1
|
Pothiawala A, Sahbazoglu BE, Ang BK, Matthias N, Pei G, Yan Q, Davis BR, Huard J, Zhao Z, Nakayama N. GDF5+ chondroprogenitors derived from human pluripotent stem cells preferentially form permanent chondrocytes. Development 2022; 149:dev196220. [PMID: 35451016 PMCID: PMC9245189 DOI: 10.1242/dev.196220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/07/2022] [Indexed: 12/02/2023]
Abstract
It has been established in the mouse model that during embryogenesis joint cartilage is generated from a specialized progenitor cell type, distinct from that responsible for the formation of growth plate cartilage. We recently found that mesodermal progeny of human pluripotent stem cells gave rise to two types of chondrogenic mesenchymal cells in culture: SOX9+ and GDF5+ cells. The fast-growing SOX9+ cells formed in vitro cartilage that expressed chondrocyte hypertrophy markers and readily underwent mineralization after ectopic transplantation. In contrast, the slowly growing GDF5+ cells derived from SOX9+ cells formed cartilage that tended to express low to undetectable levels of chondrocyte hypertrophy markers, but expressed PRG4, a marker of embryonic articular chondrocytes. The GDF5+-derived cartilage remained largely unmineralized in vivo. Interestingly, chondrocytes derived from the GDF5+ cells seemed to elicit these activities via non-cell-autonomous mechanisms. Genome-wide transcriptomic analyses suggested that GDF5+ cells might contain a teno/ligamento-genic potential, whereas SOX9+ cells resembled neural crest-like progeny-derived chondroprogenitors. Thus, human pluripotent stem cell-derived GDF5+ cells specified to generate permanent-like cartilage seem to emerge coincidentally with the commitment of the SOX9+ progeny to the tendon/ligament lineage.
Collapse
Affiliation(s)
- Azim Pothiawala
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Berke E. Sahbazoglu
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bryan K. Ang
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nadine Matthias
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qing Yan
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian R. Davis
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Johnny Huard
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Naoki Nakayama
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
2
|
Liang C, Qiao G, Liu Y, Tian L, Hui N, Li J, Ma Y, Li H, Zhao Q, Cao W, Liu H, Ren X. Overview of all-trans-retinoic acid (ATRA) and its analogues: Structures, activities, and mechanisms in acute promyelocytic leukaemia. Eur J Med Chem 2021; 220:113451. [PMID: 33895500 DOI: 10.1016/j.ejmech.2021.113451] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 02/04/2023]
Abstract
All-trans-retinoic acid (ATRA) is effective for preventing cancer and treating skin diseases and acute promyelocytic leukaemia (APL). These pharmacological effects of ATRA are mainly mediated by retinoid X receptors (RXRs) and retinoic acid receptors (RARs). This article provides a comprehensive overview of the clinical progress on and the molecular mechanisms of ATRA in the treatment of APL. ATRA can promote the transcriptional activation of differentiation-related genes and regulate autophagy by inhibiting mTOR, which results in anti-APL effects. In detail, the structures, pharmacological effects, and clinical studies of 68 types of ATRA analogues are described. These compounds have excellent antitumour therapeutic potential and could be used as lead compounds for further development and research.
Collapse
Affiliation(s)
- Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Guaiping Qiao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Juan Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuling Ma
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qianqian Zhao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, Guangdong, China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, Guangdong, China.
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
3
|
Kawata M, Mori D, Kanke K, Hojo H, Ohba S, Chung UI, Yano F, Masaki H, Otsu M, Nakauchi H, Tanaka S, Saito T. Simple and Robust Differentiation of Human Pluripotent Stem Cells toward Chondrocytes by Two Small-Molecule Compounds. Stem Cell Reports 2019; 13:530-544. [PMID: 31402337 PMCID: PMC6739881 DOI: 10.1016/j.stemcr.2019.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023] Open
Abstract
A simple induction protocol to differentiate chondrocytes from pluripotent stem cells (PSCs) using small-molecule compounds is beneficial for cartilage regenerative medicine and mechanistic studies of chondrogenesis. Here, we demonstrate that chondrocytes are robustly induced from human PSCs by simple combination of two compounds, CHIR99021, a glycogen synthase kinase 3 inhibitor, and TTNPB, a retinoic acid receptor (RAR) agonist, under serum- and feeder-free conditions within 5-9 days. An excellent differentiation efficiency and potential to form hyaline cartilaginous tissues in vivo were demonstrated. Comprehensive gene expression and open chromatin analyses at each protocol stage revealed step-by-step differentiation toward chondrocytes. Genome-wide analysis of RAR and β-catenin association with DNA showed that retinoic acid and Wnt/β-catenin signaling collaboratively regulated the key marker genes at each differentiation stage. This method provides a promising cell source for regenerative medicine and, as an in vitro model, may facilitate elucidation of the molecular mechanisms underlying chondrocyte differentiation.
Collapse
Affiliation(s)
- Manabu Kawata
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Mori
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Kanke
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Masaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Otsu
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Saito
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|