worth further exploration for their functions and values. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08421-y.
Collapse
Affiliation(s)
- Dandan Li
- Agronomy College, Guizhou University, Huaxi, Guiyang, Guizhou, 550025, P. R. China.,Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Huaxi, Guiyang, Guizhou, 550025, P. R. China
| | - Qing Wang
- Construction Service Center of Wudang District Agricultural Science and Technology Zone, Wudang, Guiyang, Guizhou, 550018, P. R. China
| | - Songshu Chen
- Agronomy College, Guizhou University, Huaxi, Guiyang, Guizhou, 550025, P. R. China
| | - Hongchang Liu
- Agronomy College, Guizhou University, Huaxi, Guiyang, Guizhou, 550025, P. R. China.,Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Huaxi, Guiyang, Guizhou, 550025, P. R. China
| | - Keqin Pan
- Agronomy College, Guizhou University, Huaxi, Guiyang, Guizhou, 550025, P. R. China
| | - Jinling Li
- Agronomy College, Guizhou University, Huaxi, Guiyang, Guizhou, 550025, P. R. China.,Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Huaxi, Guiyang, Guizhou, 550025, P. R. China
| | - Chunli Luo
- Agronomy College, Guizhou University, Huaxi, Guiyang, Guizhou, 550025, P. R. China.,Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Huaxi, Guiyang, Guizhou, 550025, P. R. China
| | - Hualei Wang
- Agronomy College, Guizhou University, Huaxi, Guiyang, Guizhou, 550025, P. R. China. .,Guizhou Key Laboratory of Propagation and Cultivation on Medicinal Plants, Huaxi, Guiyang, Guizhou, 550025, P. R. China.
| |
Collapse
|
6
|
Khatun MS, Hassanpour M, Mussatto SI, Harrison MD, Speight RE, O'Hara IM, Zhang Z. Transformation of sugarcane molasses into fructooligosaccharides with enhanced prebiotic activity using whole-cell biocatalysts from Aureobasidium pullulans FRR 5284 and an invertase-deficient Saccharomyces cerevisiae 1403-7A. BIORESOUR BIOPROCESS 2021; 8:85. [PMID: 38650262 PMCID: PMC10992603 DOI: 10.1186/s40643-021-00438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
Fructooligosaccharides (FOS) can be used as feed prebiotics, but are limited by high production costs. In this study, low-cost sugarcane molasses was used to produce whole-cell biocatalysts containing transfructosylating enzymes by Aureobasidium pullulans FRR 5284, followed by FOS production from molasses using the whole-cells of A. pullulans. A. pullulans in molasses-based medium produced cells and broth with a total transfructosylating activity of 123.6 U/mL compared to 61.0 and 85.8 U/mL in synthetic molasses-based and sucrose-based media, respectively. It was found that inclusion of glucose in sucrose medium reduced both transfructosylating and hydrolytic activities of the produced cells and broth. With the use of pure glucose medium, cells and broth had very low levels of transfructosylating activities and hydrolytic activities were not detected. These results indicated that A. pullulans FRR 5284 produced both constitutive and inducible enzymes in sucrose-rich media, such as molasses while it only produced constitutive enzymes in the glucose media. Furthermore, treatment of FOS solutions generated from sucrose-rich solutions using an invertase-deficient Saccharomyces yeast converted glucose to ethanol and acetic acid and improved FOS content in total sugars by 20-30%. Treated FOS derived from molasses improved the in vitro growth of nine probiotic strains by 9-63% compared to a commercial FOS in 12 h incubation. This study demonstrated the potential of using molasses to produce FOS for feed application.
Collapse
Affiliation(s)
- Most Sheauly Khatun
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Morteza Hassanpour
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Mark D Harrison
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Robert E Speight
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, QUT, Brisbane, QLD, 4000, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, QUT, Brisbane, QLD, 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- ARC Centre of Excellence in Synthetic Biology, QUT, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
7
|
Wang Z, Jiang W, Liu Y, Meng X, Su X, Cao M, Wu L, Yu N, Xing S, Peng D. Putative genes in alkaloid biosynthesis identified in Dendrobium officinale by correlating the contents of major bioactive metabolites with genes expression between Protocorm-like bodies and leaves. BMC Genomics 2021; 22:579. [PMID: 34325653 PMCID: PMC8323239 DOI: 10.1186/s12864-021-07887-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dendrobium officinale, an endangered Chinese herb, possesses extensive therapeutic effects and contains bioactive ingredients such as major polysaccharides, alkaloids, and minimal flavonoids. We first obtained the protocorm-like bodies (PLBs) of this plant through tissue culture in order to determine the distribution of the main secondary metabolites in each organelle and the PLBs. We then analyzed the correlation between gene expression level from comparative transcriptome sequencing and metabolite content in different organs to identify putative genes encoding enzymes involved in the biosynthesis of polysaccharides, alkaloids, and flavonoids. RESULTS We used seeds as explants for protocorm induction and PLB propagation of D. officinale. The optimal medium formula for PLB propagation was 1/2 MS + α-NAA 0.5 mg·L- 1 + 6-BA 1.0 mg·L- 1 + 2, 4-D 1.5-2.0 mg·L- 1 + potato juice 100 g·L- 1. Stems, PLBs and leaves of D. officinale had the highest content of polysaccharides, alkaloids and flavonoids, respectively. Naringenin was only produced in stem; however, PLBs with high alkaloid content can replace other organs producing alkaloids. The hot water extraction method outperformed the ultrasound-assisted extraction method for extracting polysaccharides from D. officinale. A comparative transcriptome analysis of PLBs and leaves of D. officinale revealed differential expression of genes encoding enzymes involved in polysaccharide, alkaloid and flavonoid biosynthetic pathways. Putative genes encoding enzymes involved in these biosynthetic pathways were identified. Notably, we identified genes encoding the alkaloid biosynthesis enzymes strictosidine β-D-Glucosidase, geissoschizine synthase and vinorine synthase in D. officinale. CONCLUSIONS The identification of candidate genes encoding enzymes involved in metabolite biosynthesis will help to explore and protect this endangered species and facilitate further analysis of the molecular mechanism of secondary metabolite biosynthesis in D. officinale.
Collapse
Affiliation(s)
- Zhaojian Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang Normal University, Hengyang, 421008, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Minneapolis, MN, 55108, USA
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengyang Cao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230038, China.
| |
Collapse
|
8
|
Khatun MS, Hassanpour M, Harrison MD, Speight RE, O'Hara IM, Zhang Z. Highly efficient production of transfructosylating enzymes using low-cost sugarcane molasses by A. pullulans FRR 5284. BIORESOUR BIOPROCESS 2021; 8:48. [PMID: 38650217 PMCID: PMC10992317 DOI: 10.1186/s40643-021-00399-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Fructooligosaccharides (FOS) are a type of important prebiotics and produced by transfructosylating enzymes. In this study, sugarcane molasses was used as the substrate for production of transfructosylating enzymes by Aureobasidium pullulans FRR 5284. NaNO3 was a superior nitrogen source to yeast extract for production of transfructosylating enzymes by A. pullulans FRR 5284 and decreasing the ratio of NaNO3 to yeast extract nitrogen from 1:0 to 1:1 resulted in the reduction of the total transfructosylating activity from 109.8 U/mL to 82.5 U/mL. The addition of only 4.4 g/L NaNO3 into molasses-based medium containing 100 g/L mono- and di-saccharides resulted in total transfructosylating activity of 123.8 U/mL. Scale-up of the A. pullulans FRR 5284 transfructosylating enzyme production process from shake flasks to 1 L bioreactors improved the enzyme activity and productivity to 171.7 U/mL and 3.58 U/mL/h, 39% and 108% higher than those achieved from shake flasks, respectively. Sucrose (500 g/L) was used as a substrate for extracellular, intracellular, and total A. pullulans FRR 5284 transfructosylating enzymes, with a maximum yield of 61%. Intracellular, extracellular, and total A. pullulans FRR 5284 transfructosylating enzymes from different production systems resulted in different FOS profiles, indicating that FOS profiles can be controlled by adjusting intracellular and extracellular enzyme ratios and, hence prebiotic activity.
Collapse
Affiliation(s)
- Most Sheauly Khatun
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Morteza Hassanpour
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Mark D Harrison
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Robert E Speight
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
9
|
Choukade R, Kango N. Production, properties, and applications of fructosyltransferase: a current appraisal. Crit Rev Biotechnol 2021; 41:1178-1193. [PMID: 34015988 DOI: 10.1080/07388551.2021.1922352] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Fructosyltransferases (FTases) are drawing increasing attention due to their application in prebiotic fructooligosaccharide (FOS) generation. FTases have been reported to occur in a variety of microorganisms but are predominantly found in filamentous fungi. These are employed at the industrial scale for generating FOS which make the key ingredient in functional food supplements and nutraceuticals due to their bifidogenic and various other health-promoting properties. SCOPE AND APPROACH This review is aimed to discuss recent developments made in the area of FTase production, characterization, and application in order to present a comprehensive account of their present status to the reader. Structural features, catalytic mechanisms, and FTase improvement strategies have also been discussed in order to provide insight into these aspects. KEY FINDINGS AND CONCLUSIONS Although FTases occur in several plants and microorganisms, fungal FTases are being exploited commercially for industrial-scale FOS generation. Several fungal FTases have been characterized and heterologously expressed. However, considerable scope exists for improved production and application of FTases for cost-effective production of prebiotic FOS.HIGHLIGHTSFructosyltrasferase (FTase) is a key enzyme in fructo-oligosaccharide (FOS) generationDevelopments in the production, properties, and functional aspects of FTasesMolecular modification and immobilization strategies for improved FOS generationFructosyltransferases are innovation hotspots in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Ritumbhara Choukade
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
10
|
Efficient production of fructo-oligosaccharides from sucrose and molasses by a novel Aureobasidium pullulan strain. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
|
12
|
Zhang S, Jiang H, Xue S, Ge N, Sun Y, Chi Z, Liu G, Chi Z. Efficient Conversion of Cane Molasses into Fructooligosaccharides by a Glucose Derepression Mutant of Aureobasidium melanogenum with High β-Fructofuranosidase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13665-13672. [PMID: 31686508 DOI: 10.1021/acs.jafc.9b05826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fructooligosaccharides (FOSs) are excellent food ingredients or feed additives by stimulating probiotics. In this paper, a CREA gene encoding a glucose repressor in the β-fructofuranosidase producer Aureobasidium melanogenum 33 with high-level FOS biosynthesis was disrupted, and glucose repression in disruptant D28 was relieved. The disruptant D28 produced up to 2100 U/mL of β-fructofuranosidase activity, whereas the enzyme activities produced by parent strain 33 and complemented strain C11 were below 600 U/mL. The whole cells of the disruptant D28 was used to convert cane molasses into FOSs, and 0.58 g of FOSs/g of molasses sugar was synthesized from 350 g/L cane molasses sugar within 4 h. Results demonstrated that the industrial waste cane molasses can be efficiently converted into FOSs by the glucose derepression mutant D28 with high β-fructofuranosidase activity. This low-cost and environmentally friendly bioprocess has great potential applications in bioengineering and biotechnology for FOS production.
Collapse
|
13
|
Han S, Ye T, Leng S, Pan L, Zeng W, Chen G, Liang Z. Purification and biochemical characteristics of a novel fructosyltransferase with a high FOS transfructosylation activity from Aspergillus oryzae S719. Protein Expr Purif 2019; 167:105549. [PMID: 31805395 DOI: 10.1016/j.pep.2019.105549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022]
Abstract
Fructooligosaccharides (FOS) have widely used for the manufacture of low-calorie and functional foods, because they can inhibit intestinal pathogenic microorganism growth and increase the absorption of Ca2+ and Mg2+. In this study, the novel fructosyltransferase (FTase) from Aspergillus oryzae strain S719 was successfully purified and characterized. The specific activity of the final purified material was 4200 mg-1 with purification ratio of 66 times and yield of 26%. The molecular weight of FTase of A. oryzae S719 was around 95 kDa by SDS-PAGE, which was identified as a type of FTase by Mass Spectrometry (MS). The purified FTase had optimum temperature and pH of 55 °C and 6.0, respectively. The FTase showed to be stable with more than 80% of its original activity at room temperature after 12 h and maintaining activity above 90% at pH 4.0-11.0. The Km and kcat values of the FTase were 310 mmol L-1 and 2.0 × 103 min-1, respectively. The FTase was activated by 5 mmol L-1 Mg2+ and 10 mmol L-1 Na+ (relative activity of 116 and 114%, respectively), indicating that the enzyme was Mg2+ and Na+ dependent. About 64% of FOS was obtained by the purified FTase under 500 g L-1 sucrose within 4 h of reaction time, which was the shortest reaction time to be reported regarding the purified enzyme production of FOS. Together, these results indicated that the FTase of A. oryzae S719 is an excellent candidate for the industrial production of FOS.
Collapse
Affiliation(s)
- Susu Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Tong Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Shuo Leng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass, Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Wei Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
14
|
Yuan Y, Zhang J, Kallman J, Liu X, Meng M, Lin J. Polysaccharide biosynthetic pathway profiling and putative gene mining of Dendrobium moniliforme using RNA-Seq in different tissues. BMC PLANT BIOLOGY 2019; 19:521. [PMID: 31775630 PMCID: PMC6882186 DOI: 10.1186/s12870-019-2138-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/14/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Dendrobium moniliforme (Linnaeus) Swartz is a well-known plant used in traditional Chinese medicine due to bioactive constituents. Polysaccharides are the main medicinal ingredients, yet no studies have been published on polysaccharide biosynthesis in D. moniliforme. To comprehensively investigate the polysaccharide at the transcription level, we performed de novo transcriptome sequencing for the first time to produce a comprehensive transcriptome of D. moniliforme. RESULTS In our study, a database of 562,580 unigenes (average length = 1115.67 bases) was generated by performing transcriptome sequencing. Based on the gene annotation of the transcriptome, we identified 1204 carbohydrate-active related unigenes against CAZy database, including 417 glycosyltransferase genes (GTs), 780 glycoside hydrolases (GHs), 19 carbohydrate esterases (CEs), 75 carbohydrate-binding modules (CBMs), and 44 polysaccharide lyases (PLs). In the cellulose synthase family, 21 differential expression genes (DEGs) related to polysaccharide were identified. Subsequently, the tissue-specific expression patterns of the genes involved in polysaccharide pathway were investigated, which provide understanding of the biosynthesis and regulation of DMP at the molecular level. The two key enzyme genes (Susy and SPS) involved in the polysaccharide pathway were identified, and their expression patterns in different tissues were further analyzed using quantitative real-time PCR. CONCLUSIONS We determined the content of polysaccharides from Dendrobium moniliforme under different tissues, and we obtained a large number of differential genes by transcriptome sequencing. This database provides a pool of candidate genes involved in biosynthesis of polysaccharides in D. moniliforme. Furthermore, the comprehensive analysis and characterization of the significant pathways are expected to give a better insight regarding the diversity of chemical composition, synthetic characteristics, and the regulatory mechanism which operate in this medical herb.
Collapse
Affiliation(s)
- Yingdan Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | | | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | - Miaojing Meng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| | - Jie Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
15
|
Zhang J, Wang L, Luan C, Liu G, Liu J, Zhong Y. Establishment of a rapid and effective plate chromogenic assay for screening of Aspergillus species with high β-fructofuranosidase activity for fructooligosaccharides production. J Microbiol Methods 2019; 166:105740. [PMID: 31614171 DOI: 10.1016/j.mimet.2019.105740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
Fructooligosaccharides (FOS) are commonly regarded as prebiotics and used as components of functional foods. Currently, the industrial sucrose-to-FOS biotransformation is mainly carried out using the microbial-derived β-fructofuranosidases with transglycosylation activity as catalysts. Evaluation of the ability of a microorganism to produce β-fructofuranosidase is commonly conducted by measuring enzyme activity. However, the traditional method requires several steps to identify strains with high β-fructofuranosidase activity, which is not suitable for high-throughput screening. To facilitate screening of a large number of microbial cultures, this study developed a plate chromogenic assay method based on the glucose oxidase (GOD) - peroxidase (POD) bienzymatic system for screening of β-fructofuranosidase-producing fungal strains and predicting their potential to produce FOS. This method used the amount of glucose released from sucrose as indicator to form clear pink halos around the microbial colonies with β-fructofuranosidase activity. Cultivation conditions for the plate assay were optimized as cultivation time 5 h and spore inoculum concentration 108/ml. Moreover, the method was applied to screening of an Aspergillus niger ATCC 20611 mutant library. The mutant A11 displaying the largest pink halo was screened out and its β-fructofuranosidase activity was determined to be 1.65 fold than that of the parental strain. Thin layer chromatography (TLC) assay further indicated that A11 with the largest halo possessed the highest FOS synthesis ability. These results demonstrated the potential of this plate chromogyenic assay method in the rapid and effective identification of excellent FOS producers from a large number of strain samples.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Microbial Technology, Department of Science and Technology Management, Shandong University, Qingdao, Shandong Province, PR China
| | - Lu Wang
- State Key Laboratory of Microbial Technology, Department of Science and Technology Management, Shandong University, Qingdao, Shandong Province, PR China
| | - Chong Luan
- Zibo Center Hospital, Zi Bo, Shandong Province, PR China
| | - Guoxin Liu
- Zibo Center Hospital, Zi Bo, Shandong Province, PR China
| | - Jie Liu
- State Key Laboratory of Microbial Technology, Department of Science and Technology Management, Shandong University, Qingdao, Shandong Province, PR China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Department of Science and Technology Management, Shandong University, Qingdao, Shandong Province, PR China.
| |
Collapse
|
16
|
Wang C, Peng D, Zhu J, Zhao D, Shi Y, Zhang S, Ma K, Wu J, Huang L. Transcriptome analysis of Polygonatum cyrtonema Hua: identification of genes involved in polysaccharide biosynthesis. PLANT METHODS 2019; 15:65. [PMID: 31289459 PMCID: PMC6593569 DOI: 10.1186/s13007-019-0441-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/17/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Polygonatum cyrtonema Hua (P. cyrtonema) is one of the most important herbs in traditional Chinese medicine. Polysaccharides in P. cyrtonema plants comprise a class of important secondary metabolites and exhibit a broad range of pharmacological functions. RESULTS In order to identify genes involved in polysaccharide biosynthesis, we performed RNA sequencing analysis of leaf, root, and rhizome tissues of P. cyrtonema. A total of 164,573 unigenes were obtained by assembling transcripts from all three tissues and 86,063 of these were annotated in public databases. Differentially expressed genes (DEGs) were determined based on expression profile analysis, and DEG levels in rhizome tissues were then compared with their counterparts in leaf and root tissues. This analysis revealed numerous genes that were either up-regulated or uniquely expressed in the rhizome. Multiple genes encoding important enzymes, such as UDP glycosyltransferases (UGTs), or transcription factors involved in polysaccharide biosynthesis were identified and further analyzed, while a few genes encoding key enzymes were experimentally validated using quantitative real-time PCR. CONCLUSION Our results substantially expand the public transcriptome dataset of P. cyrtonema and provide valuable clues for the identification of candidate genes involved in metabolic pathways.
Collapse
Affiliation(s)
- Chenkai Wang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Daiyin Peng
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230012 China
| | - Jinhang Zhu
- Anhui Medical University, Hefei, 230032 China
| | - Derui Zhao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Yuanyuan Shi
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Shengxiang Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
| | - Kelong Ma
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038 China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230012 China
| | - Luqi Huang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230038 China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Tódero LM, Rechia CGV, Guimarães LHS. Production of short-chain fructooligosaccharides (scFOS) using extracellular β-D-fructofuranosidase produced by Aspergillus thermomutatus. J Food Biochem 2019; 43:e12937. [PMID: 31368547 DOI: 10.1111/jfbc.12937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 11/27/2022]
Abstract
Aspergillus thermomutatus produces an extracellular β-D-fructofuranosidase when cultured in Khanna medium with sucrose as additional carbon source at 30°C under agitation for 72 hr. Addition of glucose and fructose in the culture medium affected the production of the enzyme negatively. The optimum hydrolytic activity was achieved at 60°C and pH 5.0, with half-life (T50) of 30 hr at 50°C and 62% of its activity maintained at pH 5.0 for 48 hr. The extracellular extract containing β-D-fructofuranosidase was effective in producing fructooligosaccharides (FOS), mainly 1-kestose. The highest concentration of FOS was obtained at 30°C and 60°C, indicating the existence of at least two enzymes with transfructosylating activity. At 30°C, the maximal FOS concentration was obtained from 48 to 72 hr, while at 60°C, it was achieved only at 72 hr. The best production of FOS (86.7 g/L) was obtained using 500 g/L sucrose as substrate. PRACTICAL APPLICATION: Fructooligosaccharides (FOS) are linear oligomers of fructose units with important applications in the food industry as sweetening agents and biopreservatives. Due to the presence of β-glycosidic bonds, they cannot be hydrolyzed by human enzymes, allowing the use of FOS-containing products by diabetics. FOS used in the preparation of dairy products imparts humectancy to soft baked products, lowers the freezing point of frozen desserts, provides crispness to low-fat cookies, and provides many other advantages. Diets containing FOS can reduce the levels of triglycerides and cholesterol and improve the absorption of ions, such as Ca2+ and Mg2+ . FOS also exhibit bifidogenic effect on Bifidobacterium and Lactobacillus strains in the colon. Industrially, FOS is produced during the transfructosylation reaction of sucrose catalyzed by β-D-fructofuranosidase. Identifying new sources of β-D-fructofuranosidase is an important challenge to meet its industrial demand.
Collapse
|
18
|
Muñiz-Márquez DB, Teixeira JA, Mussatto SI, Contreras-Esquivel JC, Rodríguez-Herrera R, Aguilar CN. Fructo-oligosaccharides (FOS) production by fungal submerged culture using aguamiel as a low-cost by-product. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Choukade R, Kango N. Characterization of a mycelial fructosyltransferase from Aspergillus tamarii NKRC 1229 for efficient synthesis of fructooligosaccharides. Food Chem 2019; 286:434-440. [PMID: 30827630 DOI: 10.1016/j.foodchem.2019.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023]
Abstract
An efficient system for biotransformation of sucrose to fructooligosaccharides (FOS) was obtained using Aspergillus tamarii NKRC 1229 mycelial fructosyltransferase (m-FTase). Zymographic analysis confirmed mycelial localization of the FTase (36 U/g) and lyophilized fungal pellets were used for bioconversion. m-FTase had molecular weight ∼75 kDa with optimum activity at pH 7.0 and 20 °C. FOS production after parametric optimization (sucrose - 50% w/v, m-FTase dose - 4.5% w/v, inoculum age - 48 h and incubation time - 24 h) reached 325 g/L (55% yield) with 14% residual sucrose, 25% glucose and 6% fructose. FTase activity was enhanced after pre-treatment with organic solvents and SDS. FOS was purified in a single step using gel filtration matrix, Bio-Gel P2. FOS was characterized using Diffusion ordered spectroscopy-Nuclear Magnetic Resonance (1H DOSY-NMR) and Fourier-transform infrared spectroscopy (FTIR). Continuous generation of FOS was achieved using recyclable mycelia upto 10 consecutive cycles.
Collapse
Affiliation(s)
- Ritumbhara Choukade
- Enzyme Technology and Molecular Catalysis Laboratory, Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India.
| | - Naveen Kango
- Enzyme Technology and Molecular Catalysis Laboratory, Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
20
|
Cui X, Wang S, Cao H, Guo H, Li Y, Xu F, Zheng M, Xi X, Han C. A Review: The Bioactivities and Pharmacological Applications of Polygonatum sibiricum polysaccharides. Molecules 2018; 23:molecules23051170. [PMID: 29757991 PMCID: PMC6099637 DOI: 10.3390/molecules23051170] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/03/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been widely used in China and is regarded as the most important therapeutic. Polygonatum sibiricum (PS), a natural plant used in traditional Chinese medicine, has various functions associated with a number of its components. There are many compositions in PS including polysaccharides, steroids, anthraquinone, alkaloids, cardiac glycosides, lignin, vitamins, various acids, and so on. Of these, polysaccharides play a significant role in PS-based therapeutics. This article summarizes Polygonatum sibiricum polysaccharides (PSP) have many pharmacological applications and biological activities, such as their antioxidant activity, anti-aging activity, an anti-fatigue effect, immunity enhancement effect, antibacterial effect, anti-inflammatory effect, hypolipidemic and antiatherosclerotic effects, anti-osteoporosis effect, liver protection, treatment of diabetes mellitus (DM), anti-cancer effect, and may help prevent Alzheimer’s disease, and so on. This review summarized the extraction method, purification method, compositions, pharmacological applications, biological activities, biosynthesis, and prospects of PSP, providing a basis for further study of PS and PSP.
Collapse
Affiliation(s)
- Xiaowei Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Shiyuan Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Hui Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Hong Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yujuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Fangxue Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Mengmeng Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiaozhi Xi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
21
|
de Almeida MN, Guimarães VM, Falkoski DL, de Camargo BR, Fontes-Sant'ana GC, Maitan-Alfenas GP, de Rezende ST. Purification and characterization of an invertase and a transfructosylase from Aspergillus terreus. J Food Biochem 2018. [DOI: 10.1111/jfbc.12551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maíra N. de Almeida
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Viçosa; Viçosa MG 36570-900 Brazil
- Departamento de Ciências Naturais; Universidade Federal de São João del Rei; São João del Rei MG 36.301-160 Brazil
| | - Valéria M. Guimarães
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Viçosa; Viçosa MG 36570-900 Brazil
| | - Daniel L. Falkoski
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Viçosa; Viçosa MG 36570-900 Brazil
| | - Brenda R. de Camargo
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Viçosa; Viçosa MG 36570-900 Brazil
| | - Gizele C. Fontes-Sant'ana
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Viçosa; Viçosa MG 36570-900 Brazil
- Departamento de Tecnologia de Processos Bioquímicos; Instituto de Química, Universidade Estadual do Rio de Janeiro; Rio de Janeiro Brazil
| | - Gabriela P. Maitan-Alfenas
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Viçosa; Viçosa MG 36570-900 Brazil
- Departamento de Alimentos e Nutrição; Universidade Federal do Mato Grosso; Cuiabá Brazil
| | - Sebastião T. de Rezende
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Viçosa; Viçosa MG 36570-900 Brazil
| |
Collapse
|
22
|
Mano MCR, Neri-Numa IA, da Silva JB, Paulino BN, Pessoa MG, Pastore GM. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol 2017; 102:17-37. [DOI: 10.1007/s00253-017-8564-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
|
23
|
Wang S, Wang B, Hua W, Niu J, Dang K, Qiang Y, Wang Z. De Novo Assembly and Analysis of Polygonatum sibiricum Transcriptome and Identification of Genes Involved in Polysaccharide Biosynthesis. Int J Mol Sci 2017; 18:ijms18091950. [PMID: 28895881 PMCID: PMC5618599 DOI: 10.3390/ijms18091950] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/28/2023] Open
Abstract
Polygonatum sibiricum polysaccharides (PSPs) are used to improve immunity, alleviate dryness, promote the secretion of fluids, and quench thirst. However, the PSP biosynthetic pathway is largely unknown. Understanding the genetic background will help delineate that pathway at the molecular level so that researchers can develop better conservation strategies. After comparing the PSP contents among several different P. sibiricum germplasms, we selected two groups with the largest contrasts in contents and subjected them to HiSeq2500 transcriptome sequencing to identify the candidate genes involved in PSP biosynthesis. In all, 20 kinds of enzyme-encoding genes were related to PSP biosynthesis. The polysaccharide content was positively correlated with the expression patterns of β-fructofuranosidase (sacA), fructokinase (scrK), UDP-glucose 4-epimerase (GALE), Mannose-1-phosphate guanylyltransferase (GMPP), and UDP-glucose 6-dehydrogenase (UGDH), but negatively correlated with the expression of Hexokinase (HK). Through qRT-PCR validation and comprehensive analysis, we determined that sacA, HK, and GMPP are key genes for enzymes within the PSP metabolic pathway in P. sibiricum. Our results provide a public transcriptome dataset for this species and an outline of pathways for the production of polysaccharides in medicinal plants. They also present more information about the PSP biosynthesis pathway at the molecular level in P. sibiricum and lay the foundation for subsequent research of gene functions.
Collapse
Affiliation(s)
- Shiqiang Wang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Bin Wang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
- College of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Wenping Hua
- College of Life Sciences and Food Engineering, Shaanxi XueQian Normal University, Xi'an 710119, Shaanxi, China.
| | - Junfeng Niu
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Kaikai Dang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yi Qiang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|