1
|
Hindieh P, Yaghi J, Assaf JC, Chokr A, Atoui A, Louka N, Khoury AE. Unlocking the potential of lactic acid bacteria mature biofilm extracts as antibiofilm agents. AMB Express 2024; 14:112. [PMID: 39361085 PMCID: PMC11450114 DOI: 10.1186/s13568-024-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The continuous growth of biofilm infections and their resilience to conventional cleaning methods and antimicrobial agents pose a worldwide challenge across diverse sectors. This persistent medical, industrial, and environmental issue contributes to treatment challenges and chronic diseases. Lactic acid bacteria have garnered global attention for their substantial antimicrobial effects against pathogens and established beneficial roles. Notably, their biofilms are also predicted to show a promising control strategy against pathogenic biofilm formation. The prevalence of biofilm-related problems underscores the need for extensive research and innovative solutions to tackle this global challenge. This novel study investigates the effect of different extracts (external, internal, and mixed extracts) obtained from Lactobacillus rhamnosus GG biofilm on pathogenic-formed biofilms. Subsequently, external extracts presented an important eradication effectiveness. Furthermore, a 6-fold concentration of these extracts led to eradication percentages of 57%, 67%, and 76% for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa biofilms, respectively, and around 99.9% bactericidal effect of biofilm cells was observed for the three strains. The results of this research could mark a significant breakthrough in the field of anti-biofilm and antimicrobial strategies. Further studies and molecular research will be necessary to detect the molecules secreted by the biofilm, and their mechanisms of action engaged in new anti-biofilm strategies.
Collapse
Affiliation(s)
- Pamela Hindieh
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
- Ecole Doctorale "Sciences et Santé", Université Saint-Joseph de Beyrouth, Campus des Sciences Médicales et Infirmières, Riad El Solh, Beirut, Lebanon
| | - Joseph Yaghi
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon.
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Ali Atoui
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| |
Collapse
|
2
|
Lu Y, Liu H, Shang J, Mao Y, Meng L, Gao C. Effects of Weizhuan'an on rats with precancerous lesions of gastric cancer based on regulating gastric mucosal microflora and inflammatory factors. Front Pharmacol 2024; 15:1446244. [PMID: 39221149 PMCID: PMC11361960 DOI: 10.3389/fphar.2024.1446244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Objectives This study aimed to observe the intervention of Weizhuan'an prescription on rats with precancerous lesions of gastric cancer (PLGC) as well as its regulation on gastric mucosal microflora and inflammatory factors and explore the pharmacodynamic mechanisms of Weizhuan'an Formula. Methods The rats were classified into the blank control group (BCG); low-, medium-, and high-dose groups of Weizhuan'an prescription (LDG, MDG, and HDG, respectively); and natural recovery group (NRG) at random. The rats in the traditional Chinese medicine (TCM) group were given corresponding doses of Weizhuan'an formula, while the rats in the NRG and BCG were given an equivalent volume of distilled water for 12 weeks. After that, gastric mucosa samples of rats were collected to observe the general and pathological changes in the gastric mucosa; the changes in gastric mucosal microflora were detected by 16S rDNA amplicon sequencing, and the inflammatory factors were analyzed by cytokine antibody microarray and Western blotting. Results The results suggest that compared with the BCG, the pathology of gastric mucosa and gastric mucosal microflora and inflammatory factors in rats with PLGC have changed significantly, while Weizhuan'an formula effectively improved them, especially in the MDG and HDG (p < 0.05). Compared with the NRG, the abundance of probiotics such as Lactobacillus and Veillonella were increased, while the abundance of pathogens such as Proteobacteria and Pseudomonas was decreased (p < 0.05, p < 0.01), and the relative contents of IL-2, IL-4, IL-13, and MCP-1 in gastric mucosa were decreased (p < 0.05). Moreover, it can upregulate the DNA-binding transcriptional regulator, ABC type multidrug transport system, and related enzymes and affect the signaling pathways such as viral protein interaction with cytokine and cytokine receptor and T cell receptor signaling pathway significantly (p < 0.05, p < 0.01), which can promote drug absorption and utilization and repair damaged gastric mucosa. Conclusion The study confirmed that Weizhuan'an prescription can treat rats with PLGC by regulating gastric mucosal microflora and inflammatory factors.
Collapse
Affiliation(s)
- Yuting Lu
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huayi Liu
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Jiaju Shang
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Changbai Gao
- Department of Nephropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Peng H, Chen P, Guo R, Zhou Z, Chen Y, Xu P, Su H, Xiao Y, Jiang H. Regulation of the growth performance and the gastrointestinal microbiota community by the addition of defective pear fermentation to feed of small-tailed Han sheep. Front Microbiol 2024; 15:1358033. [PMID: 38638905 PMCID: PMC11024308 DOI: 10.3389/fmicb.2024.1358033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
This study investigated the effects of defective pear fermentation (DPF) diets on growth performance and gastrointestinal microbial communities in 60 healthy male small-tailed Han sheep, aged 90 days. The sheep were randomly divided into four groups, each consisting of three replicates with five sheep per replicate. Initially, all groups received a basal diet for seven days during the adaptation stage. Subsequently, for 60 days, group C (control) was fed a basal diet, group X received a basal diet with 2% DPF, group Y had a basal diet with 4% DPF, and group Z was fed a basal diet with 6% DPF. The results indicated that group Y experienced a significant increase in average daily gain (ADG) and average daily feed intake (ADFI). The addition of DPF significantly elevated the levels of GSH-Px and notably reduced MDA content compared to group C. Analysis of gastrointestinal microbiota showed that groups receiving DPF had increased relative abundances of Lachnospiraceae_NK3A20_group, norank_f p-2534-18B5_gut_group, Acetitomaculum, Actinobacteriota, Bacteroidota and Ruminococcus_gauvreauii_group, and decreased abundances of Proteobacteria, Prevotella, Staphylococcus, and Psychrobacter compared to group C. Group X exhibited the highest relative abundance of Olsenella, while group Y showed a significant increase in unclassified_f Lachnospiraceae compared to the other groups. Bacterial function prediction indicated that pathways related to energy metabolism were more prevalent in group X and Y. This study preliminarily confirms the feasibility of using DPF as feed additives, providing a foundation for further research and evaluation of DPF's application in animal production.
Collapse
Affiliation(s)
- Hongxin Peng
- Key Laboratory of Tarim University Husbandry Science and Technology, College of Animal Science and Technology, Tarim University, Alar, China
| | - Pinpin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Rui Guo
- Key Laboratory of Tarim University Husbandry Science and Technology, College of Animal Science and Technology, Tarim University, Alar, China
| | - Zheng Zhou
- Key Laboratory of Tarim University Husbandry Science and Technology, College of Animal Science and Technology, Tarim University, Alar, China
| | - Yafei Chen
- Key Laboratory of Tarim University Husbandry Science and Technology, College of Animal Science and Technology, Tarim University, Alar, China
| | - Ping Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Huawei Su
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuncai Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Hui Jiang
- Key Laboratory of Tarim University Husbandry Science and Technology, College of Animal Science and Technology, Tarim University, Alar, China
| |
Collapse
|
4
|
Frioux C, Ansorge R, Özkurt E, Ghassemi Nedjad C, Fritscher J, Quince C, Waszak SM, Hildebrand F. Enterosignatures define common bacterial guilds in the human gut microbiome. Cell Host Microbe 2023; 31:1111-1125.e6. [PMID: 37339626 DOI: 10.1016/j.chom.2023.05.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023]
Abstract
The human gut microbiome composition is generally in a stable dynamic equilibrium, but it can deteriorate into dysbiotic states detrimental to host health. To disentangle the inherent complexity and capture the ecological spectrum of microbiome variability, we used 5,230 gut metagenomes to characterize signatures of bacteria commonly co-occurring, termed enterosignatures (ESs). We find five generalizable ESs dominated by either Bacteroides, Firmicutes, Prevotella, Bifidobacterium, or Escherichia. This model confirms key ecological characteristics known from previous enterotype concepts, while enabling the detection of gradual shifts in community structures. Temporal analysis implies that the Bacteroides-associated ES is "core" in the resilience of westernized gut microbiomes, while combinations with other ESs often complement the functional spectrum. The model reliably detects atypical gut microbiomes correlated with adverse host health conditions and/or the presence of pathobionts. ESs provide an interpretable and generic model that enables an intuitive characterization of gut microbiome composition in health and disease.
Collapse
Affiliation(s)
- Clémence Frioux
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK; Inria, University of Bordeaux, INRAE, 33400 Talence, France.
| | - Rebecca Ansorge
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK
| | - Ezgi Özkurt
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK
| | | | - Joachim Fritscher
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK
| | - Christopher Quince
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo 0318, Norway; Department of Neurology, University of California, San Francisco, San Francisco, CA 94148, USA; Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Falk Hildebrand
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK.
| |
Collapse
|
5
|
Kepp O, Zitvogel L, Kroemer G. Prevention and treatment of cancers by tumor antigen-expressing Staphylococcus epidermidis. Oncoimmunology 2023; 12:2212547. [PMID: 37205984 PMCID: PMC10190176 DOI: 10.1080/2162402x.2023.2212547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
In a recent paper in Science, Chen et al. reported the genetic engineering of S. epidermidis expressing tumor cross-reactive antigens that trigger T cell responses and exhibit anticancer effects after topical administration. Here we discuss direct local effects and indirect systemic effects of exposure to engineered S. epidermidis strains.
Collapse
Affiliation(s)
- Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- Equipe labellisée par la Ligue contre le Cancer, INSERM U1015, Villejuif, France
- Department of Biology, Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|