1
|
Nielsen CG, Grigonyte-Daraskeviciene M, Olsen MT, Møller MH, Nørgaard K, Perner A, Mårtensson J, Pedersen-Bjergaard U, Kristensen PL, Bestle MH. Accuracy of continuous glucose monitoring systems in intensive care unit patients: a scoping review. Intensive Care Med 2024; 50:2005-2018. [PMID: 39417874 DOI: 10.1007/s00134-024-07663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/14/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Glycemic control poses a challenge in intensive care unit (ICU) patients and dysglycemia is associated with poor outcomes. Continuous glucose monitoring (CGM) has been successfully implemented in the type 1 diabetes out-patient setting and renewed interest has been directed into the transition of CGM into the ICU. This scoping review aimed to provide an overview of CGM accuracy in ICU patients to inform future research and CGM implementation. METHODS We systematically searched PubMed and EMBASE between 5th of December 2023 and 21st of May 2024 and reported findings in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline for scoping reviews (PRISMA-ScR). We assessed studies reporting the accuracy of CGM in the ICU and report study characteristics and accuracy outcomes. RESULTS We identified 2133 studies, of which 96 were included. Most studies were observational (91.7%), conducted in adult patients (74%), in mixed ICUs (47.9%), from 2014 and onward, and assessed subcutaneous CGM systems (80%) using arterial blood samples as reference test (40.6%). Half of the studies (56.3%) mention the use of a prespecified reference test protocol. The mean absolute relative difference (MARD) ranged from 6.6 to 30.5% for all subcutaneous CGM studies. For newer factory calibrated CGM, MARD ranged from 9.7 to 20.6%. MARD for intravenous CGM was 5-14.2% and 6.4-13% for intraarterial CGM. CONCLUSIONS In this scoping review of CGM accuracy in the ICU, we found great diversity in accuracy reporting. Accuracy varied depending on CGM and comparator, and may be better for intravascular CGM and potentially lower during hypoglycemia.
Collapse
Affiliation(s)
- Christian G Nielsen
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark.
| | | | - Mikkel T Olsen
- Department of Endocrinology and Nephrology, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Morten H Møller
- Department of Intensive Care, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Nørgaard
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Clinical Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Anders Perner
- Department of Intensive Care, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johan Mårtensson
- Department of Physiology and Pharmacology, Section of Anesthesia and Intensive Care, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter L Kristensen
- Department of Endocrinology and Nephrology, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten H Bestle
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Bellido V, Freckman G, Pérez A, Galindo RJ. Accuracy and Potential Interferences of Continuous Glucose Monitoring Sensors in the Hospital. Endocr Pract 2023; 29:919-927. [PMID: 37369291 DOI: 10.1016/j.eprac.2023.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
For years, the standard of care for monitoring dysglycemia in hospitalized patients was capillary blood glucose (CBG) testing with point-of-care glucose meters. Recently, there has been a revolution in novel factory-calibrated continuous glucose monitoring (CGM) systems. Newer CGMs are smaller and less expensive, have improved accuracy and longer wear time, and do not require fingerstick CBG for calibration, resulting in increased utilization in ambulatory settings. Consequently, hospitals have noticed increased usability of CGMs among hospitalized patients and expect a progressive continued increase. During the COVID-19 pandemic, there was a critical need for innovative approaches to glycemic monitoring, with several pilot implementation projects using CGM in the intensive care unit and non-intensive care unit settings, further boosting the evidence in this area. Hence, recent guidelines have provided recommendations for the use of CGM in specific hospital scenarios and highlighted the potential of CGM to overcome CBG limitations for glucose monitoring in the inpatient setting. In this review, we provide the following: 1) an up-to-date review of the accuracy of the newer CGMs in hospitalized patients, 2) a discussion of standards for CGM accuracy metrics, 3) a contemporary overview of potential interferences that may cause inaccuracies or poor CGM performance, and 4) required steps for full regulatory approval of CGMs in the hospital and future research steps to advance the field forward.
Collapse
Affiliation(s)
- Virginia Bellido
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Guido Freckman
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| | - Antonio Pérez
- Servicio de Endocrinología y Nutrición. Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Universitat Autònoma de Barcelona. CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, España
| | - Rodolfo J Galindo
- University of Miami Miller School of Medicine, Division of Endocrinology, Diabetes and Metabolism, Miami, Florida.
| |
Collapse
|
3
|
Faulds ER, Dungan KM, McNett M. Implementation of Continuous Glucose Monitoring in Critical Care: A Scoping Review. Curr Diab Rep 2023; 23:69-87. [PMID: 37052790 PMCID: PMC10098233 DOI: 10.1007/s11892-023-01503-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to identify the implementation approaches, strategies, and outcomes for continuous glucose monitoring (CGM) in the intensive care unit (ICU). Medline and Web of Science databases were searched to report relevant literature published between September 12, 2016 and September 12, 2021. Implementation outcomes and strategies, defined by the Expert Recommendations for Implementing Change (ERIC) project, were extracted. RECENT FINDINGS Of the 324 titles reviewed, 16 articles were included in the review. While no studies were identified as implementation research, 14 of 16 identified implementation strategies that aligned with ERIC definitions. Included studies described a multi-disciplinary approach. Clinical outcomes included Mean Absolute Relative Difference (MARD), ranging from 7.5 to 15.3%, and 33-71% reduction in frequency of point-of-care (POC) blood glucose monitoring (BGM) using hybrid protocols. This scoping review provides valuable insight into the process of CGM implementation in the ICU. Continued research should include implementation outcomes to inform widespread utilization.
Collapse
Affiliation(s)
- Eileen R. Faulds
- The Ohio State University College of Nursing, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Kathleen M. Dungan
- Department of Internal Medicine, Division of Endocrinology, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Diabetes & Metabolism, Columbus, OH USA
| | - Molly McNett
- Implementation Science, Helene Fuld Health Trust National Institute for EBP, The Ohio State University College of Nursing, Columbus, OH USA
| |
Collapse
|
4
|
Faulds ER, Dungan KM, McNett M, Jones L, Poindexter N, Exline M, Pattison J, Pasquel FJ. Nursing Perspectives on the Use of Continuous Glucose Monitoring in the Intensive Care Unit. J Diabetes Sci Technol 2023; 17:649-655. [PMID: 37081831 PMCID: PMC10210097 DOI: 10.1177/19322968231170616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
BACKGROUND The COVID-19 pandemic necessitated rapid implementation of continuous glucose monitoring (CGM) in the intensive care unit (ICU). Although rarely reported, perceptions from nursing staff who used the systems are critical for successful implementation and future expanded use of CGM in the inpatient setting. METHODS A 22-item survey focused on CGM use was distributed to ICU nurses at two large academic medical centers in the United States in 2022. Both institutions initiated inpatient CGM in the spring of 2020 using the same CGM+point of care (POC) hybrid protocol. The survey employed a 1- to 5-point Likert scale regarding CGM sensor insertion, accuracy, acceptability, usability, training, and perceptions on workload. RESULTS Of the 71 surveys completed, 68 (96%) nurses reported they cared for an ICU patient on CGM and 53% reported they had independently performed CGM sensor insertion. The ICU nurses overwhelmingly reported that CGM was accurate, reduced their workload, provided safer patient care, and was preferred over POC glucose testing alone. Interestingly, nearly half of nurses (49%) reported that they considered trend arrows in dosing decisions although trends were not included in the CGM+POC hybrid protocol. Nurses received training through multiple modalities, with the majority (80%) of nurses reporting that CGM training was sufficient and prepared them for its use. CONCLUSION These results confirm nursing acceptance and preference for CGM use within a hybrid glucose monitoring protocol in the ICU setting. These data lay a blueprint for successful implementation and training strategies for future widespread use.
Collapse
Affiliation(s)
- Eileen R. Faulds
- The Ohio State University College of Nursing,
Columbus, OH, USA
- The Ohio State University Wexner Medical
Center, Columbus, OH, USA
| | - Kathleen M. Dungan
- The Ohio State University Wexner Medical
Center, Columbus, OH, USA
- Division of Endocrinology, Diabetes and
Metabolism, Department of Internal Medicine, The Ohio State University College of Medicine,
Columbus, OH, USA
| | - Molly McNett
- The Ohio State University College of Nursing,
Columbus, OH, USA
- Implementation Science, Helene Fuld Health
Trust National Institute for Evidence-based Practice in Nursing and Healthcare, The Ohio
State University College of Nursing, Columbus, OH, USA
| | - Laureen Jones
- Critical Care Nursing, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Norma Poindexter
- Division of Critical Care, Grady Health
System, Atlanta, GA, USA
| | - Matthew Exline
- Division of Critical Care Medicine, The Ohio
State University Medical Center, Columbus, OH, USA
| | | | - Francisco J. Pasquel
- Division of Endocrinology, Emory University
School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
van Heerden A, Kolozali Ş, Norris SA. Feasibility and acceptability of continuous at-home glucose monitoring during pregnancy: a mixed-methods pilot study. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2022. [DOI: 10.1080/16070658.2022.2114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Alastair van Heerden
- Centre for Community Based Research, Human Sciences Research Council, Pietermaritzburg, South Africa
- SAMRC Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Şefki Kolozali
- School of Computer Science and Electronic Engineering, University of Essex, Essex, United Kingom
| | - Shane A Norris
- SAMRC Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- School of Health and Human Development, University of Southampton, Southampton, United Kingom
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The use of continuous glucose monitoring (CGM) in the hospital setting is growing with more patients using these devices at home and when admitted to the hospital, especially during the COVID-19 pandemic. RECENT FINDINGS Historically, most evidence for CGM use in the inpatient setting was limited to small studies utilizing outdated CGM technology and analyzing accuracy of sensor measurements. Previous studies have shown reduced sensor accuracy during extreme hypo- or hyperglycemia, rapid fluctuations of glucose, compression of the sensor itself, and in those who are critically ill. Studies that are more recent have shown CGM to have adequate accuracy and may be effective in reducing hypoglycemia in hospitalized patients; some studies have also showed improvement in time in target glycemic range. Furthermore, CGM may reduce nursing workload, cost of inpatient care, and use of personal protective equipment and face-to-face patient care especially for patients during the COVID-19 pandemic. This review will describe the evidence for use of CGM in hospitalized critically ill or non-critically ill patients, address accuracy and safety considerations, and outline paths for future implementation.
Collapse
Affiliation(s)
- Elizabeth O. Buschur
- grid.261331.40000 0001 2285 7943Division of Endocrinology, Diabetes & Metabolism, The Ohio State University College of Medicine, 5th Floor McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210-1296 USA
| | - Eileen Faulds
- grid.261331.40000 0001 2285 7943Division of Endocrinology, Diabetes & Metabolism, The Ohio State University College of Medicine, 5th Floor McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210-1296 USA
- grid.261331.40000 0001 2285 7943The Ohio State University College of Nursing, Columbus, OH USA
| | - Kathleen Dungan
- grid.261331.40000 0001 2285 7943Division of Endocrinology, Diabetes & Metabolism, The Ohio State University College of Medicine, 5th Floor McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210-1296 USA
| |
Collapse
|
7
|
Naraba H, Goto T, Tokuda M, Sonoo T, Nakano H, Takahashi Y, Hashimoto H, Nakamura K. Accuracy and Stability of a Subcutaneous Flash Glucose Monitoring System in Critically Ill Patients. J Diabetes Sci Technol 2022; 16:1128-1135. [PMID: 34116614 PMCID: PMC9445337 DOI: 10.1177/19322968211017203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Flash glucose monitoring (FGM) systems can reduce glycemic variability and facilitate blood glucose management within the target range. However, in critically ill patients, only small (n < 30) studies have examined the accuracy of FGM and none have assessed the stability of FGM accuracy. We evaluated the accuracy and stability of FGM in critically ill patients. METHOD This was a single-center, retrospective observational study. We included a total of 116 critically ill patients who underwent FGM for glycemic control. The accuracy of FGM was assessed as follows using blood gas glucose values as a reference: (1) numerical accuracy using the mean absolute relative difference, (2) clinical accuracy using consensus error grid analysis, and (3) stability of accuracy assessing 14-day trends in consensus error grid distribution. RESULTS FGM sensors remained in situ for a median of 6 [4, 11] days. We compared 2014 pairs of measurements between the sensor and blood gas analysis. Glucose values from the sensor were consistently lower, with a mean absolute relative difference of 13.8% (±16.0%), than those from blood gas analysis. Consensus error grid analysis demonstrated 99.4% of the readings to be in a clinically acceptable accuracy zone. The accuracy of FGM was stable across the 14 days after device insertion. CONCLUSIONS FGM had acceptable reliability and accuracy to arterial blood gas analysis in critically ill patients. In addition, the accuracy of FGM persisted for at least 14 days. Our study promotes the potential usefulness of FGM for glycemic monitoring in critically ill patients.
Collapse
Affiliation(s)
- Hiromu Naraba
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Ibaraki, Japan
- TXP Medical Co., Ltd., University of Tokyo, Bunkyo, Tokyo, Japan
- Hiromu Naraba, MD, Department of Emergency and Critical Care Medicine, Hitachi General Hospital, 2-1-1 Jonan, Hitachi, Ibaraki, 317-0077, Japan.
| | - Tadahiro Goto
- TXP Medical Co., Ltd., University of Tokyo, Bunkyo, Tokyo, Japan
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Mitsuhiro Tokuda
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Ibaraki, Japan
| | - Tomohiro Sonoo
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Ibaraki, Japan
- TXP Medical Co., Ltd., University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hidehiko Nakano
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Ibaraki, Japan
| | - Yuji Takahashi
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Ibaraki, Japan
| | - Hideki Hashimoto
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Ibaraki, Japan
| | - Kensuke Nakamura
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Ibaraki, Japan
| |
Collapse
|
8
|
Fiedorova K, Augustynek M, Kubicek J, Kudrna P, Bibbo D. Review of present method of glucose from human blood and body fluids assessment. Biosens Bioelectron 2022; 211:114348. [DOI: 10.1016/j.bios.2022.114348] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
9
|
Ha EY, Chung SM, Park IR, Lee YY, Choi EY, Moon JS. Novel Glycemic Index Based on Continuous Glucose Monitoring to Predict Poor Clinical Outcomes in Critically Ill Patients: A Pilot Study. Front Endocrinol (Lausanne) 2022; 13:869451. [PMID: 35600594 PMCID: PMC9114696 DOI: 10.3389/fendo.2022.869451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
AIM We explored the prospective relationship between continuous glucose monitoring (CGM) metrics and clinical outcomes in patients admitted to the intensive care unit (ICU). MATERIALS AND METHODS We enrolled critically ill patients admitted to the medical ICU. Patients with an Acute Physiology and Chronic Health Evaluation (APACHE) score ≤9 or ICU stay ≤48 h were excluded. CGM was performed for five days, and standardized CGM metrics were analyzed. The duration of ICU stay and 28-day mortality rate were evaluated as outcomes. RESULTS A total of 36 patients were included in this study (age [range], 49-88 years; men, 55.6%). The average APACHE score was 25.4 ± 8.3; 33 (91.7%) patients required ventilator support, and 16 (44.4%) patients had diabetes. The duration of ICU stay showed a positive correlation with the average blood glucose level, glucose management indicator (GMI), time above range, and GMI minus (-) glycated hemoglobin (HbA1c). Eight (22.2%) patients died within 28 days, and their average blood glucose levels, GMI, and GMI-HbA1c were significantly higher than those of survivors (p<0.05). After adjustments for age, sex, presence of diabetes, APACHE score, and dose of steroid administered, the GMI-HbA1c was associated with the risk of longer ICU stay (coefficient=2.34, 95% CI 0.54-4.14, p=0.017) and higher 28-day mortality rate (HR=2.42, 95% CI 1.01-5.76, p=0.046). CONCLUSION The acute glycemic gap, assessed as GMI-HbA1c, is an independent risk factor for longer ICU stay and 28-day mortality rate. In the ICU setting, CGM of critically ill patients might be beneficial, irrespective of the presence of diabetes.
Collapse
Affiliation(s)
- Eun Yeong Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Seung Min Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Il Rae Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Yin Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Veterans Health Service Medical Center, Daegu, South Korea
| | - Eun Young Choi
- Division of Pulmonology and Allergy, Department of Internal Medicine, Respiratory Center, Yeungnam University Medical Center, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jun Sung Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
- *Correspondence: Jun Sung Moon,
| |
Collapse
|
10
|
See KC. Glycemic targets in critically ill adults: A mini-review. World J Diabetes 2021; 12:1719-1730. [PMID: 34754373 PMCID: PMC8554370 DOI: 10.4239/wjd.v12.i10.1719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/06/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Illness-induced hyperglycemia impairs neutrophil function, increases pro-inflammatory cytokines, inhibits fibrinolysis, and promotes cellular damage. In turn, these mechanisms lead to pneumonia and surgical site infections, prolonged mechanical ventilation, prolonged hospitalization, and increased mortality. For optimal glucose control, blood glucose measurements need to be done accurately, frequently, and promptly. When choosing glycemic targets, one should keep the glycemic variability < 4 mmol/L and avoid targeting a lower limit of blood glucose < 4.4 mmol/L. The upper limit of blood glucose should be set according to casemix and the quality of glucose control. A lower glycemic target range (i.e., blood glucose 4.5-7.8 mmol/L) would be favored for patients without diabetes mellitus, with traumatic brain injury, or who are at risk of surgical site infection. To avoid harm from hypoglycemia, strict adherence to glycemic control protocols and timely glucose measurements are required. In contrast, a higher glycemic target range (i.e., blood glucose 7.8-10 mmol/L) would be favored as a default choice for medical-surgical patients and patients with diabetes mellitus. These targets may be modified if technical advances for blood glucose measurement and control can be achieved.
Collapse
Affiliation(s)
- Kay Choong See
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|
11
|
Perez-Guzman MC, Shang T, Zhang JY, Jornsay D, Klonoff DC. Continuous Glucose Monitoring in the Hospital. Endocrinol Metab (Seoul) 2021; 36:240-255. [PMID: 33789033 PMCID: PMC8090458 DOI: 10.3803/enm.2021.201] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Continuous glucose monitors (CGMs) have suddenly become part of routine care in many hospitals. The coronavirus disease 2019 (COVID-19) pandemic has necessitated the use of new technologies and new processes to care for hospitalized patients, including diabetes patients. The use of CGMs to automatically and remotely supplement or replace assisted monitoring of blood glucose by bedside nurses can decrease: the amount of necessary nursing exposure to COVID-19 patients with diabetes; the amount of time required for obtaining blood glucose measurements, and the amount of personal protective equipment necessary for interacting with patients during the blood glucose testing. The United States Food and Drug Administration (FDA) is now exercising enforcement discretion and not objecting to certain factory-calibrated CGMs being used in a hospital setting, both to facilitate patient care and to obtain performance data that can be used for future regulatory submissions. CGMs can be used in the hospital to decrease the frequency of fingerstick point of care capillary blood glucose testing, decrease hyperglycemic episodes, and decrease hypoglycemic episodes. Most of the research on CGMs in the hospital has focused on their accuracy and only recently outcomes data has been reported. A hospital CGM program requires cooperation of physicians, bedside nurses, diabetes educators, and hospital administrators to appropriately select and manage patients. Processes for collecting, reviewing, storing, and responding to CGM data must be established for such a program to be successful. CGM technology is advancing and we expect that CGMs will be increasingly used in the hospital for patients with diabetes.
Collapse
Affiliation(s)
- M. Citlalli Perez-Guzman
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA,
USA
| | - Trisha Shang
- Diabetes Technology Society, Burlingame, CA,
USA
| | | | - Donna Jornsay
- Diabetes Program, Mills-Peninsula Medical Center, Burlingame, CA,
USA
| | - David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA,
USA
| |
Collapse
|
12
|
Blood glucose and subcutaneous continuous glucose monitoring in critically ill horses: A pilot study. PLoS One 2021; 16:e0247561. [PMID: 33626099 PMCID: PMC7904136 DOI: 10.1371/journal.pone.0247561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
This pilot prospective study reports the feasibility, management and cost of the use of a continuous glucose monitoring (CGM) system in critically ill adult horses and foals. We compared the glucose measurements obtained by the CGM device with blood glucose (BG) concentrations. Neonatal foals (0–2 weeks of age) and adult horses (> 1 year old) admitted in the period of March-May 2016 with clinical and laboratory parameters compatible with systemic inflammatory response syndrome (SIRS) were included. Glucose concentration was monitored every 4 hours on blood samples with a point-of-care (POC) glucometer and with a blood gas analyzer. A CGM system was also placed on six adults and four foals but recordings were successfully obtained only in four adults and one foal. Glucose concentrations corresponded fairly well between BG and CGM, however, there appeared to be a lag time for interstitial glucose levels. Fluctuations of glucose in the interstitial fluid did not always follow the same trend as BG. CGM identified peaks and drops that would have been missed with conventional glucose monitoring. The use of CGM system is feasible in ill horses and may provide clinically relevant information on glucose levels, but there are several challenges that need to be resolved for the system to gain more widespread usability.
Collapse
|
13
|
Mörgeli R, Wollersheim T, Engelhardt LJ, Grunow JJ, Lachmann G, Carbon NM, Koch S, Spies C, Weber-Carstens S. Critical illness myopathy precedes hyperglycaemia and high glucose variability. J Crit Care 2021; 63:32-39. [PMID: 33592497 DOI: 10.1016/j.jcrc.2021.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Critical Illness Myopathy (CIM) is a serious ICU complication, and dysglycaemia is widely regarded as a risk factor. Although glucose variability (GV) has been independently linked to ICU mortality, an association with CIM has not been investigated. This study examines the relationship between CIM and GV. METHODS Retrospective investigation including ICU patients with SOFA ≥8, mechanical ventilation, and CIM diagnostics. Glucose readings were collected every 6 h throughout the first week of treatment, when CIM is thought to develop. GV was measured using standard deviation (SD), coefficient of variability (CV), mean absolute glucose (MAG), mean amplitude of glycaemic excursions (MAGE), and mean of daily difference (MODD). RESULTS 74 patients were included, and 50 (67.6%) developed CIM. Time on glycaemic target (70-179 mg/dL), caloric and insulin intakes, mean, maximum and minimum blood glucose values were similar for all patients until the 5th day, after which CIM patients exhibited higher mean and maximum glucose levels. Significantly higher GV in CIM patients were observed on day 5 (SD, CV, MAG, MAGE), day 6 (MODD), and day 7 (SD, CV, MAG). CONCLUSIONS CIM patients developed transient increases in GV and hyperglycaemia only late in the first week, suggesting that myopathy precedes dysglycaemia.
Collapse
Affiliation(s)
- Rudolf Mörgeli
- Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | - Tobias Wollersheim
- Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, D-13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, D-10178 Berlin, Germany.
| | - Lilian Jo Engelhardt
- Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | - Julius J Grunow
- Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, D-13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, D-10178 Berlin, Germany.
| | - Gunnar Lachmann
- Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, D-13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, D-10178 Berlin, Germany.
| | - Niklas M Carbon
- Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | - Susanne Koch
- Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | - Claudia Spies
- Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | - Steffen Weber-Carstens
- Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, D-13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, D-10178 Berlin, Germany.
| |
Collapse
|
14
|
Valk T, McMorrow C. Managing hyperglycemia during the COVID-19 pandemic: Improving outcomes using new technologies in intensive care. SAGE Open Med 2020; 8:2050312120974174. [PMID: 33282306 PMCID: PMC7686601 DOI: 10.1177/2050312120974174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia is a significant risk for mortality in COVID-19 infections and is most dramatically noted in critically ill patients. Hyperglycemia and/or diabetes are noted in approximately 30%-40% of patients admitted with COVID-19 infections. Previous studies have shown a marked increase in mortality related to increased glucose concentrations and reduction with improved glucose control. In vivo and in vitro studies reveal the mechanisms by which hyperglycemia increases virulence and how glucose control and insulin reduce it. Optimal glucose control in intensive care is limited by manual sampling of glucose and intravenous insulin adjustment, as well as increased nursing workload and the need of protective equipment. Tools for safe and effective automation of glucose control in intensive care are discussed. A suitable closed loop device could save the lives of thousands of hospitalized hyperglycemic individuals infected with COVID-19 while protecting medical professionals from infection risk.
Collapse
Affiliation(s)
- Timothy Valk
- Admetsys Corporation, Boston MA,
USA
- Admetsys Research Unit, Winter
Park, FL, USA
| | - Carol McMorrow
- Admetsys Corporation, Boston MA,
USA
- Admetsys Research Unit, Winter
Park, FL, USA
| |
Collapse
|
15
|
Sadhu AR, Serrano IA, Xu J, Nisar T, Lucier J, Pandya AR, Patham B. Continuous Glucose Monitoring in Critically Ill Patients With COVID-19: Results of an Emergent Pilot Study. J Diabetes Sci Technol 2020; 14:1065-1073. [PMID: 33063556 PMCID: PMC7645121 DOI: 10.1177/1932296820964264] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Amidst the coronavirus disease 2019 (COVID-19) pandemic, continuous glucose monitoring (CGM) has emerged as an alternative for inpatient point-of-care blood glucose (POC-BG) monitoring. We performed a feasibility pilot study using CGM in critically ill patients with COVID-19 in the intensive care unit (ICU). METHODS Single-center, retrospective study of glucose monitoring in critically ill patients with COVID-19 on insulin therapy using Medtronic Guardian Connect and Dexcom G6 CGM systems. Primary outcomes were feasibility and accuracy for trending POC-BG. Secondary outcomes included reliability and nurse acceptance. Sensor glucose (SG) was used for trends between POC-BG with nursing guidance to reduce POC-BG frequency from one to two hours to four hours when the SG was in the target range. Mean absolute relative difference (MARD), Clarke error grids analysis (EGA), and Bland-Altman (B&A) plots were calculated for accuracy of paired SG and POC-BG measurements. RESULTS CGM devices were placed on 11 patients: Medtronic (n = 6) and Dexcom G6 (n = 5). Both systems were feasible and reliable with good nurse acceptance. To determine accuracy, 437 paired SG and POC-BG readings were analyzed. For Medtronic, the MARD was 13.1% with 100% of readings in zones A and B on Clarke EGA. For Dexcom, MARD was 11.1% with 98% of readings in zones A and B. B&A plots had a mean bias of -17.76 mg/dL (Medtronic) and -1.94 mg/dL (Dexcom), with wide 95% limits of agreement. CONCLUSIONS During the COVID-19 pandemic, CGM is feasible in critically ill patients and has acceptable accuracy to identify trends and guide intermittent blood glucose monitoring with insulin therapy.
Collapse
Affiliation(s)
- Archana R. Sadhu
- Division of Endocrinology, Diabetes and Metabolism, Houston Methodist, Weill Cornell Medical College, Texas A&M Health Sciences Center, Houston, TX, USA
- Archana R. Sadhu, MD, FACE, Division of Endocrinology, Diabetes and Metabolism, Houston Methodist, 6550 Fannin Street, Suite SM-1001, Houston, TX 77030, USA.
| | | | - Jiaqiong Xu
- Center for Outcomes Research, Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, USA
| | - Tariq Nisar
- Houston Methodist Research Institute, Houston, TX, USA
| | - Jessica Lucier
- Division of Endocrinology, Diabetes and Metabolism, Houston Methodist, Houston, TX, USA
| | - Anjani R. Pandya
- Division of Endocrinology, Diabetes and Metabolism, Houston Methodist, Houston, TX, USA
| | - Bhargavi Patham
- Division of Endocrinology, Diabetes and Metabolism, Houston Methodist, Weill Cornell Medical College, Texas A&M Health Sciences Center, Houston, TX, USA
| |
Collapse
|
16
|
Galindo RJ, Umpierrez GE, Rushakoff RJ, Basu A, Lohnes S, Nichols JH, Spanakis EK, Espinoza J, Palermo NE, Awadjie DG, Bak L, Buckingham B, Cook CB, Freckmann G, Heinemann L, Hovorka R, Mathioudakis N, Newman T, O’Neal DN, Rickert M, Sacks DB, Seley JJ, Wallia A, Shang T, Zhang JY, Han J, Klonoff DC. Continuous Glucose Monitors and Automated Insulin Dosing Systems in the Hospital Consensus Guideline. J Diabetes Sci Technol 2020; 14:1035-1064. [PMID: 32985262 PMCID: PMC7645140 DOI: 10.1177/1932296820954163] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article is the work product of the Continuous Glucose Monitor and Automated Insulin Dosing Systems in the Hospital Consensus Guideline Panel, which was organized by Diabetes Technology Society and met virtually on April 23, 2020. The guideline panel consisted of 24 international experts in the use of continuous glucose monitors (CGMs) and automated insulin dosing (AID) systems representing adult endocrinology, pediatric endocrinology, obstetrics and gynecology, advanced practice nursing, diabetes care and education, clinical chemistry, bioengineering, and product liability law. The panelists reviewed the medical literature pertaining to five topics: (1) continuation of home CGMs after hospitalization, (2) initiation of CGMs in the hospital, (3) continuation of AID systems in the hospital, (4) logistics and hands-on care of hospitalized patients using CGMs and AID systems, and (5) data management of CGMs and AID systems in the hospital. The panelists then developed three types of recommendations for each topic, including clinical practice (to use the technology optimally), research (to improve the safety and effectiveness of the technology), and hospital policies (to build an environment for facilitating use of these devices) for each of the five topics. The panelists voted on 78 proposed recommendations. Based on the panel vote, 77 recommendations were classified as either strong or mild. One recommendation failed to reach consensus. Additional research is needed on CGMs and AID systems in the hospital setting regarding device accuracy, practices for deployment, data management, and achievable outcomes. This guideline is intended to support these technologies for the management of hospitalized patients with diabetes.
Collapse
Affiliation(s)
| | | | | | - Ananda Basu
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Suzanne Lohnes
- University of California San Diego Medical Center, La Jolla, CA, USA
| | | | - Elias K. Spanakis
- University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Endocrinology, Baltimore Veterans Affairs Medical Center, MD, USA
| | | | - Nadine E. Palermo
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | - Tonya Newman
- Neal, Gerber and Eisenberg LLP, Chicago, IL, USA
| | - David N. O’Neal
- University of Melbourne Department of Medicine, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| | | | | | | | - Amisha Wallia
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Trisha Shang
- Diabetes Technology Society, Burlingame, CA, USA
| | | | - Julia Han
- Diabetes Technology Society, Burlingame, CA, USA
| | - David C. Klonoff
- Mills-Peninsula Medical Center, San Mateo, CA, USA
- David C. Klonoff, MD, FACP, FRCP (Edin), Fellow AIMBE, Mills-Peninsula Medical Center, 100 South San Mateo Drive Room 5147, San Mateo, CA 94401, USA.
| |
Collapse
|
17
|
Abstract
Hyperglycemia is common in the intensive care unit (ICU) both in patients with and without a previous diagnosis of diabetes. The optimal glucose range in the ICU population is still a matter of debate. Given the risk of hypoglycemia associated with intensive insulin therapy, current recommendations include treating hyperglycemia after two consecutive glucose >180 mg/dL with target levels of 140-180 mg/dL for most patients. The optimal method of sampling glucose and delivery of insulin in critically ill patients remains elusive. While point of care glucose meters are not consistently accurate and have to be used with caution, continuous glucose monitoring (CGM) is not standard of care, nor is it generally recommended for inpatient use. Intravenous insulin therapy using paper or electronic protocols remains the preferred approach for critically ill patients. The advent of new technologies, such as electronic glucose management, CGM, and closed-loop systems, promises to improve inpatient glycemic control in the critically ill with lower rates of hypoglycemia.
Collapse
Affiliation(s)
- Pedro D. Salinas
- Aurora Critical Care Services,
University of Wisconsin School of Medicine and Public Health, Milwaukee, WI,
USA
| | - Carlos E. Mendez
- Froedtert and Medical College of
Wisconsin, Division of Diabetes and Endocrinology, Zablocki Veteran Affairs Medical
Center, Milwaukee, WI, USA
| |
Collapse
|
18
|
Satyarengga M, Siddiqui T, Spanakis EK. Designing the Glucose Telemetry for Hospital Management: From Bedside to the Nursing Station. Curr Diab Rep 2018; 18:87. [PMID: 30159754 DOI: 10.1007/s11892-018-1067-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW Hospitalized patients with diabetes are monitored with point-of-care glucose testing. Continuous glucose monitoring (CGM) devices represent an alternative way to monitor glucose values; however, the in-hospital CGM use is still considered experimental. Most inpatient studies used "blinded" CGM properties and only few used the real-time/unblinded CGM features. One major limitation of the CGM devices is that they need to be placed at the patients' bedside, limiting any therapeutic interventions. In this article, we review the real-time/unblinded CGM use and share our thoughts about the development of future inpatient CGM systems. RECENT FINDINGS We recently reported that glucose values can be wirelessly transmitted to the nursing station, providing remote continuous glucose monitoring. Future inpatient CGM devices may be utilized for patients at risk for hypoglycemia similarly to the way that we use cardiac telemetry to monitor hospitalized patients who are at increased risk for cardiac arrhythmias.
Collapse
Affiliation(s)
- Medha Satyarengga
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 827 Linden Avenue, Baltimore, MD, 21201, USA
| | - Tariq Siddiqui
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 827 Linden Avenue, Baltimore, MD, 21201, USA
- Division of Endocrinology, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD, 21201, USA
| | - Elias K Spanakis
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 827 Linden Avenue, Baltimore, MD, 21201, USA.
- Division of Endocrinology, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
19
|
Umpierrez GE, Klonoff DC. Diabetes Technology Update: Use of Insulin Pumps and Continuous Glucose Monitoring in the Hospital. Diabetes Care 2018; 41:1579-1589. [PMID: 29936424 PMCID: PMC6054505 DOI: 10.2337/dci18-0002] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/20/2018] [Indexed: 02/03/2023]
Abstract
The use of continuous subcutaneous insulin infusion (CSII) and continuous glucose monitoring (CGM) systems has gained wide acceptance in diabetes care. These devices have been demonstrated to be clinically valuable, improving glycemic control and reducing risks of hypoglycemia in ambulatory patients with type 1 diabetes and type 2 diabetes. Approximately 30-40% of patients with type 1 diabetes and an increasing number of insulin-requiring patients with type 2 diabetes are using pump and sensor technology. As the popularity of these devices increases, it becomes very likely that hospital health care providers will face the need to manage the inpatient care of patients under insulin pump therapy and CGM. The American Diabetes Association advocates allowing patients who are physically and mentally able to continue to use their pumps when hospitalized. Health care institutions must have clear policies and procedures to allow the patient to continue to receive CSII treatment to maximize safety and to comply with existing regulations related to self-management of medication. Randomized controlled trials are needed to determine whether CSII therapy and CGM systems in the hospital are associated with improved clinical outcomes compared with intermittent monitoring and conventional insulin treatment or with a favorable cost-benefit ratio.
Collapse
Affiliation(s)
- Guillermo E Umpierrez
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - David C Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA
| |
Collapse
|
20
|
Fischer MO, Gouëzel C, Fradin S, Saplacan V, Gérard JL, Fellahi JL, Hanouz JL. Assessment of changes in blood glucose concentration with intravascular microdialysis. J Clin Monit Comput 2018; 32:1135-1142. [PMID: 29404891 DOI: 10.1007/s10877-018-0111-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
Blood glucose and its variability of is a major prognostic factor associated with morbidity. We hypothesized that intravenous microdialysis incorporated in a central venous catheter (CVC) would be interchangeable with changes in blood glucose measured by the reference method using a blood gas analyzer. Microdialysis and central venous blood glucose measurements were simultaneously recorded in high-risk cardiac surgical patients. The correlation between absolute values was determined by linear regression and the Bland-Altman test for repeated measurements was used to compare bias, precision, and limits of agreement. Changes in blood glucose measurement were evaluated by four-quadrant plot and trend interchangeability methods (TIM). In the 23 patients analyzed, the CVC was used as part of standard care with no complications. The correlation coefficient for absolute values (N = 99) was R = 0.91 (P < 0.001). The bias, precision and limits of agreement were - 9.1, 17.4 and - 43.2 to 24.9 mg/dL, respectively. The concordance rate for changes in blood glucose measurements (N = 77) was 85% with the four-quadrant plot. The TIM showed that 14 (18%) changes of blood glucose measurements were uninterpretable. Among the remaining 63 (82%) interpretable changes, 23 (37%) were interchangeable, 13 (20%) were in the gray zone, and 27 (43%) were not interchangeable. Microdialysis using a CVC appears to provide imprecise absolute blood glucose values with risk of insulin misuse. Moreover, only one third of changes in blood glucose measurements were interchangeable with the reference method using the TIM.
Collapse
Affiliation(s)
- Marc-Olivier Fischer
- Pôle Réanimations Anesthésie SAMU/SMUR, Department of Anaesthesia and Intensive Care Medicine, Caen University Hospital de Caen, Avenue de la Côte de Nacre, CS 30001, 14000, Caen, France.
| | - Corentin Gouëzel
- Pôle Réanimations Anesthésie SAMU/SMUR, Department of Anaesthesia and Intensive Care Medicine, Caen University Hospital de Caen, Avenue de la Côte de Nacre, CS 30001, 14000, Caen, France
| | - Sabine Fradin
- Department of Biology, University Hospital of Caen, Avenue de la Côte de Nacre, CS 30001, 14000, Caen, France
| | - Vladimir Saplacan
- Cardiac Surgery, University Hospital of Caen, Avenue de la Côte de Nacre, CS 30001, 14000, Caen, France
| | - Jean-Louis Gérard
- Pôle Réanimations Anesthésie SAMU/SMUR, Department of Anaesthesia and Intensive Care Medicine, Caen University Hospital de Caen, Avenue de la Côte de Nacre, CS 30001, 14000, Caen, France
| | - Jean-Luc Fellahi
- Department of Anaesthesia and Intensive Care Medicine, Hôpital cardiologique Louis Pradel, Avenue du Doyen Lepine, 69 677, Lyon, France.,Faculty of Medicine, University of Lyon 1 Claude Bernard, 69 008, Lyon, France
| | - Jean-Luc Hanouz
- Pôle Réanimations Anesthésie SAMU/SMUR, Department of Anaesthesia and Intensive Care Medicine, Caen University Hospital de Caen, Avenue de la Côte de Nacre, CS 30001, 14000, Caen, France
| |
Collapse
|
21
|
Zhou T, Dickson JL, Shaw GM, Chase JG. Continuous Glucose Monitoring Measures Can Be Used for Glycemic Control in the ICU: An In-Silico Study. J Diabetes Sci Technol 2018; 12:7-19. [PMID: 29103302 PMCID: PMC5761989 DOI: 10.1177/1932296817738791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Continuous glucose monitoring (CGM) technology has become more prevalent in the intensive care unit (ICU), offering potential benefits of increased safety and reduced workload in glycemic control (GC). The drift and higher point accuracy errors of CGM devices over traditional intermittent blood glucose (BG) measures have so far limited their application in the ICU. This study delineates the trade-offs of performance, safety and workload that CGM sensors provide in GC protocols. METHODS Clinical data from 236 patients were used for clinically validated virtual trials. A CGM-enabled version of the STAR GC protocol was used to evaluate the use of guard rails and rolling windows. Safety was assessed through percentage of patients who had a severe hypoglycemic episode (BG < 40 mg/dl) as well as percentage of resampled BG < 72 mg/dl. Performance was assessed as percentage of resampled measurements in the 80-126 mg/dl and the 80-144 mg/dl target bands. Workload was measured by number of manual BG measures per day. RESULTS CGM-enabled versions of STAR decreased the number of required blood draws by up to 74%, while maintaining performance (76.6% BG measurements in the 80-126 mg/dl range vs 62.8% clinically, 87.9% in the 80-144 mg/dl range vs 83.7% clinically) and maintaining patient safety (1.13% of patients experienced a severe hypoglycemic event vs 0.85% clinically, 1.37% of BG measurements were less than 72 mg/dl vs 0.51% clinically). CONCLUSION CGM sensor traces were reproduced in virtual trials to guide GC. Existing GC protocols such as STAR may need to be adjusted only slightly to gain the benefits of the increased temporal measurements of CGM sensors, through which workload may be significantly decreased while maintaining GC performance and safety.
Collapse
Affiliation(s)
- Tony Zhou
- Department of Mechanical Engineering, University of Canterbury, Christchurch, Canterbury, New Zealand
- Tony Zhou, BE, Department of Mechanical Engineering, University of Canterbury, 20 Kirkwood Ave, Riccarton, Christchurch, Canterbury 8041, New Zealand.
| | - Jennifer L. Dickson
- Department of Mechanical Engineering, University of Canterbury, Christchurch, Canterbury, New Zealand
| | - Geoffrey M. Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch School of Medicine and Health Science, University of Otago, New Zealand
| | - J. Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch, Canterbury, New Zealand
| |
Collapse
|
22
|
Rijkenberg S, van Steen SC, DeVries JH, van der Voort PHJ. Accuracy and reliability of a subcutaneous continuous glucose monitoring device in critically ill patients. J Clin Monit Comput 2017; 32:953-964. [PMID: 29218549 DOI: 10.1007/s10877-017-0086-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
Subcutaneous continuous glucose monitoring (CGM) may have benefits in achieving glycemic control in critically ill patients. The aim of this study was to assess the accuracy and reliability of the FreeStyle Navigator I in critically ill patients and to assess patient related factors influencing the accuracy and reliability. This study is a retrospective analysis of data from a randomized controlled trial conducted in a 20-bed mixed intensive care unit. Analytical accuracy, clinical accuracy and reliability were assessed against arterial blood glucose samples as reference. Assessment was according to recent consensus recommendations with median absolute relative difference (median ARD), Bland-Altman plots, the ISO system accuracy standards (ISO 15197:2013) and Clarke error grid analysis (CEG). We analyzed 2840 paired measurements from 155 critically ill patients. The median ARD of all paired values was 13.3 [6.9-22.1]%. The median ARD was significantly higher in both the hypoglycemic and the hyperglycemic range (32.4 [12.1-53.4]% and 18.7 [10.7-28.3]% respectively, p < 0.001). The Bland-Altman analysis showed a mean bias of - 0.82 mmol/L with a lower limit of agreement (LOA) of - 3.88 mmol/L and an upper LOA of 2.24 mmol/L. A total of 1626 (57.3%) values met the ISO-2013, standards and 1,334 (47%) CGM values were within 12.5% from the reference value. CEG: 71.0% zone A, 25.8% zone B, 0.5% zone C, 2.5% zone D, 0.3% zone E. The median overall real-time data display time was 94.0 ± 14.9% and in 23% of the patients, the sensor measured < 95% of the time. Additionally, data gaps longer than 30 min were found in 48% of the patients. The analytical accuracy of the FreeStyle Navigator I in critically ill patients was suboptimal. Furthermore, the clinical accuracy, did not meet the required standards. The reliability was satisfactory, however, in almost a quarter of the patients the realtime data display was < 95%. The accuracy was considerably and significantly lower in hyper- and hypoglycemic ranges.
Collapse
Affiliation(s)
- S Rijkenberg
- Department of Intensive Care, OLVG Hospital, P.O. Box 95500, 1090 HM, Amsterdam, The Netherlands.
| | - S C van Steen
- Department of Intensive Care, OLVG Hospital, P.O. Box 95500, 1090 HM, Amsterdam, The Netherlands
- Department of Endocrinology, Academic Medical Center, Amsterdam, The Netherlands
| | - J H DeVries
- Department of Endocrinology, Academic Medical Center, Amsterdam, The Netherlands
| | - P H J van der Voort
- Department of Intensive Care, OLVG Hospital, P.O. Box 95500, 1090 HM, Amsterdam, The Netherlands
- TIAS School for Business & Society, Tilburg, The Netherlands
| |
Collapse
|
23
|
Wallia A, Umpierrez GE, Rushakoff RJ, Klonoff DC, Rubin DJ, Hill Golden S, Cook CB, Thompson B, the DTS Continuous Glucose Monitoring in the
Hospital Panel. Consensus Statement on Inpatient Use of Continuous Glucose Monitoring. J Diabetes Sci Technol 2017; 11:1036-1044. [PMID: 28429611 PMCID: PMC5950996 DOI: 10.1177/1932296817706151] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In June 2016, Diabetes Technology Society convened a panel of US experts in inpatient diabetes management to discuss the current and potential role of continuous glucose monitoring (CGM) in the hospital. This discussion combined with a literature review was a follow-up to a meeting, which took place in May 2015. The panel reviewed evidence on use of CGM in 3 potential inpatient scenarios: (1) the intensive care unit (ICU), (2) non-ICU, and (3) transitioning outpatient CGM use into the hospital setting. Panel members agreed that data from limited studies and theoretical considerations suggested that use of CGM in the hospital had the potential to improve patient clinical outcomes, and in particular reduction of hypoglycemia. Panel members discussed barriers to widespread adoption of CGM, which patients would benefit most from use of this technology, and what type of outcome studies are needed to guide use of CGM in the inpatient setting.
Collapse
Affiliation(s)
- Amisha Wallia
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | - Daniel J. Rubin
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | | - Curtiss B. Cook
- Arizona State University, Scottsdale, AZ, USA
- Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Bithika Thompson
- Mayo Clinic Arizona, Scottsdale, AZ, USA
- Bithika Thompson, MD, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ 85259, USA.
| | | |
Collapse
|
24
|
Abstract
Continuous glucose monitoring (CGM) is commonly used in the outpatient setting to improve diabetes management. CGM can provide real-time glucose trends, detecting hyperglycemia and hypoglycemia before the onset of clinical symptoms. In 2011, at the time the Endocrine Society CGM guidelines were published, the society did not recommend inpatient CGM as its efficacy and safety were unknown. While many studies have subsequently evaluated inpatient CGM accuracy and reliability, glycemic outcome studies have not been widely published. In the non-ICU setting, investigational CGM studies have commonly blinded providers and patients to glucose data. Retrospective review of the glucose data reflects increased hypoglycemia detection with CGM. In the ICU setting, data are inconsistent whether CGM can improve glycemic outcomes. Studies have not focused on hospitalized patients with type 1 diabetes mellitus, the population most likely to benefit from inpatient CGM. This article reviews inpatient CGM glycemic outcomes in the non-ICU and ICU setting.
Collapse
Affiliation(s)
- David L. Levitt
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristi D. Silver
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elias K. Spanakis
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Endocrinology, Diabetes, and Nutrition, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
- Elias K. Spanakis, MD, University of Maryland School of Medicine and Baltimore Veterans Administration Medical Center, Division of Endocrinology, Diabetes, and Nutrition, 10 N Greene St, 5D134, Baltimore, MD 21201, USA.
| |
Collapse
|
25
|
van Steen SCJ, Rijkenberg S, Limpens J, van der Voort PHJ, Hermanides J, DeVries JH. The Clinical Benefits and Accuracy of Continuous Glucose Monitoring Systems in Critically Ill Patients-A Systematic Scoping Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E146. [PMID: 28098809 PMCID: PMC5298719 DOI: 10.3390/s17010146] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/15/2016] [Accepted: 01/08/2017] [Indexed: 12/18/2022]
Abstract
Continuous Glucose Monitoring (CGM) systems could improve glycemic control in critically ill patients. We aimed to identify the evidence on the clinical benefits and accuracy of CGM systems in these patients. For this, we performed a systematic search in Ovid MEDLINE, from inception to 26 July 2016. Outcomes were efficacy, accuracy, safety, workload and costs. Our search retrieved 356 articles, of which 37 were included. Randomized controlled trials on efficacy were scarce (n = 5) and show methodological limitations. CGM with automated insulin infusion improved time in target and mean glucose in one trial and two trials showed a decrease in hypoglycemic episodes and time in hypoglycemia. Thirty-two articles assessed accuracy, which was overall moderate to good, the latter mainly with intravascular devices. Accuracy in critically ill children seemed lower than in adults. Adverse events were rare. One study investigated the effect on workload and cost, and showed a significant reduction in both. In conclusion, studies on the efficacy and accuracy were heterogeneous and difficult to compare. There was no consistent clinical benefit in the small number of studies available. Overall accuracy was moderate to good with some intravascular devices. CGM systems seemed however safe, and might positively affect workload and costs.
Collapse
Affiliation(s)
- Sigrid C J van Steen
- Clinical Diabetology, Academic Medical Center, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands.
| | - Saskia Rijkenberg
- Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, P.O. Box 95500, 1090 HM Amsterdam, The Netherlands.
| | - Jacqueline Limpens
- Medical Library, Academic Medical Center, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands.
| | - Peter H J van der Voort
- Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, P.O. Box 95500, 1090 HM Amsterdam, The Netherlands.
| | - Jeroen Hermanides
- Department of Anesthesiology, Academic Medical Center, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands.
| | - J Hans DeVries
- Clinical Diabetology, Academic Medical Center, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands.
| |
Collapse
|