1
|
dos Reis JBA, de Oliveira TMR, Sartori da Silva MRS, Lopes FAC, de Paula AM, Pontes NDC, do Vale HMM. Different Land Use Systems in the Brazilian Cerrado and Their Effects on Soil Bacterial Communities. Microorganisms 2025; 13:804. [PMID: 40284640 PMCID: PMC12029540 DOI: 10.3390/microorganisms13040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
The effect of agricultural practices on soil bacterial communities is not constant and depends a lot on the climatic context, changes in the soil characteristics, land use, and agricultural strategy. Thus, knowledge about how different land use systems in the Cerrado influence the diversity and taxonomic structure of microbial communities under the same soil type remains limited. In this context, the objective of this work was to analyze and compare the bacterial communities of Cerrado soil under two different land use systems (cover crop and potato cultivation) and in a neighboring native Cerrado area. For this, we used high-throughput amplicon sequencing of 16S rRNA genes (metabarcoding) to characterize the bacterial community at different taxonomic levels in a native Cerrado area, in a potato crop area, and in an area with cover crops. Our data indicated significant impacts on soil physicochemical properties and enzymatic activity, which directly reflect the dynamics of bacterial communities. The three bacterial phyla with the highest relative abundance in the three areas were Proteobacteria, Actinobacteriota, and Acidobacteriota. At the taxonomic class level, small variations were observed among areas, while at the amplicon sequence variant (ASV) level, these variations were more pronounced. The alpha diversity indices showed that the bacterial communities among the areas are rich and diverse. Bray-Curtis and Jaccard distance-based PCoA demonstrated an overlap of bacterial communities present in the cover crop area with the native Cerrado area and separation from the potato cultivation area. The in silico prediction demonstrated that the native Cerrado area presented the highest values of functional diversity of the soil bacterial community compared to the others. Thus, our results provide a holistic view of how different land use systems in the Cerrado can influence the taxonomic and functional diversity of soil bacterial communities.
Collapse
Affiliation(s)
| | - Thayssa Monize Rosa de Oliveira
- Centro de Excelência em Bioinsumos (CEBIO), Instituto Federal Goiano, Campus Morrinhos, Morrinhos 75650-000, GO, Brazil; (T.M.R.d.O.); (N.d.C.P.)
| | | | | | | | - Nadson de Carvalho Pontes
- Centro de Excelência em Bioinsumos (CEBIO), Instituto Federal Goiano, Campus Morrinhos, Morrinhos 75650-000, GO, Brazil; (T.M.R.d.O.); (N.d.C.P.)
| | - Helson Mario Martins do Vale
- University of Brasilia, Institute of Biological Sciences, Brasília 70910-900, DF, Brazil; (J.B.A.d.R.); (M.R.S.S.d.S.)
| |
Collapse
|
2
|
Yan Q, Li Y, Wang T, Chen Y, Zhao J, Jiang J, Lu H, Jia H. Elucidating the impact of mulching film on organic carbon mineralization from the perspective of aggregate level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178198. [PMID: 39721541 DOI: 10.1016/j.scitotenv.2024.178198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Plastic films mulching, a management strategy designed to boost agricultural productivity, significantly impacts soil fertility and the turnover of soil organic carbon (SOC). Aggregates in the soil play a crucial role in this SOC cycling. Yet, the effect of mulching on the changes in organic carbon components and the mineralization at the aggregate scale is still not well understood. We conducted a three-year field experiment to examine the effects of various mulching types (CK: non-mulching, BPM: black polyethylene mulching, CPM: colorless polyethylene mulching, BDM: black degradable mulching, CDM: colorless degradable mulching) on the transformation and mineralization of organic carbon within soil aggregates. Generally, after three years of continuous mulching, compared to CK, soil aggregate stability significantly improved, the content of SOC and HFOC increased by 8-14 % and 12-24 % respectively, while the content of LFOC decreased by 3-51 %. The response mechanisms of organic carbon mineralization in different size aggregates to mulching are different. The change in carbon components is the main factor stimulating the mineralization of organic carbon in >0.25 mm aggregates; microbial diversity is the dominant factor inhibiting the mineralization of organic carbon in 0.053-0.25 mm aggregates; while <0.053 mm aggregates are not significantly affected by mulching. Our findings suggest that plastic mulching reduce the mineralization of SOC and enhances its sequestration by modulating the composition of organic carbon fractions, extracellular enzymes, and microorganisms within soil aggregates of different sizes. This study provides a valuable reference for gaining further insights into the turnover dynamics of soil organic carbon at the aggregate scale.
Collapse
Affiliation(s)
- Qing Yan
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yanpei Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Tongtong Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yi Chen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinze Zhao
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jiarui Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Haodong Lu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
3
|
Men J, Liu H, Jin T, Cai G, Cao H, Cernava T, Jin D. The color of biodegradable mulch films is associated with differences in peanut yield and bacterial communities. ENVIRONMENTAL RESEARCH 2024; 248:118342. [PMID: 38295980 DOI: 10.1016/j.envres.2024.118342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Biodegradable mulch films (BDMs) are increasingly used in agricultural production as desirable alternatives to the current widespread use of polyethylene (PE) mulch films in China. However, potential effects of different colors of BDMs on field crop production and microbiomes remain unexplored. Here, the differences in bacterial communities of peanut rhizosphere soil (RS) and bulk soil (BS) under non-mulching (CK), PE, and three different colors of BDMs were studied. The results indicated that all treatments could increase the soil temperature, which positively affected the growth of the peanut plants. Moreover, mulching affected the bacterial community structure in RS and BS compared to CK. Furthermore, certain BDM treatments significantly enriched N-fixing bacteria (Bradyrhizobium and Mesorhizobium) and functional groups, increased the closeness of bacterial networks, and harbored more beneficial bacteria as keystone taxa in the RS. This in turn facilitated the growth and development of the peanut plants under field conditions. Our study provides new insights into the micro-ecological effects of mulch films, which can be affected by both the mulch type and color. The observed effects are likely caused by temperature and prevalence of specific microbial functions under the employed films and could guide the development of optimized mulching materials.
Collapse
Affiliation(s)
- Jianan Men
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Tuo Jin
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Guangxing Cai
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Hongzhe Cao
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
4
|
Zhang M, Wang K, Shi C, Li X, Qiu Z, Shi F. Responses of Fungal Assembly and Co-Occurrence Network of Rhizosphere Soil to Amaranthus palmeri Invasion in Northern China. J Fungi (Basel) 2023; 9:509. [PMID: 37233220 PMCID: PMC10219470 DOI: 10.3390/jof9050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
The interaction between invasive plants and soil microbial communities is critical for plant establishment. However, little is known about the assembly and co-occurrence patterns of fungal communities in the rhizosphere soil of Amaranthus palmeri. The soil fungal communities and co-occurrence networks were investigated in 22 invaded patches and 22 native patches using high-throughput Illumina sequencing. Despite having little effect on alpha diversity, plant invasion significantly altered the composition of the soil fungal community (ANOSIM, p < 0.05). Fungal taxa associated with plant invasion were identified using linear discriminant analysis effect size (LEfSe). In the rhizosphere soil of A. palmeri, Basidiomycota was significantly enriched, while Ascomycota and Glomeromycota were significantly reduced when compared to native plants. At the genus level, the invasion of A. palmeri dramatically increased the abundance of beneficial fungi and potential antagonists such as Dioszegia, Tilletiopsis, Colacogloea, and Chaetomium, while it significantly decreased the abundance of pathogenic fungi such as Alternaria and Phaeosphaeria. Plant invasion reduced the average degree and average path length, and increased the modularity value, resulting in a less complex but more effective and stable network. Our findings improved the knowledge of the soil fungal communities, network co-occurrence patterns, and keystone taxa in A. palmeri-invaded ecosystems.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Kefan Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China;
| | - Xueying Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Zhenlu Qiu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Fuchen Shi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| |
Collapse
|
5
|
Wang A, Chang Q, Chen C, Zhong X, Yuan K, Yang M, Wu W. Degradation characteristics of biodegradable film and its effects on soil nutrients in tillage layer, growth and development of taro and yield formation. AMB Express 2022; 12:81. [PMID: 35732981 PMCID: PMC9218028 DOI: 10.1186/s13568-022-01420-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
This study investigated the degradation characteristics of different biodegradable film and its effects on soil nutrients in tillage layer, growth and development of taro and yield formation. Field experiment with biodegradable films, including poly-(butylene adipate-co-butylene terephthalate) PBAT, (poly-carbon dioxide) PCO2, (poly propylene carbonate) PPC, as well as common mulch film (CK1) and uncovered mulch film (CK2) were conducted on Longxiang taro in 2020 and 2021 respectively. The degradation rate of the three biodegradable films was PBAT > PPC > PCO2. Compared with CK1, the alkali-hydrolyzed N of PBAT at the growth stage and fruiting stage significantly increased in 2020 and 2021, respectively (both, P < 0.05). The average content of available P of PPC at seedling stage was higher than that in PCO2, and CK1 was significantly decreased compared with that in CK2 (all, P < 0.05). The content of soil available K and organic matter in different growth stages of taro in all film mulching treatments were decreased in comparison to CK2. Moreover, compared with CK2, PCO2 biodegradable film significantly increased plant height at seedling and growth stage, stem diameter at growth stage, and leaf area index at fruiting stage (all, P < 0.05). Similarly, the yield of mother and filial bulbs of PPC, PCO2 and PBAT were significantly higher than those of CK2 in 2020 and 2021, respectively (all, P < 0.05). However, no significant differences were found in starch, polysaccharide and protein contents among different treatments. The three biodegradable films, especially PCO2, can significantly affect soil nutrient content, promote plant growth and improve taro yield.
Collapse
Affiliation(s)
- An Wang
- Special Grain Classics Laboratory, Taizhou Institute of Agricultural Science, Jiangsu Academy of Agricultural Sciences, 56 Autumn Snow Lake Avenue, Taizhou, 225300, China
| | - Qingtao Chang
- Special Grain Classics Laboratory, Taizhou Institute of Agricultural Science, Jiangsu Academy of Agricultural Sciences, 56 Autumn Snow Lake Avenue, Taizhou, 225300, China
| | - Chunsheng Chen
- Department of Vegetable, Xinghua Modern Agriculture Development Service Center, Taizhou, 225700, China
| | - Xiaoquan Zhong
- Department of Vegetable, Xinghua Modern Agriculture Development Service Center, Taizhou, 225700, China
| | - Kexiang Yuan
- Department of Vegetable, Xinghua Modern Agriculture Development Service Center, Taizhou, 225700, China
| | - Meihua Yang
- Xinghua Meihua Vegetable Planting Cooperative, Taizhou, 225700, China
| | - Wei Wu
- Special Grain Classics Laboratory, Taizhou Institute of Agricultural Science, Jiangsu Academy of Agricultural Sciences, 56 Autumn Snow Lake Avenue, Taizhou, 225300, China.
| |
Collapse
|