1
|
DNA methylation landscape of 16 canine somatic tissues by methylation-sensitive restriction enzyme-based next generation sequencing. Sci Rep 2021; 11:10005. [PMID: 33976289 PMCID: PMC8113467 DOI: 10.1038/s41598-021-89279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
DNA methylation plays important functions in gene expression regulation that is involved in individual development and various diseases. DNA methylation has been well studied in human and model organisms, but only limited data exist in companion animals like dog. Using methylation-sensitive restriction enzyme-based next generation sequencing (Canine DREAM), we obtained canine DNA methylation maps of 16 somatic tissues from two dogs. In total, we evaluated 130,861 CpG sites. The majority of CpG sites were either highly methylated (> 70%, 52.5-64.6% of all CpG sites analyzed) or unmethylated (< 30%, 22.5-28.0% of all CpG sites analyzed) which are methylation patterns similar to other species. The overall methylation status of CpG sites across the 32 methylomes were remarkably similar. However, the tissue types were clearly defined by principle component analysis and hierarchical clustering analysis with DNA methylome. We found 6416 CpG sites located closely at promoter region of genes and inverse correlation between DNA methylation and gene expression of these genes. Our study provides basic dataset for DNA methylation profiles in dogs.
Collapse
|
2
|
Lin C, Lo P, Wu H. An observational study of the role of indoor air pollution in pets with naturally acquired bronchial/lung disease. Vet Med Sci 2020; 6:314-320. [PMID: 31901015 PMCID: PMC7397909 DOI: 10.1002/vms3.231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Indoor air pollution (IAP) is an emerging issue for both human and veterinary patients under the concept of 'One Health'. The association between IAP and respiratory disease in companion animals has been reported. OBJECTIVES The present study investigated the relationship between quantifiable indoor air quality and clinical characteristics of naturally acquired bronchial/lung disease in pet dogs and cats. METHODS A total of 36 clinical cases (20 dogs and 16 cats) with naturally acquired bronchial/lung disease were prospectively recruited. Lower airway samples were collected and analysed, and clinical signs and the information from pulmonary function testing were examined. Indoor air quality was estimated by the average concentration of particles measuring ≤2.5 μm (PM2.5, μg/m3 ) and volatile organic compounds (VOC, ppm) in the animals' domestic microenvironments. RESULTS Exposure to IAP was not found to be correlated with the severity of clinical signs, pulmonary function changes or bronchoalveolar lavage fluid cytology in cats with bronchial/lung disease. However, a hypercellular response in canine lower airways was found to be associated with poor indoor air quality, including unacceptable indoor PM2.5 levels (>35 μg/m3 ) or increases in VOC concentration (>1 ppm) in places most commonly frequented by the dogs in the home. CONCLUSIONS Poor indoor air quality may exacerbate airway disease in pets and should not be ignored in modern society.
Collapse
Affiliation(s)
- Chung‐Hui Lin
- National Taiwan University Veterinary HospitalNational Taiwan UniversityTaipeiTaiwan
- Graduate Institute of Veterinary Clinical SciencesSchool of Veterinary MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Pei‐Ying Lo
- National Taiwan University Veterinary HospitalNational Taiwan UniversityTaipeiTaiwan
| | - Huey‐Dong Wu
- Section of Respiratory TherapyDepartment of Integrated Diagnostics and TherapeuticsNational Taiwan University HospitalNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Ohta H, Yamazaki J, Jelinek J, Ishizaki T, Kagawa Y, Yokoyama N, Nagata N, Sasaki N, Takiguchi M. Genome-wide DNA methylation analysis in canine gastrointestinal lymphoma. J Vet Med Sci 2020; 82:632-638. [PMID: 32213750 PMCID: PMC7273592 DOI: 10.1292/jvms.19-0547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA methylation is the covalent modification of methyl groups to DNA mostly at CpG dinucleotides and one of the most studied epigenetic mechanisms that leads to gene expression variability
without affecting the DNA sequence. Genome-wide analysis of DNA methylation identified the signatures that could define subtypes of human lymphoma patients. The objective of this study was
to conduct the genome-wide analysis of DNA methylation in dogs with gastrointestinal lymphoma (GIL). Genomic DNA was extracted from endoscopic biopsies from 10 dogs with GIL. We performed
Digital Restriction Enzyme Assay of DNA Methylation (DREAM) for genome-wide DNA methylation analysis that could provide highly quantitative information on DNA methylation levels of CpG sites
across the dog genome. We successfully obtained data of quantitative DNA methylation level for 148,601–162,364 CpG sites per GIL sample. Next, we analyzed 83,132 CpG sites to dissect the
differences in DNA methylation between GIL and normal peripheral blood mononuclear cells (PBMCs). We found 383–3,054 CpG sites that were hypermethylated in GIL cases compared to PBMCs.
Interestingly, 773 CpG sites including promoter regions of 61 genes were identified to be commonly hypermethylated in more than half of the cases, suggesting conserved DNA methylation
patterns that are abnormal in GIL. This study revealed that there was a large number of hypermethylated sites that are common in most of canine GIL. These abnormal DNA methylation could be
involved in tumorigenesis of the canine GIL.
Collapse
Affiliation(s)
- Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Jumpei Yamazaki
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Jaroslav Jelinek
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103, USA
| | - Teita Ishizaki
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,North Lab, Hokkaido, Hondori 2-chome, Kita 8-35, Shiroishi-ku, Sapporo, Hokkaido 003-0027, Japan
| | - Yumiko Kagawa
- North Lab, Hokkaido, Hondori 2-chome, Kita 8-35, Shiroishi-ku, Sapporo, Hokkaido 003-0027, Japan
| | - Nozomu Yokoyama
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Noriyuki Nagata
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
4
|
Yamazaki J, Jelinek J, Hisamoto S, Tsukamoto A, Inaba M. Dynamic changes in DNA methylation patterns in canine lymphoma cell lines demonstrated by genome-wide quantitative DNA methylation analysis. Vet J 2017; 231:48-54. [PMID: 29429487 DOI: 10.1016/j.tvjl.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/05/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
DNA methylation is the conversion of cytosine to 5-methylcytosine, leading to changes in the interactions between DNA and proteins. Methylation of cytosine-guanine (CpG) islands (CGIs) is associated with gene expression silencing of the involved promoter. Although studies focussing on global changes or a few single loci in DNA methylation have been performed in dogs with certain diseases, genome-wide analysis of DNA methylation is required to prospectively identify specific regions with DNA methylation change. The hypothesis of this study was that next-generation sequencing with methylation-specific signatures created by sequential digestion of genomic DNA with SmaI and XmaI enzymes can provide quantitative information on methylation levels. Using blood from healthy dogs and cells obtained from canine lymphoma cell lines, approximately 100,000CpG sites across the dog genome were analysed with the novel method established in this study. CpG sites in CGIs broadly were shown to be either methylated or unmethylated in normal blood, while CpG sites not within CpG islands (NCGIs) were largely methylated. Thousands of CpG sites in lymphoma cell lines were found to gain methylation at normally unmethylated CGI sites and lose methylation at normally methylated NCGI sites. These hypermethylated CpG sites are located at promoter regions of hundreds of genes, such as TWIST2 and TLX3. In addition, genes annotated with 'Homeobox' and 'DNA-binding' characteristics have hypermethylated CpG sites in their promoter CGIs. Genome-wide quantitative DNA methylation analysis is a sensitive method that is likely to be suitable for studies of DNA methylation changes in cancer, as well as other common diseases in dogs.
Collapse
Affiliation(s)
- J Yamazaki
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Japan.
| | - J Jelinek
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - S Hisamoto
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - A Tsukamoto
- Laboratory of Laboratory Animal Science, School of Veterinary Medicine, Azabu University, Japan
| | - M Inaba
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| |
Collapse
|
5
|
Cimarelli G, Virányi Z, Turcsán B, Rónai Z, Sasvári-Székely M, Bánlaki Z. Social Behavior of Pet Dogs Is Associated with Peripheral OXTR Methylation. Front Psychol 2017; 8:549. [PMID: 28443051 PMCID: PMC5385375 DOI: 10.3389/fpsyg.2017.00549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Oxytocin is a key modulator of emotional processing and social cognitive function. In line with this, polymorphisms of genes involved in oxytocin signaling, like the oxytocin receptor (OXTR) gene, are known to influence social behavior in various species. However, to date, no study has investigated environmental factors possibly influencing the epigenetic variation of the OXTR gene and its behavioral effects in dogs. Pet dogs form individualized and strong relationships with their owners who are central figures in the social environment of their dogs and therefore might influence the methylation levels of their OXTR gene. Here we set out to investigate whether DNA methylation within the OXTR promoter region of pet dogs is linked to their owner's interaction style and to the social behavior of the dogs. To be able to do so, we collected buccal epithelial cells and, in Study 1, we used pyrosequencing techniques to look for differentially methylated CpG sites in the canine OXTR promoter region on a heterogeneous sample of dogs and wolves of different ages and keeping conditions. Four identified sites (at positions -727, -751, -1371, and -1383 from transcription start site) showing more than 10% methylation variation were then, in Study 2, measured in triplicate in 217 pet Border Collies previously tested for reactions to an adverse social situation (i.e., approach by a threatening human) and with available data on their owners' interaction styles. We found that CpG methylation was significantly associated with the behavior of the dogs, in particular with the likelihood that dogs would hide behind their owner or remain passive when approached by a threatening human. On the other hand, CpG methylation was not related to the owners' behavior but to dog sex (at position -1371). Our findings underpin the complex relationship between epigenetics and behavior and highlight the importance of including epigenetic methods in the analysis of dog behavioral development. Further research is needed to investigate which environmental factors influence the epigenetic variation of the OXTR gene.
Collapse
Affiliation(s)
- Giulia Cimarelli
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of ViennaVienna, Austria
- Wolf Science CenterErnstbrunn, Austria
- Department of Cognitive Biology, University of ViennaVienna, Austria
| | - Zsófia Virányi
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of ViennaVienna, Austria
- Wolf Science CenterErnstbrunn, Austria
| | - Borbála Turcsán
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of ViennaVienna, Austria
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of SciencesBudapest, Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis UniversityBudapest, Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis UniversityBudapest, Hungary
| | - Zsófia Bánlaki
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis UniversityBudapest, Hungary
| |
Collapse
|