1
|
Jia M, Chen Y, Wang J, Wang J, Ma Y, Wang Y, Ma Q, Zhang Y, Liu W, Liu K. His 70 of Acetivibrio alkalicellulosi Cel5A is important for efficient hydrolysis of short cellodextrins. AMB Express 2025; 15:53. [PMID: 40111668 PMCID: PMC11926323 DOI: 10.1186/s13568-025-01858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
Cellulose, a linear glucan linked by β-1,4 glycosidic bonds, is the most abundant renewable polysaccharide on earth. Complete enzymatic hydrolysis of cellulose liberates the readily metabolizable glucose that could be further converted to valuable biocommodities, and essential to this process are cellulases that hydrolyze the β-1,4 glycosidic bonds. Cellulases are among the most intensively studied and best understood enzymes, and many key residues have been uncovered and interrogated with respect to their functions in catalysis and/or substrate binding. However, it remains to be explored whether additional residues, especially in many poorly characterized cellulases such as processive endoglucanases, might also be functionally important. Here, we investigated a processive endoglucanase from an alkaliphilic bacterium Acetivibrio alkalicellulosi AaCel5A that consists of a glycohydrolase family 5 (GH5) domain and two tandem carbohydrate-binding module family 6 (CBM6) domains. Via structure-guided engineering, we uncovered the functional importance of a previously underexplored but relatively conserved histidine (histidine70 or His70). His70 itself appears to be largely dispensable for hydrolyzing β-1,4 glycosidic bonds, but it is important for efficient hydrolysis of short cellodextrins such as cellotriose, cellotetraose, and cellopentaose, likely through its ability to coordinate substrate binding. Our work thus provides important mechanistic insights into how processive endoglucanases may act on short cellodextrins.
Collapse
Affiliation(s)
- Mengxiang Jia
- Department of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yangyang Chen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jingting Wang
- in vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Jiahan Wang
- in vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yihua Ma
- in vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yujiao Wang
- Cosychem Technology (Tianjin) Co., Ltd., Tianjin, China
| | - Qian Ma
- Department of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yiheng Zhang
- in vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, China.
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Kuanqing Liu
- in vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
2
|
Lisov A, Belova O, Lisova Z, Nagel A, Shadrin A, Andreeva-Kovalevskaya Z, Nagornykh M, Zakharova M, Leontievsky A. Two β-glucanases from bacterium Cellulomonas flavigena: expression in Pichia pastoris, properties, biotechnological potential. Prep Biochem Biotechnol 2023; 53:1313-1321. [PMID: 37093814 DOI: 10.1080/10826068.2023.2201934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In the genome of Cellulomonas flavigena, two genes that potentially encode endoglucanases - Cfla_2912 and Cfla_2913 were identified. We cloned the genes and created Pichia pastoris-based recombinant producers of two proteins that were expressed from the AOX1 promoter. Each of the endoglucanase molecules contains a GH6 catalytic domain, CBM2 carbohydrate-binding module, and TAT signal peptide. The fermentation of the producers was carried out in a 10 L fermenter; Cfla_2912 and Cfla_2913 were purified using affinity chromatography. The yield comprised 10.3 mg/ml (430 U/ml) for Cfla_2913 and 9 mg/ml (370 U/ml) for Cfla_2912. Cfla_2912 and Cfla_2913 were found to have a high activity against barley β-glucan and lichenan, a weak activity against carboxymethyl cellulose (CMC), phosphoric-acid treated cellulose, and no activity against laminarin, xylan, soluble starch, microcrystalline cellulose, cellobiose, and cellotriose. Thus, the proteins exhibited β-glucanase activity. Both proteins had a neutral pH optimum of about 7.0 and were more stable at neutral and slightly alkaline pH ranging from 7.0 to 9.0. Cfla_2912 and Cfla_2913 showed a moderate thermal stability. The products of barley β-glucan hydrolysis by Cfla_2912 and Cfla_2913 were trisaccharide, tetrasaccharide, and cellobiose. Cfla_2912 and Cfla_2913 efficiently hydrolyzed cereal polysaccharides, which indicate that they may have biotechnological potential.
Collapse
Affiliation(s)
- Alexander Lisov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Oksana Belova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Zoya Lisova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Nagel
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Shadrin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Zhanna Andreeva-Kovalevskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Maxim Nagornykh
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Marina Zakharova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Leontievsky
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Ruginescu R, Enache M, Popescu O, Gomoiu I, Cojoc R, Batrinescu-Moteau C, Maria G, Dumbravician M, Neagu S. Characterization of Some Salt-Tolerant Bacterial Hydrolases with Potential Utility in Cultural Heritage Bio-Cleaning. Microorganisms 2022; 10:microorganisms10030644. [PMID: 35336219 PMCID: PMC8949325 DOI: 10.3390/microorganisms10030644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Salt-tolerant enzymes produced by halophilic and halotolerant microorganisms have been proposed to be used in various applications that involve high saline conditions. Considering their biotechnological significance and the current need for more efficient producers of such catalysts, the present study aimed to evaluate the extracellular proteolytic, esterolytic, cellulolytic and xylanolytic activities of some halotolerant strains, and to characterize their functional parameters. A total of 21 bacterial and fungal strains belonging to the genera Bacillus, Virgibacillus, Salinivibrio, Salinicoccus, Psychrobacter, Nocardiopsis, Penicillium, Aspergillus, and Emericellopsis were assayed by quantitative methods. Among them, the members of the Bacillus genus exhibited the highest catalytic activities. The exoenzymes produced by three selected Bacillus strains were active over wide ranges of salinity, temperature and pH. Proteases were active at 20–80 °C, pH 6–10, and 0–1 M NaCl, while esterases showed good catalytic activities at 20–80 °C, pH 7.5–10, and 0–4 M NaCl. Cellulases and xylanases were active at 20–80 °C, pH 5–10, and 0–5 M NaCl. Due to such properties, these hydrolases could be used in a newly proposed application, namely to clean aged consolidants and organic deposits accumulated over time from the surfaces of salt-loaded wall paintings.
Collapse
Affiliation(s)
- Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
- Correspondence:
| | - Madalin Enache
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| | - Octavian Popescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
- Molecular Biology Center, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai-University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania
| | - Ioana Gomoiu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| | - Roxana Cojoc
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| | - Costin Batrinescu-Moteau
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| | - Gabriel Maria
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| | - Maria Dumbravician
- Department of Conservation and Restoration, Faculty of Art History, Bucharest National University of Arts, 19 General Constantin Budișteanu, 010773 Bucharest, Romania;
| | - Simona Neagu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| |
Collapse
|
4
|
Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications. Int J Biol Macromol 2021; 188:226-244. [PMID: 34371052 DOI: 10.1016/j.ijbiomac.2021.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Cellulases play a promising role in the bioconversion of renewable lignocellulosic biomass into fermentable sugars which are subsequently fermented to biofuels and other value-added chemicals. Besides biofuel industries, they are also in huge demand in textile, detergent, and paper and pulp industries. Low titres of cellulase production and processing are the main issues that contribute to high enzyme cost. The success of ethanol-based biorefinery depends on high production titres and the catalytic efficiency of cellulases functional at elevated temperatures with acid/alkali tolerance and the low cost. In view of their wider application in various industrial processes, stable cellulases that are active at elevated temperatures in the acidic-alkaline pH ranges, and organic solvents and salt tolerance would be useful. This review provides a recent update on the advances made in thermostable cellulases. Developments in their sources, characteristics and mechanisms are updated. Various methods such as rational design, directed evolution, synthetic & system biology and immobilization techniques adopted in evolving cellulases with ameliorated thermostability and characteristics are also discussed. The wide range of applications of thermostable cellulases in various industrial sectors is described.
Collapse
|
5
|
Joshi N, Kaushal G, Singh SP. Biochemical characterization of a novel thermo-halo-tolerant GH5 endoglucanase from a thermal spring metagenome. Biotechnol Bioeng 2021; 118:1531-1544. [PMID: 33410140 DOI: 10.1002/bit.27668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/31/2022]
Abstract
A novel endoglucanase gene, celM , was cloned from a thermal spring metagenome. The gene was expressed in Escherichia coli, and the protein was extracted and purified. The protein catalyzed the hydrolysis of amorphous cellulose in a wide range of temperatures, 30-95°C, with optimal activity at 80°C. It was able to tolerate high temperature (80°C) with a half-life of 8 h. Its activity was eminent in a wide pH range of 3.0-11.0, with the highest activity at pH 6.0. The enzyme was tested for halostability. Any significant loss was not recorded in the activity of CelM after the exposure to salinity (3 M NaCl) for 30 days. Furthermore, CelM displayed a substantial resistance toward metal ions, denaturant, reducing agent, organic solvent, and non-ionic surfactants. The amorphous cellulose, treated with CelM , was randomly cleaved, generating cello-oligosaccharides of 2-5 degree of polymerization. Furthermore, CelM was demonstrated to catalyze the hydrolysis of cellulose fraction in the delignified biomass samples, for example, sweet sorghum bagasse, rice straw, and corncob, into cello-oligosaccharides. Given that CelM is a thermo-halo-tolerant GH5 endoglucanase, with resistance to detergents and organic solvent, the biocatalyst could be of potential usefulness for a variety of industrial applications.
Collapse
Affiliation(s)
- Namrata Joshi
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| | - Girija Kaushal
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| |
Collapse
|