1
|
Mannes M, Savukoski S, Ignatius A, Halbgebauer R, Huber-Lang M. Crepuscular rays - The bright side of complement after tissue injury. Eur J Immunol 2024; 54:e2350848. [PMID: 38794857 DOI: 10.1002/eji.202350848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Acute injuries trigger an intense activation of the body's defense mechanisms aiming to limit damage and initiate healing. Among the crucial components of the intravascular immune system, the complement system plays a significant role in traumatic injuries, albeit often negatively. It has been suggested that excessive activation of the complement system, transitioning from a localized and timed response to a systemic one, can lead to a loss of its host-protective characteristics. Complement activation products have been associated with the severity of injuries, which sometimes serve as predictors for the onset of organ dysfunctions. Animal studies utilizing complement-targeting agents have provided the basis for considering complement in the management of traumatic injuries in humans. However, numerous studies suggest that the spatial and temporal aspects of complement inhibition are crucial for its efficacy. Understanding the underlying mechanism of the injury is essential to determine where, when, and whether complement inhibition is warranted. Despite the detrimental effects of uncontrolled complement activation, its regulated activation may contribute to essential aspects of healing, such as waste removal and regeneration. This review focuses on the beneficial roles of complement activation in trauma, which are often overlooked or given less consideration but are of immense importance.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Susa Savukoski
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
2
|
Kuhn MB, VandenBerg HS, Reynolds AJ, Carson MD, Warner AJ, LaRue AC, Novince CM, Hathaway-Schrader JD. C3a-C3aR signaling is a novel modulator of skeletal homeostasis. Bone Rep 2023; 18:101662. [PMID: 36860797 PMCID: PMC9969257 DOI: 10.1016/j.bonr.2023.101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Osteoimmune studies have identified complement signaling as an important regulator of the skeleton. Specifically, complement anaphylatoxin receptors (i.e., C3aR, C5aR) are expressed on osteoblasts and osteoclasts, implying that C3a and/or C5a may be candidate mediators of skeletal homeostasis. The study aimed to determine how complement signaling influences bone modeling/remodeling in the young skeleton. Female C57BL/6J C3aR-/-C5aR-/- vs. wildtype and C3aR-/- vs. wildtype mice were examined at age 10 weeks. Trabecular and cortical bone parameters were analyzed by micro-CT. In situ osteoblast and osteoclast outcomes were determined by histomorphometry. Osteoblast and osteoclast precursors were assessed in vitro. C3aR-/-C5aR-/- mice displayed an increased trabecular bone phenotype at age 10 weeks. In vitro studies revealed C3aR-/-C5aR-/- vs. wildtype cultures had less bone-resorbing osteoclasts and increased bone-forming osteoblasts, which were validated in vivo. To determine whether C3aR alone was critical for the enhanced skeletal outcomes, wildtype vs. C3aR-/- mice were evaluated for osseous tissue outcomes. Paralleling skeletal findings in C3aR-/-C5aR-/- mice, C3aR-/- vs. wildtype mice had an enhanced trabecular bone volume fraction, which was attributed to increased trabecular number. There was elevated osteoblast activity and suppressed osteoclastic cells in C3aR-/- vs. wildtype mice. Furthermore, primary osteoblasts derived from wildtype mice were stimulated with exogenous C3a, which more profoundly upregulated C3ar1 and the pro-osteoclastic chemokine Cxcl1. This study introduces the C3a/C3aR signaling axis as a novel regulator of the young skeleton.
Collapse
Affiliation(s)
- Megan B. Kuhn
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Hayden S. VandenBerg
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew J. Reynolds
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew D. Carson
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Stomatology-Div. of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Pediatrics-Div. of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Amy J. Warner
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Stomatology-Div. of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Pediatrics-Div. of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Amanda C. LaRue
- Research Services, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Stomatology-Div. of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Pediatrics-Div. of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jessica D. Hathaway-Schrader
- Department of Stomatology-Div. of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Research Services, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Comparison of post-traumatic changes in circulating and bone marrow leukocytes between BALB/c and CD-1 mouse strains. PLoS One 2019; 14:e0222594. [PMID: 31527918 PMCID: PMC6748677 DOI: 10.1371/journal.pone.0222594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022] Open
Abstract
This manuscript emerged from a larger third-party funded project investigating a new poly-trauma model and its influence upon secondary sepsis. The present sub-study compared selected leukocyte subpopulations in the circulation and bone marrow after polytrauma in BALB/c versus CD-1 mice. Animals underwent unilateral femur fracture, splenectomy and hemorrhagic shock. We collected blood and bone marrow for flow cytometry analysis at 24h and 48h post-trauma. Circulating granulocytes (Ly6G+CD11+) increased in both strains after trauma. Only in BALB/c mice circulating CD8+ T-lymphocytes decreased within 48h by 30%. Regulatory T-cells (Tregs, CD4+CD25+CD127low) increased in both strains by approx. 32%. Circulating Tregs and lymphocytes (CD11b-Ly6G-MHC-2+) were always at least 1.5-fold higher in BALB/c, while the bone marrow MHC-2 expression decreased in CD-1 mice (p<0.05). Overall, immune responses to polytrauma were similar in both strains. Additionally, BALB/c expressed higher level of circulating regulatory T-cells and MHC-2-positive lymphocytes compared to CD-1 mice.
Collapse
|
4
|
Jia HL, Zhou DS. Retracted: Downregulation of microRNA-367 promotes osteoblasts growth and proliferation of mice during fracture by activating the PANX3-mediated Wnt/β-catenin pathway. J Cell Biochem 2019; 120:8247-8258. [PMID: 30556206 DOI: 10.1002/jcb.28108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/29/2018] [Indexed: 02/02/2023]
Abstract
A majority of people suffering from bone fractures fail to heal and develop a nonunion, which is a challenging orthopedic complication requiring complex and expensive treatment. Previous data showed the inhibition of some microRNAs (miRNAs or miRs) can enhance fracture healing. The objective of the present study is to explore effects of miR-367 on the osteoblasts growth and proliferation of mouse during fracture via the Wnt/β-catenin pathway by targeting PANX3. Primarily, the femur fracture model was successfully established in 66 (C57BL/6) 6-week-old male mice. To verify whether miR-367 target PANX3, we used the target prediction program and performed luciferase activity determination. Subsequently, to figure out the underlying regulatory roles of miR-367 in fracture, osteoblasts were elucidated by treatment with miR-367 mimic, miR-367 inhibitor, or siRNA against PANX3 to determine the expression of miR-367, siPANX3, β-catenin, and Wnt5b as well as cell proliferation and apoptosis. The results demonstrated that PANX3 was verified as a target gene of miR-367. MiR-367 was found to highly expressed but PANX3, β-catenin, and Wnt5b were observed poorly expressed in fracture mice. downregulated miR-367 increased the mRNA and protein expression of PANX3, β-catenin, and Wnt5b, increased cell growth, proliferation, and migration, while decreased cell apoptosis in osteoblasts. Altogether, our study demonstrates that the downregulation of miR-367 may promote osteoblasts growth and proliferation in fracture through the activation of the PANX3-dependent Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hong-Lei Jia
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dong-Sheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
5
|
Alexander JJ, Sankaran JS, Seldeen KL, Thiyagarajan R, Jacob A, Quigg RJ, Troen BR, Judex S. Absence of complement factor H alters bone architecture and dynamics. Immunobiology 2018; 223:761-771. [DOI: 10.1016/j.imbio.2018.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/22/2018] [Accepted: 07/28/2018] [Indexed: 01/03/2023]
|
6
|
Chakraborty S, Karasu E, Huber-Lang M. Complement After Trauma: Suturing Innate and Adaptive Immunity. Front Immunol 2018; 9:2050. [PMID: 30319602 PMCID: PMC6165897 DOI: 10.3389/fimmu.2018.02050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
The overpowering effect of trauma on the immune system is undisputed. Severe trauma is characterized by systemic cytokine generation, activation and dysregulation of systemic inflammatory response complementopathy and coagulopathy, has been immensely instrumental in understanding the underlying mechanisms of the innate immune system during systemic inflammation. The compartmentalized functions of the innate and adaptive immune systems are being gradually recognized as an overlapping, interactive and dynamic system of responsive elements. Nonetheless the current knowledge of the complement cascade and its interaction with adaptive immune response mediators and cells, including T- and B-cells, is limited. In this review, we discuss what is known about the bridging effects of the complement system on the adaptive immune system and which unexplored areas could be crucial in understanding how the complement and adaptive immune systems interact following trauma.
Collapse
Affiliation(s)
- Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
7
|
Mödinger Y, Löffler B, Huber-Lang M, Ignatius A. Complement involvement in bone homeostasis and bone disorders. Semin Immunol 2018; 37:53-65. [DOI: 10.1016/j.smim.2018.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
8
|
Yao CJ, Lv Y, Zhang CJ, Jin JX, Xu LH, Jiang J, Geng B, Li H, Xia YY, Wu M. MicroRNA-185 inhibits the growth and proliferation of osteoblasts in fracture healing by targeting PTH gene through down-regulating Wnt/β -catenin axis: In an animal experiment. Biochem Biophys Res Commun 2018; 501:55-63. [PMID: 29678580 DOI: 10.1016/j.bbrc.2018.04.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023]
Abstract
Fracture healing is a repair process of a mechanical discontinuity loss of force transmission, and pathological mobility of bone. Increasing evidence suggests that microRNA (miRNA) could regulate chondrocyte, osteoblast, and osteoclast differentiation and function, indicating miRNA as key regulators of bone formation, resorption, remodeling, and repair. Hence, during this study, we established a right femur fracture mouse model to explore the effect microRNA-185 (miR-185) has on osteoblasts in mice during fracture healing and its underlying mechanism. After successfully model establishment, osteoblasts were extracted and treated with a series of mimics or inhibitors of miR-185, or siRNA against PTH. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis were performed to determine the levels of miR-185, PTH, β-catenin and Wnt5b. Cell viability, cycle distribution and apoptosis were detected by means of MTT and flow cytometry assays. Dual luciferase reporter gene assay verified that PTH is a target gene of miR-185. Osteoblasts transfected with miR-185 mimics or siRNA against PTH presented with decreased levels of PTH, β-catenin and Wnt5b which indicated that miR-185 blocks the Wnt/β -catenin axis by inhibiting PTH. Moreover, miR-185 inhibitors promoted the osteoblast viability and reduced apoptosis with more cells arrested at the G1 stage. MiR-185 mimics were observed to have inhibitory effects on osteoblasts as opposed to those induced by miR-185 inhibitors. Above key results indicated that suppression of miR-185 targeting PTH could promote osteoblast growth and proliferation in mice during fracture healing through activating Wnt/β -catenin axis.
Collapse
Affiliation(s)
- Chang-Jiang Yao
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yang Lv
- Department of Ophthalmology, General Hospital of Lanzhou Military Command, Lanzhou, 730000, PR China; Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Cheng-Jun Zhang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Xin Jin
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Hu Xu
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jin Jiang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Bin Geng
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Hong Li
- Department of Ophthalmology, General Hospital of Lanzhou Military Command, Lanzhou, 730000, PR China; Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ya-Yi Xia
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| | - Meng Wu
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|