1
|
Zhu H, Pan J, Wei Y, Lan H, Yang S, Li X, Tang X. Manganese toxicity suppressing nitrogen-fixing bacteria growth and impairing nitrogen uptake and utilization in sugarcane. Front Microbiol 2025; 16:1548896. [PMID: 40309110 PMCID: PMC12040925 DOI: 10.3389/fmicb.2025.1548896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Sugarcane (Saccharum spp.) is a crucial crop for sugar and bioethanol production. However, sugarcane grown in the acidic soils of southern China often suffers from severe leaf chlorosis due to excessive soil manganese (Mn). This study investigates the effects of Mn toxicity on the physicochemical properties and microbial communities in sugarcane rhizosphere soil, as well as its impact on sugarcane growth and nitrogen uptake and utilization. Methods Soil samples were collected from sugarcane fields with varying levels of Mn toxicity. Physicochemical properties of the rhizosphere soil were analyzed, including soil pH, available nitrogen, and microbial community composition. The impact of Mn toxicity on sugarcane growth was assessed through measurements of plant biomass, leaf chlorosis, and nitrogen uptake efficiency. Results Mn toxicity significantly lowered soil pH and altered the soil microbial community structure. Bacterial genera such as Nocardioides and Sinomonas, which are involved in ureolysis, cellulolysis, and Mn oxidation, were promoted. In contrast, genera like Nitrospirota, associated with nitrogen fixation, were inhibited. This disruption hindered the conversion of soil ammonium nitrogen to nitrate nitrogen, reducing soil available nitrogen. Consequently, sugarcane growth and development were suppressed, and nitrogen uptake was limited. Discussion The findings highlight the detrimental effects of Mn toxicity on sugarcane cultivation in high-Mn areas. The altered microbial community composition and reduced soil nitrogen availability directly impact sugarcane growth. These results underscore the importance of applying appropriate fertilizers to mitigate Mn toxicity and improve soil fertility in such regions. Future research should focus on developing strategies to enhance soil nitrogen cycling and promote beneficial microbial communities to support sustainable sugarcane production.
Collapse
Affiliation(s)
- Hanyu Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Sugarcane Biology, National Demonstration Center for Experimental Plant Science Education, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, China
- Guangxi South Subtropical Agricultural Sciences Research Institute, Chongzuo, China
| | - Junchen Pan
- Agricultural Technology Extension Station of Yinhai District, Beihai, China
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Sugarcane Biology, National Demonstration Center for Experimental Plant Science Education, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, China
| | - Heyong Lan
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Sugarcane Biology, National Demonstration Center for Experimental Plant Science Education, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, China
| | - Shu Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Sugarcane Biology, National Demonstration Center for Experimental Plant Science Education, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaofeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Sugarcane Biology, National Demonstration Center for Experimental Plant Science Education, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, China
| | - Xinlian Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Sugarcane Biology, National Demonstration Center for Experimental Plant Science Education, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Li J, Zuo X, Chen Q, Lin Y, Meng F. Genome-resolved metagenomic analysis reveals a novel denitrifier with truncated nitrite reduction pathway from the genus SC-I-84. WATER RESEARCH 2025; 282:123598. [PMID: 40245806 DOI: 10.1016/j.watres.2025.123598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
Understanding the genomic and ecological traits of partial denitrification (PD) bacteria is of high importance for developing wastewater treatment technologies. In this study, a PD-based bioreactor was operated, resulting in a mixed culture dominated by a potentially novel PD functional bacterium (SC-I-84). Progressively increased activity in both nitrate reduction and nitrite production were observed in the SC-I-84 enrichment system, whereas the nitrite reduction activity was always negligible. The phylogenetic analysis indicated that SC-I-84 was closely related to an uncultured beta-proteobacterium (99 %), whereas its denitrification functional genes (napA, napB, narV, and narY) exhibited evidence of co-evolution with chromosomal genes from the genus Cupriavidus, order Burkholderiales. In the genetic sketch of SC-I-84, only nitrate-reduction genes (nar and nap) were identified, whereas nitrite-reduction genes (nir) were absent. Notably, nitrate reduction genes were adjacent to carbon metabolism genes (sucB/C, mdh, idh) and a high abundance of tricarboxylic acid (TCA) cycling genes were found. This can promote the utilization efficiency of electron donors by nitrate reduction genes in SC-I-84, thus enhancing the denitrification activity. Furthermore, SC-I-84 positively cooperated with some bacteria that participate in nitrogen and carbon metabolism and other PD bacteria, but negatively interacted with full-denitrification bacteria. These results indicate that the enrichment of SC-I-84 restricted the growth of full-denitrification bacteria, aiding in the maintenance of a stable PD process. Taken together, the meta-genomic analysis of the novel PD functional bacterium is expected to enhance our understanding of PD processes and aid in the development of PD-based wastewater treatment processes.
Collapse
Affiliation(s)
- Jiapeng Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaotian Zuo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qianqian Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yanting Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
3
|
Buakaew T, Ratanatamskul C. Enhanced pharmaceutical removal from building wastewater by the novel integrated system of anaerobic baffled biofilm-membrane bioreactor and UV/O 3: Microbial community, occurrence of bio-intermediates and post-treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124657. [PMID: 40010280 DOI: 10.1016/j.jenvman.2025.124657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
This research aimed to develop the novel integrated system of anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) (with and without microaeration) and UV/O3 for removal of target pharmaceuticals (ciprofloxacin (CIP), caffeine (CAF), sulfamethoxazole (SMX) and diclofenac (DCF)) from building wastewater. The investigation was performed to elucidate how microaeration affected the removal performances, degradation kinetics and pathways of bio-intermediates of the AnBB-MBR. Two AnBB-MBR reactors - R1: AnBB-MBR (without microaeration) and R2: AnBB-MBR with microaeration at 0.93 LO2/LFeed - were operated at the same hydraulic retention time (HRT) of 30 h. The UV/O3 was selected as the post-treatment system. While UV alone slightly removed CIP without the removal of other compounds. After 150 min of the UV/O3, the R1 with UV/O3 achieved 97.31-100% removal efficiency of targeted pharmaceuticals and increased to 99.47-100% with the R2 integrated with UV/O3. The obtained pseudo-first order kinetic rate constants of the UV/O3 in treating the permeate of R1 were 0.0235, 0.004, 0.0423 and 0.097 min-1 for CIP, CAF, SMX and DCF, respectively. Whereas the obtained pseudo-first order kinetic rate constants of the UV/O3 in treating the permeate of R2 were 0.021, 0.0338, 0.0511 and 0.0527 min-1 for CIP, CAF, SMX and DCF, respectively. For the major microorganisms involved in targeted pharmaceutical removal in the R2 under microaerobic conditions included ammonia oxidizing bacteria (AOB) and methanotrophs, while Bacillus, Longilinea, Clostridium and Lactivibrio were possibly responsible for pharmaceutical removal in the R1 under anaerobic conditions. The differences of bio-intermediates between anaerobic and microaerobic conditions were exclusively identified. In addition, the integration of AnBB-MBR with microaeration and UV/O3 was more effective in removing a wide variety of bio-intermediates than the case of the integrated system without microaeration. Therefore, the integrated system of AnBB-MBR with microaeration and UV/O3 can be a promising technology for pharmaceutical removal from building wastewater.
Collapse
Affiliation(s)
- Tanissorn Buakaew
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chavalit Ratanatamskul
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Arunrat N, Uttarotai T, Kongsurakan P, Sereenonchai S, Hatano R. Bacterial Community Structure in Soils With Fire-Deposited Charcoal Under Rotational Shifting Cultivation of Upland Rice in Northern Thailand. Ecol Evol 2025; 15:e70851. [PMID: 39911415 PMCID: PMC11794992 DOI: 10.1002/ece3.70851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Rotational shifting cultivation (RSC) is a traditional agricultural practice in mountainous areas that uses fire to clear land after cutting vegetation for cultivation. However, few studies have assessed the effect of fire-deposited charcoal on the diversity and composition of soil microbial communities, and none have been conducted in Thailand. Therefore, this study was conducted 1 year after a fire in an abandoned 12-year RSC in Chiang Mai Province, northern Thailand. Charcoal samples were collected from the surface litter layer, while charcoal-soil mixtures were taken from the surface soil (0-2 cm). Soil samples from 2 to 7 cm captured the charcoal-soluble layer, and samples from 7 to 15 cm represented soil without charcoal incorporation. The results revealed that charcoal led to higher pH and electrical conductivity in the charcoal layer, with notable differences in soil texture across layers, including the highest sand and silt content in the charcoal-mixed soil layer (0-2 cm). Soil organic matter and total nitrogen were significantly higher in the charcoal-mixed layer compared to deeper layers, indicating improved nutrient retention due to charcoal presence. Enhanced microbial diversity was observed in the charcoal and charcoal-mixed soil layers, with Proteobacteria, Chloroflexi, and Planctomycetota dominating across all soil samples. The bacterial genus Ilumatobacter exhibited significant changes in abundance in the charcoal layer. Additionally, Pseudolabrys was more abundant in charcoal-leached soil, while JG30a-KF-32 showed greater abundance in soil without charcoal. Shifts in Proteobacteria and Planctomycetota abundance were evident in the charcoal leaching and non-charcoal layers. Network analysis indicated more complex bacterial interactions in the charcoal-mixed soil layer, with reduced network complexity observed in the charcoal leaching layer and the layer without charcoal. These findings imply that charcoal provides a favorable environment for diverse and interactive bacterial communities, potentially benefiting soil health and fertility recovery in RSC fields.
Collapse
Affiliation(s)
- Noppol Arunrat
- Faculty of Environment and Resource StudiesMahidol UniversityNakhon PathomThailand
| | - Toungporn Uttarotai
- Department of Highland Agriculture and Natural Resources, Faculty of AgricultureChiang Mai UniversityChiang MaiThailand
| | - Praeploy Kongsurakan
- Laboratory of Terrestrial Ecosystem Modeling, Research Faculty of AgricultureHokkaido UniversitySapporoJapan
| | - Sukanya Sereenonchai
- Faculty of Environment and Resource StudiesMahidol UniversityNakhon PathomThailand
| | - Ryusuke Hatano
- Laboratory of Soil Science, Research Faculty of AgricultureHokkaido UniversitySapporoJapan
| |
Collapse
|
5
|
Lan W, Zhou Q, Li J, Liu M, Deng Y, Huang Y, Zhou Y, Yang H, Xiao Y. Investigation of Cd and Pb enrichment capacities of Erigeron sumatrensis across three polluted regions: Insights into soil parameters and microbial communities. ENVIRONMENTAL RESEARCH 2024; 262:119868. [PMID: 39216739 DOI: 10.1016/j.envres.2024.119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Erigeron sumatrensis is a vigorously growing invasive plant in mining areas and has been the subject of research for its potential in the phytoremediation of heavy metals. In this study, the bioconcentration factor (BCF) and translocation factor (TF) of E. sumatrensis were assessed to evaluate its phytoaccumulation potential for cadmium (Cd) and lead (Pb) across three distinct zinc mining regions with different degrees of contamination, including Huayuan (HY), Yueyang (YY), and Liuyang (LY) areas. The region of HY is identified as having the most severe Cd contamination, while the most pronounced Pb pollution characterizes the LY area. The findings indicate that E. sumatrensis demonstrated a stronger ability to enrich Cd and Pb in less contaminated areas. To elucidate the underlying mechanisms, high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions was employed to analyze the rhizosphere bacterial and fungal communities across the three areas. The results revealed significant variations in the microbial community structure, function, and composition, suggesting a complex interplay between the plant and its associated microorganisms. Correlation analysis identified several soil properties, including soil pH, total nitrogen (TN), available nitrogen (AN), organic matter (OM), and available phosphorus (AP), as pivotal factors that may influence the heavy metal enrichment capabilities of the plant. Notably, some microorganisms (e.g., Burkholderia, Brevundimonas, Paraglomus, and Trichoderma) and enzymes (e.g., P-type ATPases, citrate synthase, catalase) of microorganisms were found to be potentially involved in facilitating the accumulation of Cd and Pb by E. sumatrensis. This research contributes to understanding how invasive alien plants can be utilized to remedy contaminated environments. It highlights the importance of modulating critical soil factors to enhance the phytoremediation potential of E. sumatrensis, which could aid in developing strategies to manage invasive plants and mitigate heavy metal pollution in ecosystems.
Collapse
Affiliation(s)
- Wendi Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qingfan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Mingxin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yong Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yu Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Yuelushan Laboratory, Changsha, 410128, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Yuelushan Laboratory, Changsha, 410128, China.
| |
Collapse
|
6
|
Lyu G, Hu J, Ma J. Variation in Bacterial and Fungal Communities in Soils from Three Major Apple Pear ( Pyrus bretschneideri Rehd.) Orchards. Microorganisms 2024; 12:1751. [PMID: 39338425 PMCID: PMC11434001 DOI: 10.3390/microorganisms12091751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Microbial communities are closely related to the overall health and quality of soil, but studies on microbial ecology in apple pear orchard soils are limited. In the current study, 28 soil samples were collected from three apple pear orchards, and the composition and structure of fungal and bacterial communities were investigated by high-throughput sequencing. The molecular ecological network showed that the keystone taxa of bacterial communities were Actinobacteria, Proteobacteria, Gemmatimonadetes, Acidobacteria, Nitrospirae, and Chloroflexi, and the keystone taxon of fungal communities was Ascomycota. Mantel tests showed that soil texture and pH were important factors shaping soil bacterial and fungal communities, and soil water soluble organic carbon (WSOC) and nitrate nitrogen (NO3--N) were also closely related to soil bacterial communities. Canonical correspondence analysis (CCA) and variation partition analysis (VPA) revealed that geographic distance, soil texture, pH, and other soil properties could explain 10.55%, 13.5%, and 19.03% of the overall variation in bacterial communities, and 11.61%, 13.03%, and 20.26% of the overall variation in fungal communities, respectively. The keystone taxa of bacterial and fungal communities in apple pear orchard soils and their strong correlation with soil properties could provide useful clues toward sustainable management of orchards.
Collapse
Affiliation(s)
- Guangze Lyu
- Key Laboratory of Ground Water Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, China;
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China;
| | - Jiayang Hu
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China;
| | - Jincai Ma
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China;
| |
Collapse
|
7
|
Lin XR, Yang D, Wei YF, Ding DC, Ou HP, Yang SD. Amaranth Plants with Various Color Phenotypes Recruit Different Soil Microorganisms in the Rhizosphere. PLANTS (BASEL, SWITZERLAND) 2024; 13:2200. [PMID: 39204636 PMCID: PMC11359728 DOI: 10.3390/plants13162200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
To explore and utilize the abundant soil microorganisms and their beneficial functions, high-throughput sequencing technology was used to analyze soil microbial compositions in the rhizosphere of red and green amaranth varieties. The results showed that significant differences in soil microbial composition could be found in the rhizosphere of amaranth plants with different color phenotypes. Firstly, soil bacterial compositions in the rhizosphere were significantly different between red and green amaranths. Among them, Streptomyces, Pseudonocardia, Pseudolabrys, Acidibacter, norank_ f_ Micropepsaceae, Bradyrhizobium, and Nocardioides were the unique dominant soil bacterial genera in the rhizosphere of red amaranth. In contrast, Conexibacter, norank_f_norank_o_norank_c_TK10, and norank_f_ norank_o_ norank_ c_AD3 were the special dominant soil bacterial genera in the rhizosphere of green amaranth. Additionally, even though the soil fungal compositions in the rhizosphere were not significantly different between red and green amaranths, the abundance of the dominant soil fungal genera in the rhizosphere showed significant differences between red and green amaranths. For example, unclassified_k__Fungi, Fusarium, Cladophialophora, unclassified_c__Sordariomycetes and unclassified_p__Chytridiomycota significantly enriched as the dominant soil fungal genera in the rhizosphere of the red amaranth. In contrast, Aspergillues only significantly enriched as the dominant soil fungal genus in the rhizosphere of green amaranth. All of the above results indicated that amaranth with various color phenotypes exactly recruited different microorganisms in rhizosphere, and the enrichments of soil microorganisms in the rhizosphere could be speculated in contributing to amaranth color formations.
Collapse
Affiliation(s)
- Xin-Ru Lin
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (X.-R.L.)
| | - Da Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (X.-R.L.)
| | - Yu-Fei Wei
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (X.-R.L.)
| | - Dian-Cao Ding
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (X.-R.L.)
| | - Hui-Ping Ou
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530004, China
| | - Shang-Dong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (X.-R.L.)
| |
Collapse
|
8
|
Xiao J, Huang J, Xiao K, Li G, Yang S, He Y. How different of the rhizospheric and endophytic microbial compositions in watermelons with different fruit shapes. PLoS One 2024; 19:e0302462. [PMID: 38753836 PMCID: PMC11098346 DOI: 10.1371/journal.pone.0302462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Fruit shape is an important character of watermelon. And the compositions of rhizospheric and endophytic microorganisms of watermelon with different fruit shape also remains unclear. To elucidate the biological mechanism of watermelon fruit shape formations, the rhizospheric and endophytic microbial community compositions between oval (OW) and circular watermelons (CW) were analyzed. The results showed that except of the rhizospheric bacterial richness (P < 0.05), the rhizospheric and endophytic microbial (bacterial and fungal) diversity were not statistically significant between OW and CW (P > 0.05). However, the endophytic microbial (bacterial and fungal) compositions were significantly different. Firstly, Bacillus, Rhodanobacter, Cupriavidus, Luteimonas, and Devosia were the unique soil dominant bacterial genera in rhizospheres of circular watermelon (CW); In contrast, Nocardioides, Ensifer, and Saccharomonospora were the special soil dominant bacterial genera in rhizospheres of oval watermelons (OW); Meanwhile, Cephalotrichum, Neocosmospora, Phialosimplex, and Papulaspora were the unique soil dominant fungal genera in rhizospheres of circular watermelon (CW); By contrast, Acremonium, Cladosporium, Cryptococcus_f__Tremellaceae, Sodiomyces, Microascus, Conocybe, Sporidiobolus, and Acremonium were the unique soil dominant fungal genera in rhizospheres of oval watermelons (OW). Additionally, Lechevalieria, Pseudorhodoferax, Pseudomonas, Massilia, Flavobacterium, Aeromicrobium, Stenotrophomonas, Pseudonocardia, Novosphingobium, Melittangium, and Herpetosiphon were the unique dominant endophytic bacterial genera in stems of CW; In contrast, Falsirhodobacter, Kocuria, and Kineosporia were the special dominant endophytic genera in stems of OW; Moreover, Lectera and Fusarium were the unique dominant endophytic fungal genera in stems of CW; By contrast, Cercospora only was the special dominant endophytic fungal genus in stems of OW. All above results suggested that watermelons with different fruit shapes exactly recruited various microorganisms in rhizospheres and stems. Meanwhile, the enrichments of the different rhizosphric and endophytic microorganisms could be speculated in relating to watermelon fruit shapes formation.
Collapse
Affiliation(s)
- Jian Xiao
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, 530004, P. R. China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, Hunan, P. R. China
| | - Jinyan Huang
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, P. R. China
| | - Kezhuo Xiao
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, 530004, P. R. China
| | - Guifen Li
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, P. R. China
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, 530004, P. R. China
| | - Yi He
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, P. R. China
| |
Collapse
|
9
|
Jiménez-Ríos L, Torrado A, González-Pimentel JL, Iniesta-Pallarés M, Molina-Heredia FP, Mariscal V, Álvarez C. Emerging nitrogen-fixing cyanobacteria for sustainable cotton cultivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171533. [PMID: 38458446 DOI: 10.1016/j.scitotenv.2024.171533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Amid growing environmental concerns and the imperative for sustainable agricultural practices, this study examines the potential of nitrogen-fixing cyanobacteria as biofertilizers, particularly in cotton cultivation. The reliance on synthetic nitrogen fertilizers (SNFs), prevalent in modern agriculture, poses significant environmental challenges, including greenhouse gas emissions and water system contamination. This research aims to shift this paradigm by exploring the capacity of cyanobacteria as a natural and sustainable alternative. Utilizing advanced metabarcoding methods to analyze the 16S rRNA gene, we conducted a comprehensive assessment of soil bacterial communities within cotton fields. This study focused on evaluating the diversity, structure, taxonomic composition, and potential functional characteristics of these communities. Emphasis was placed on the isolation of native N2-fixing cyanobacteria strains rom cotton soils, and their subsequent effects on cotton growth. Results from our study demonstrate significant plant growth-promoting (PGP) activities, measured as N2 fixation, production of Phytohormones, Fe solubilization and biofertilization potential of five isolated cyanobacterial strains, underscoring their efficacy in cotton. These findings suggest a viable pathway for replacing chemical-synthetic nitrogen fertilizers with natural, organic alternatives. The reintegration of these beneficial species into agricultural ecosystems can enhance crop growth while fostering a balanced microbial environment, thus contributing to the broader goals of global sustainable agriculture.
Collapse
Affiliation(s)
- Lucía Jiménez-Ríos
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Alejandro Torrado
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - José Luis González-Pimentel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Macarena Iniesta-Pallarés
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Fernando P Molina-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
10
|
Medina-Ruiz A, Jiménez-Millán J, Abad I, Gálvez A, Grande MJ, Jiménez-Espinosa R. Aragonite crystallization in a sulfate-rich hypersaline wetland under dry Mediterranean climate (Laguna Honda, eastern Guadalquivir basin, S Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171362. [PMID: 38428615 DOI: 10.1016/j.scitotenv.2024.171362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
This research investigates the influence of water composition, the presence of seasonal algal mats, detrital inputs and the activity of microorganisms on the crystallization of aragonite in the sediments deposited in the hypersaline Laguna Honda wetland (S of Spain). The high alkaline and hypersaline waters (pH > 9.2 and C.E. > 70 mS/cm) of the wetland lake are rich in SO42- (>24,000 mg/l), Cl- (>21,000 mg/l), Na+ (>11,000 mg/l) Mg2+ (>8400 mg/l) and Ca2+ (>1000 mg/l), and are supersaturated for dolomite, calcite and aragonite. Sediments have lower pH values than column waters, oscillating from 8.54 in the low Eh (up to -80.9 mV) central deep sediments and 6.33 in the shallower higher Eh (around -13.6 mV) shore sediments. Erosion of the surrounding olive groves soils produced detrital silicates rich sediments with concretions of carbonate or sulfate. Aragonite (up to 19 %) and pyrite (up to 13 %) are mainly concentrated in the organic matter rich samples from the upper part of the sediment cores, whereas gypsum is preferably concentrated in low organic matter content samples. Mineral crusts containing a MgAl silicate phase, epsomite, halite and gypsum are precipitated on the floating algal mats covering the wetland waters. Floating algal mats deposit increased the organic matter content of the upper sediments which promoted the presence of fermentative microorganisms, sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) communities and variations of Eh that influence the authigenesis of carbonate and S-bearing minerals. Replacement of poorly crystalline MgSi phases infilling algal cells by aragonite was favored in the organic matter rich sediments with low Eh values and important SRB communities that promoted sulfate bioreduction processes to form pyrite. Aragonite precipitation was favored by the increase of carbonate and bicarbonate concentration produced by the SRB oxidation of organic matter, the CO2 degassing by high summer temperatures and the CO2 uptake by photosynthesis of the algal mats.
Collapse
Affiliation(s)
- Antonio Medina-Ruiz
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Juan Jiménez-Millán
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Isabel Abad
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Antonio Gálvez
- Microbiology Division, Department of Health Sciences, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - María José Grande
- Microbiology Division, Department of Health Sciences, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Rosario Jiménez-Espinosa
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
11
|
Guo DJ, Li DP, Yang B, Verma KK, Singh RK, Singh P, Khan Q, Sharma A, Qin Y, Zhang BQ, Song XP, Li YR. Effect of endophytic diazotroph Enterobacter roggenkampii ED5 on nitrogen-metabolism-related microecology in the sugarcane rhizosphere at different nitrogen levels. Front Microbiol 2023; 14:1132016. [PMID: 37649627 PMCID: PMC10464614 DOI: 10.3389/fmicb.2023.1132016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Sugarcane is an important sugar and energy crop worldwide, requiring a large amount of nitrogen (N). However, excessive application of synthetic N fertilizer causes environmental pollution in farmland. Endophytic nitrogen-fixing bacteria (ENFB) provide N nutrition for plants through biological N fixation, thus reducing the need for chemical fertilizers. The present study investigated the effect of the N-fixing endophytic strain Enterobacter roggenkampii ED5 on phytohormone indole-3-acetic acid (IAA), N-metabolism enzyme activities, microbial community compositions, and N cycle genes in sugarcane rhizosphere soil at different N levels. Three levels of 15N-urea, such as low N (0 kg/ha), medium N (150 kg/ha), and high N (300 kg/ha), were applied. The results showed that, after inoculating strain ED5, the IAA content in sugarcane leaves was significantly increased by 68.82% under low N condition at the seedling stage (60 days). The nitrate reductase (NR) activity showed a downward trend. However, the glutamine synthase (GS) and NADH-glutamate dehydrogenase (NADH-GDH) activities were significantly enhanced compared to the control under the high N condition, and the GS and NR genes had the highest expression at 180 and 120 days, respectively, at the low N level. The total N content in the roots, stems, and leaves of sugarcane was higher than the control. The 15N atom % excess of sugarcane decreased significantly under medium N condition, indicating that the medium N level was conducive to N fixation in strain ED5. Metagenome analysis of sugarcane rhizosphere soil exhibited that the abundance of N-metabolizing microbial richness was increased under low and high N conditions after inoculation of strain ED5 at the genus level, while it was increased at the phylum level only under the low N condition. The LefSe (LDA > 2, p < 0.05) found that the N-metabolism-related differential microorganisms under the high N condition were higher than those under medium and low N conditions. It was also shown that the abundance of nifDHK genes was significantly increased after inoculation of ED5 at the medium N level, and other N cycle genes had high abundance at the high N level after inoculation of strain ED5. The results of this study provided a scientific reference for N fertilization in actual sugarcane production.
Collapse
Affiliation(s)
- Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Bin Yang
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ying Qin
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| |
Collapse
|
12
|
Wang Y, Zhang X, Lou Z, An X, Li X, Jiang X, Wang W, Zhao H, Fu M, Cui Z. The effects of adding exogenous lignocellulose degrading bacteria during straw incorporation in cold regions on degradation characteristics and soil indigenous bacteria communities. Front Microbiol 2023; 14:1141545. [PMID: 37234521 PMCID: PMC10206022 DOI: 10.3389/fmicb.2023.1141545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Low temperature is one of the bottleneck factors that limits the degradation of straw during rice straw incorporation. Determining strategies to promote the efficient degradation of straw in cold regions has become a highly active research area. This study was to investigate the effect of rice straw incorporation by adding exogenous lignocellulose decomposition microbial consortiums at different soil depths in cold regions. The results showed that the lignocellulose was degraded the most efficiently during straw incorporation, which was in deep soil with the full addition of a high-temperature bacterial system. The composite bacterial systems changed the indigenous soil microbial community structure and diminished the effect of straw incorporation on soil pH, it also significantly increased rice yield and effectively enhanced the functional abundance of soil microorganisms. The predominant bacteria SJA-15, Gemmatimonadaceae, and Bradyrhizobium promoted straw degradation. The concentration of bacterial system and the depth of soil had significantly positive correlations on lignocellulose degradation. These results provide new insights and a theoretical basis for the changes in the soil microbial community and the application of lignocellulose-degrading composite microbial systems with straw incorporation in cold regions.
Collapse
Affiliation(s)
- Yunlong Wang
- College of Agronomy, Yanbian University, Yanji, China
| | - Xuelian Zhang
- College of Agronomy, Yanbian University, Yanji, China
| | - Zixi Lou
- College of Agronomy, Yanbian University, Yanji, China
| | - Xiaoya An
- College of Agronomy, Yanbian University, Yanji, China
| | - Xue Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xinbo Jiang
- College of Agronomy, Yanbian University, Yanji, China
| | - Weidong Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongyan Zhao
- College of Agronomy, Yanbian University, Yanji, China
| | - Minjie Fu
- College of Agronomy, Yanbian University, Yanji, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Barber NA, Klimek DM, Bell JK, Swingley WD. Restoration age and reintroduced bison may shape soil bacterial communities in restored tallgrass prairies. FEMS Microbiol Ecol 2023; 99:6994523. [PMID: 36669763 DOI: 10.1093/femsec/fiad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Knowledge of how habitat restoration shapes soil microbial communities often is limited despite their critical roles in ecosystem function. Soil community diversity and composition change after restoration, but the trajectory of these successional changes may be influenced by disturbances imposed for habitat management. We studied soil bacterial communities in a restored tallgrass prairie chronosequence for >6 years to document how diversity and composition changed with age, management through fire, and grazing by reintroduced bison, and in comparison to pre-restoration agricultural fields and remnant prairies. Soil C:N increased with restoration age and bison, and soil pH first increased and then declined with age, although bison weakened this pattern. Bacterial richness and diversity followed a similar hump-shaped pattern as soil pH, such that the oldest restorations approached the low diversity of remnant prairies. β-diversity patterns indicated that composition in older restorations with bison resembled bison-free sites, but over time they became more distinct. In contrast, younger restorations with bison maintained unique compositions throughout the study, suggesting bison disturbances may cause a different successional trajectory. We used a novel random forest approach to identify taxa that indicate these differences, finding that they were frequently associated with bacteria that respond to grazing in other grasslands.
Collapse
Affiliation(s)
- Nicholas A Barber
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Desirae M Klimek
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Jennifer K Bell
- Morton Arboretum, Lisle, IL, USA
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
14
|
Xiao J, Sun Y, He Y, Tang X, Yang S, Huang J. Comparison of Rhizospheric and Endophytic Bacterial Compositions between Netted and Oriental Melons. Microbiol Spectr 2023; 11:e0402722. [PMID: 36622169 PMCID: PMC9927411 DOI: 10.1128/spectrum.04027-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
To elucidate the biological mechanism of formation of the netted pattern in melons, the characteristics of the soil bacterial community structure in the rhizosphere and of the endophytic bacteria in the stems of netted melons were analyzed. High-throughput sequencing technology was used for the analysis of plant stem and soil samples collected from netted melons (NM) and oriental melons (OM). At the phylum level, Acidobacteria, Dependentiae, and Chloroflexi were the dominant endophytic bacteria in the stems of NM only. In addition, at the genus level, the soil bacteria enriched in the rhizospheres of NM and OM were different. Five unique dominant bacterial genera, including Gaiella, Actinoplanes, norank_f__Gemmatimonadaceae, Devosia, and Bradyrhizobium, were the dominant soil bacteria unique to the rhizosphere of NM. In contrast, Mycobacterium and unclassified_f__Acetobacteraceae were the dominant soil bacteria in the rhizosphere of OM. Moreover, Hyphomicrobium, Nocardioides, norank_f__norank_o__Gaiellales, Bryobacter, unclassified_f__Pseudonocardiaceae, Pseudolabrys, norank_f__Micropepsaceae, Ideonella, Mizugakiibacter, norank_f__Vermiphilaceae, unclassified_f__Xanthobacteraceae, Bacillus, and Pseudaminobacter were the dominant endophytic bacteria in the stems of NM. In contrast, Flavobacterium, Stenotrophomonas, unclassified_f__Burkholderiaceae, Paenibacillus, Bordetella, Hephaestia, and Ideonella were the dominant endophytic bacteria in the stems of OM. The specific substances (enzymes, proteins, endogenous hormones, etc.) secreted by unique rhizospheric and endophytic bacteria, such as Bacillus and Bradyrhizobium, may activate the promoters of genes. Therefore, the expression of genes can be regulated by unique rhizospheric and endophytic bacteria for formation or nonformation of netting in melons. IMPORTANCE The study of the differential structures and functions of rhizospheric and endophytic bacterial communities between netted melon and oriental melon treatments is investigated. Our findings make a significant contribution to the literature because they are the first step in coupling the study of rhizospheric and endophytic microbial community structure to reticulation formation in netted melon. Further, we believe that this research appears to be meaningful because it provides new insights into the mechanisms of reticulation formation in netted melon in modern agricultural production.
Collapse
Affiliation(s)
- Jian Xiao
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Yan Sun
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Yi He
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, People’s Republic of China
| | - Xiaofu Tang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, China
| | - Jinyan Huang
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
15
|
Zhang B, Li ZL, Bai CH, Liu JL, Nan J, Cao D, Li LW. Characteristics of groundwater microbial communities' structure under the impact of elevated nitrate concentrations in north China plain. ENVIRONMENTAL RESEARCH 2023; 218:115003. [PMID: 36495969 DOI: 10.1016/j.envres.2022.115003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
In groundwater environments, the interaction between microbial communities and the hydrogeochemical parameters have been investigated extensively in the past years. However, little is known whether the maximum contamination level (MCL) is a threshold value that dictates the microbial composition. In this study, we analyzed 10 groundwater samples for their nitrate, nitrite, COD and sulfate concentrations, and characterized their microbial compositions using 16 S rRNA based high-throughput sequencing methods. All the 10 samples had oxygen demands higher than the corresponding MCL of China (10 mg L-1); moreover, 4 out of 10 samples also had nitrate concentrations higher than the corresponding MCL, which indicated that the groundwater quality was negatively impacted by anthropogenic activities. Comparing the microbial composition of groundwater that had higher-than-MCL nitrate concentrations to those that had lower-than-MCL nitrate concentrations, no significant differences were detected in communities' richness and diversity. However, the non-metric multi-dimensional analysis suggested that the 4 groundwater samples whose nitrate concentration exceed MCL are distinctly different from those of the rest 6 samples, indicating that MCL does have a significant impact on microbial structures. Pearson's correlation analysis suggested that none of the four analyzed hydrochemical parameters had significant impact on microbial communities' richness and diversity; however, at the genus level, the correlation results suggested that JG30-KM-CM45, Sphingomonas and Rhodococcus are closely correlated with nitrate concentration. The findings of this study deepened our understanding with respect to the relationships between the environmental quality indices and the microbial compositions of groundwater.
Collapse
Affiliation(s)
- Bo Zhang
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Haidian District, Beijing, 10086, China.
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Cai-Hua Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing-Lan Liu
- Tianjin Geological Research and Marine Geology Center, Tianjin, 300381, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Di Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li-Wei Li
- Tianjin Geological Research and Marine Geology Center, Tianjin, 300381, China.
| |
Collapse
|
16
|
Miao L, Chen S, Yang H, Hong Y, Sun L, Yang J, Sun G, Liu Y, Li C, Zang H, Cheng Y. Enhanced bioremediation of triclocarban-contaminated soil by Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 immobilized on biochar and microbial community response. Front Microbiol 2023; 14:1168902. [PMID: 37065135 PMCID: PMC10098447 DOI: 10.3389/fmicb.2023.1168902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Triclocarban (TCC), an emerging organic contaminant (EOC), has become a severe threat to soil microbial communities and ecological security. Here, the TCC-degrading strain Rhodococcus rhodochrous BX2 and DCA-degrading strain Pseudomonas sp. LY-1 (together referred to as TC1) were immobilized on biochar to remove TCC and its intermediates in TCC-contaminated soil. High-throughput sequencing was used to investigate the microbial community structure in TCC-contaminated soil. Analysis of co-occurrence networks was used to explore the mutual relationships among soil microbiome members. The results showed that the immobilized TC1 significantly increased the removal efficiency of TCC from 84.7 to 92.7% compared to CK (no TC1 cells on biochar) in 10 mg/L TCC liquid medium. The utilization of immobilized TC1 also significantly accelerated the removal of TCC from contaminated soil. Microbial community analysis revealed the crucial microorganisms and their functional enzymes participating in TCC degradation in soil. Moreover, the internal labor division patterns and connections of TCC-degrading microbes, with a focus on strains BX2 and LY-1, were unraveled by co-occurrence networks analysis. This work provides a promising strategy to facilitate the bioremediation of TCC in soil, which has potential application value for sustainable biobased economies.
Collapse
Affiliation(s)
- Lei Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Siyuan Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hua Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yaqi Hong
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Liwen Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jie Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Guanjun Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yi Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yi Cheng
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Plant Protection, Northeast Agricultural University, Harbin, China
- *Correspondence: Yi Cheng,
| |
Collapse
|
17
|
Yao Y, Zhang X, Huang Z, Li H, Huang J, Corti G, Wu Z, Qin X, Zhang Y, Ye X, Fan H, Jiang L. A field study on the composition, structure, and function of endophytic bacterial community of Robinia pseudoacacia at a composite heavy metals tailing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157874. [PMID: 35940266 DOI: 10.1016/j.scitotenv.2022.157874] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/27/2023]
Abstract
Robinia pseudoacacia (R. pseudoacacia) is a well reported plant species for heavy metal phytoremediation, and it was capable to improve Cd uptake efficiency after inoculated with plant growth promoting endophytes. However, the knowledge on R. pseudoacacia associated endophytes in field condition and the relationship between these microbial communities and heavy metal uptake capacities are still scarce. In this study, the characteristics of heavy metal bioaccumulation and translocation in R. pseudoacacia, and the structure and function of its endophytic bacterial communities were revealed. The results showed that heavy metal pollution made microbes more sensitive to the environment as the diversity (Shannon) of endophyte community decreased but the abundance (Chao) increased. Redundancy analysis (RDA) also showed that heavy metals were the key factor affecting the composition of endophyte. In the co-occurrence network, 27 keystone taxa mainly from Actinobacteria, Proteobacteria and Firmicutes occupied the dominant niches, among which 16 OTUs mainly from lactobacillus, bacteroides, staphylococcus, methylorubrum and bifidobacterium were positively related to bioaccumulation and translocation of Cd, Cu, Pb and Zn. Besides, heavy metal stress enhanced the functional adaptability of endophytic bacteria community. Related predicted genes were enriched in immune response, physiological metabolism pathway and stress-resistant enzyme synthesis. This study showed that heavy metal stress enhanced the structural and functional adaptability of endophyte community and keystone taxa played significant role in improving the efficiency of phytoremediation.
Collapse
Affiliation(s)
- Yuxuan Yao
- College of Life Science and Technology, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Xuan Zhang
- College of Life Science and Technology, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Giuseppe Corti
- Department of Agrarian, Food and Environmental Sciences, Università Politecnica dell Marche, Ancona, Italy
| | - Zijian Wu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Xiaoli Qin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Yanru Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Xinyu Ye
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Huixin Fan
- College of Life Science and Technology, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Lijuan Jiang
- College of Life Science and Technology, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China.
| |
Collapse
|
18
|
Yang H, Zhang R, Li Y, Meng F, Ma J. Impact of Drip Irrigation and Nitrogen Fertilization on Soil Microbial Diversity of Spring Maize. PLANTS (BASEL, SWITZERLAND) 2022; 11:3206. [PMID: 36501245 PMCID: PMC9736923 DOI: 10.3390/plants11233206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Given the shortage of water resources and excessive application of nitrogen fertilizers in irrigated areas, we explored the effect of water−nitrogen coupling on soil microbial diversity in maize fields irrigated using shallow buried droppers. A field experiment (split-plot design) was used with irrigation amounts set at 40%, 50%, and 60% of the conventional amount; furthermore, 13 water and nitrogen coupling treatments were designed. The secondary area was the nitrogen application level, corresponding to 50%, 70%, and the original conventional application amounts. The results showed that the effect of irrigation amount on bacterial community composition was greater than that of nitrogen, whereas the effect of nitrogen on fungi was greater than that on bacteria. No significant difference was detected in the α diversity index or species richness of bacteria and fungi. Available phosphorus and organic carbon contents significantly correlated with the community structure of soil bacteria (p < 0.05). The relative abundances of bacteria and fungi were stable with the decrease of nitrogen application rate at the irrigation rate of 2000 m3 ha−1. With the decrease of irrigation amount, the relative abundance of bacteria and fungi was stable under the treatment of 210 kg ha−1 nitrogen fertilizer. Moreover, the relative abundance of nitrogen-fixing bacteria related to the nitrogen cycle was increased by irrigation of 2000 m3 ha−1 and nitrogen application of 210 kg ha−1. Moderate reduction of subsequent N supply should be as a prior soil management option in a high N input agroecosystem.
Collapse
Affiliation(s)
- Hengshan Yang
- College of Agronomy, Inner Mongolia Minzu University, Tongliao 028000, China
- Research Center of Forage Crop Engineering Technology, Tongliao 028042, China
| | - Ruifu Zhang
- College of Agronomy, Inner Mongolia Minzu University, Tongliao 028000, China
- Research Center of Forage Crop Engineering Technology, Tongliao 028042, China
| | - Yuanyuan Li
- College of Agronomy, Inner Mongolia Minzu University, Tongliao 028000, China
- Research Center of Forage Crop Engineering Technology, Tongliao 028042, China
| | - Fanhao Meng
- College of Agronomy, Inner Mongolia Minzu University, Tongliao 028000, China
- Research Center of Forage Crop Engineering Technology, Tongliao 028042, China
| | - Jinhui Ma
- College of Agronomy, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
19
|
Kumar S, Raj VS, Ahmad A, Saini V. Amoxicillin modulates gut microbiota to improve short-term high-fat diet induced pathophysiology in mice. Gut Pathog 2022; 14:40. [PMID: 36229889 PMCID: PMC9563906 DOI: 10.1186/s13099-022-00513-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND A high-fat diet (HFD) induced perturbation of gut microbiota is a major contributory factor to promote the pathophysiology of HFD-associated metabolic syndrome. The HFD could also increase the susceptibility to the microbial infections warranting the use of antibiotics which are independently capable of impacting both gut microbiota and metabolic syndrome. Further, the usage of antibiotics in individuals consuming HFD can impact mitochondrial function that can be associated with an elevated risk of chronic conditions like inflammatory bowel disease (IBD). Despite this high propensity to infections in individuals on HFD, the link between duration of HFD and antibiotic treatment, and its impact on diversity of the gut microbiome and features of metabolic syndrome is not well established. In this study, we have addressed these knowledge gaps by examining how the gut microbiota profile changes in HFD-fed mice receiving antibiotic intervention in the form of amoxicillin. We also determine whether antibiotic treatment in HFD-fed mice may adversely impact the ability of immune cells to clear microbial infections. METHODS AND RESULTS We have subjected mice to HFD and chow diet (CD) for 3 weeks, and a subset of these mice on both diets received antibiotic intervention in the form of amoxicillin in the 3rd week. Body weight and food intake were recorded for 3 weeks. After 21 days, all animals were weighted and sacrificed. Subsequently, these animals were evaluated for basic haemato-biochemical and histopathological attributes. We used 16S rRNA sequencing followed by bioinformatics analysis to determine changes in gut microbiota in these mice. We observed that a HFD, even for a short-duration, could successfully induce the partial pathophysiology typical of a metabolic syndrome, and substantially modulated the gut microbiota in mice. The short course of amoxicillin treatment to HFD-fed mice resulted in beneficial effects by significantly reducing fasting blood glucose and skewing the number of thrombocytes towards a normal range. Remarkably, we observed a significant remodelling of gut microbiota in amoxicillin-treated HFD-fed mice. Importantly, some gut microbes associated with improved insulin sensitivity and recovery from metabolic syndrome only appeared in amoxicillin-treated HFD-fed mice reinforcing the beneficial effects of antibiotic treatment in the HFD-associated metabolic syndrome. Moreover, we also observed the presence of gut-microbiota unique to amoxicillin-treated HFD-fed mice that are also known to improve the pathophysiology associated with metabolic syndrome. However, both CD-fed as well as HFD-fed mice receiving antibiotics showed an increase in intestinal pathogens as is typically observed for antibiotic treatment. Importantly though, infection studies with S. aureus and A. baumannii, revealed that macrophages isolated from amoxicillin-treated HFD-fed mice are comparable to those isolated from mice receiving only HFD or CD in terms of susceptibility, and progression of microbial infection. This finding clearly indicated that amoxicillin treatment does not introduce any additional deficits in the ability of macrophages to combat microbial infections. CONCLUSIONS Our results showed that amoxicillin treatment in HFD-fed mice exert a beneficial influence on the pathophysiological attributes of metabolic syndrome which correlates with a significant remodelling of gut microbiota. A novel observation was the increase in microbes known to improve insulin sensitivity following amoxicillin treatment during short-term intake of HFD. Even though there is a minor increase in gut-resistant intestinal pathogens in amoxicillin-treated groups, there is no adverse impact on macrophages with respect to their susceptibility and ability to control infections. Taken together, this study provides a proof of principle for the exploration of amoxicillin treatment as a potential therapy in the people affected with metabolic syndrome.
Collapse
Affiliation(s)
- Suresh Kumar
- National Institute of Biologicals, Ministry of Health & Family Welfare, Govt. of India, Noida, 201309, India.
| | - V Samuel Raj
- Center for Drug, Design, Discovery and Development (C4D), SRM University, Delhi-NCR, 131029, Sonepat, Haryana, India
| | - Ayaan Ahmad
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India.
- Biosafety Laboratory-3, Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
20
|
Guo H, He T, Chang JS, Liu P, Lee DJ. Nitrogen removal from low C/N wastewater in a novel Sharon&DSR (denitrifying sulfide removal) reactor. BIORESOURCE TECHNOLOGY 2022; 362:127789. [PMID: 35985461 DOI: 10.1016/j.biortech.2022.127789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Denitrification reactions commonly remove nitrate and other reactive nitrogen (Nr) from wastewater. The C/N ratio indicates the sufficiency of organic carbons to drive heterotrophic denitrification; a low C/N ratio frequently leads to poor denitrification performance in wastewater treatment. This study proposed and tested a novel Sharon&DSR (denitrifying sulfide removal) process, with nitrite generated by the Sharon reactions and sulfide from sulfur-reducing reactions for promoting the following nitrite-based denitrification and denitrifying sulfide removal (DSR) process. The present reactor can remove nitrate at an efficiency of 97.7 %-93.5 % at an influent C/N ratio of 0.646-0.737 over a 96-d continuous-flow test. The microbial community study reveals the functional strains corresponding to individual groups of critical reactions. The stoichiometry analysis reveals the potential to apply the nitrite-based DSR process for Nr removal from ultra-low C/N (<0.64) wastewaters, experimentally demonstrated in the present study with a C/N ratio of 0.16-0.39.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Tongyuan He
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Peng Liu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
21
|
Wu Q, Chen D, Zhou W, Zhang X, Ao J. Long-term fertilization has different impacts on bacterial communities and phosphorus forms in sugarcane rhizosphere and bulk soils under low-P stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1019042. [PMID: 36212295 PMCID: PMC9539793 DOI: 10.3389/fpls.2022.1019042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The application of phosphorus (P) fertilizer effectively improves soil P availability, but it also affects soil microbial communities. However, the responses of soil bacterial communities and P forms to long-term P fertilization, and the relationships of bacterial communities with soil P forms remain unclear in P-deficient field. In this study, the impacts of different P fertilization treatments (chemical nitrogen and potassium (NK); chemical N, P and K (NPK); and NPK plus straw (NPKS)) on the bacterial communities and P forms in sugarcane rhizosphere (RS) and bulk soils (BS) were evaluated. Compared with the NK, the NPK and NPKS treatments significantly (P<0.05) increased the yield and quality characters of sugarcane, especially under NPKS. Additionally, P fertilization significantly increased the available P (AP), soluble inorganic P (Pi) and retained Pi in both the RS and BS, but they significantly increased the Chao1 and Shannon index only in the BS; and almost all these indices were significantly higher in the RS than in the BS. The bacterial community compositions were also significantly altered by P fertilization, with major changes in the RS and minor changes in the BS. The bacterial genera that were enriched in the sugarcane rhizosphere mainly included Bradyrhizobium, Rhodanobacter, Pseudolabrys, Conexibacter, and Burkholderia-Caballeronia-Paraburkholderia, some of which potentially promote the plant growth. Compared to NK, functional groups involved in the cycling of carbon, N, and sulfur significantly increased or decreased with fertilizer P application. Moreover, the relative abundances of many bacterial species were significantly correlated with the soil P forms. In conclusion, long-term P fertilization altered bacterial structure and functions in P-deficient sugarcane soil, which could help the soil P cycling and suppling. The results provide useful information to stimulate the power of the microbes by fertilization measures to improve soil nutrients and crop production.
Collapse
|
22
|
Chen B, Zhou S, Zhang N, Liang H, Sun L, Zhao X, Guo J, Lu H. Micro and nano bubbles promoted biofilm formation with strengthen of COD and TN removal synchronously in a blackened and odorous water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155578. [PMID: 35525370 DOI: 10.1016/j.scitotenv.2022.155578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Blackening and odorization of rivers (BOR) distributed widely in urban cities with high density of human beings. Amounts of pollution control methods have been developed for treatment of these contaminated rivers. Among them, artificial aeration is an effective method for BOR treatment. As a novel developed aeration approach, Micro and nano bubbles (MNBs) takes advances of high specific surface area, high oxygen transfer, long retain time and interface effect. Thus, MNBs aeration was used in an anoxic-oxic (AO) process with traditional activated sludge methods to treat water of BOR in this study. A special designed reactor was made to allow both MNBs and macro bubbles aeration of which mode could be altered easily. The results revealed that MNBs improved removal of COD, NH4+-N and TN distinctly in water of BOR. MNBs provided high dissolved oxygen and promoted the transformation from floc sludge to biofilm. Significant difference between the microbial community of MNBs and macro bubbles sludges was revealed by 16S rRNA amplicon sequencing. Function predictions of MNBs and macro bubbles sludges indicated MNBs enhanced nitrification and aerobic ammonia oxidation without negative impact on denitrification. Moreover, biofilm formed bacteria were enriched by MNBs aeration. This study demonstrated MNBs would be a great potential for the combination of activated sludge and biofilm to treat BOR.
Collapse
Affiliation(s)
- Ben Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ning Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiyu Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Zhao
- Zhongshan Public Utilities Group Co., Ltd., Zhongshan 528403, China
| | - Jingyi Guo
- Zhongshan Public Utilities Group Co., Ltd., Zhongshan 528403, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
23
|
Chen S, Qin R, Yang D, Liu W, Yang S. A Comparison of Rhizospheric and Endophytic Bacteria in Early and Late-Maturing Pumpkin Varieties. Microorganisms 2022; 10:microorganisms10081667. [PMID: 36014084 PMCID: PMC9415385 DOI: 10.3390/microorganisms10081667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
To determine whether rhizospheric and endophytic bacteria contribute to the ripening of pumpkins, an analysis was conducted on rhizospheric and endophytic bacteria and soil fertility in the rhizospheres of early and late-maturing pumpkin varieties. The results showed higher nitrogen and abscisic acid content and more gibberellin-producing bacteria in the rhizospheres or endophytes of the early maturing varieties. Greater soil fertility and more abundant rhizospheric and endophytic bacterial genera with a greater metabolic function might be important mechanisms for early ripening. Rhodococcus, Bacillus, and Arthrobacter can be considered the functional bacteria in promoting pumpkin maturation. On the other hand, Ralstonia could be the functional bacterium that delays ripening.
Collapse
Affiliation(s)
- Siyu Chen
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning 530004, China
| | - Renliu Qin
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning 530004, China
| | - Da Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning 530004, China
| | - Wenjun Liu
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
24
|
Khan A, Jiang H, Bu J, Adnan M, Gillani SW, Hussain MA, Zhang M. Untangling the Rhizosphere Bacterial Community Composition and Response of Soil Physiochemical Properties to Different Nitrogen Applications in Sugarcane Field. Front Microbiol 2022; 13:856078. [PMID: 35369493 PMCID: PMC8964298 DOI: 10.3389/fmicb.2022.856078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Minimizing the use of chemical fertilizers and investigating an appropriate ecofriendly level of nitrogen fertilizer is the key to sustainable agriculture. Sugarcane is the main cash crop of China, especially in the Guangxi region. Information regarding the effect of different nitrogen levels on sugarcane rhizosphere microbiota is still limited. In this study, we evaluated the effect of four different levels of nitrogen fertilizers on rhizosphere bacterial composition using high throughput sequencing, along with soil physiochemical properties, sugarcane agronomic and yield performance. The four treatment combinations were CK (no fertilizers), L (Low, 100 kg ha–1), M (Medium, 150 kg ha–1), and H (High, 200 kg ha–1). The results showed that M nitrogen application significantly altered the rhizosphere bacterial community, soil properties, and sugarcane yield. The richness and evenness of the bacterial community were higher in M treatment than CK. In M treatment important bacterial phyla Acidobacteria and Proteobacteria increased by 47 and 71%, respectively; and at genus level, Acidothermus and Bradyrhizobium increased by 77.2 and 30.3%, respectively, compared to CK. Principal component analysis (PCA) and cluster analysis further confirmed the level of differences among the treatments. The PCA analysis explained 80% of the total variation among the treatments. Spearmen correlation heatmap showed that environmental factors such as pH, AP (available phosphorous), AK (available potassium), and SCAT (soil catalase) were the key factors impacting sugarcane rhizosphere microbiome composition. The H and L nitrogen application alter the bacterial community and sugarcane performance but the M nitrogen application appears to be ecofriendly, productive, and an appropriate nitrogen application rate that could be further used in the Guangxi region.
Collapse
Affiliation(s)
- Abdullah Khan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Hongtao Jiang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Junyao Bu
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Muhammad Adnan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Syeda Wajeeha Gillani
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | | | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|