1
|
Thomsen J, Abdulrazzaq NM, Nyasulu PS, Al Hosani F, Habous M, Weber S, Jabeen F, Menezes GA, Moubareck CA, Senok A, Everett DB. Epidemiology and antimicrobial resistance of Mycobacterium spp. in the United Arab Emirates: a retrospective analysis of 12 years of national antimicrobial resistance surveillance data. Front Public Health 2024; 12:1244353. [PMID: 38947352 PMCID: PMC11211529 DOI: 10.3389/fpubh.2024.1244353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/18/2024] [Indexed: 07/02/2024] Open
Abstract
INTRODUCTION The Eastern Mediterranean Regional Office (EMRO) region accounts for almost 8% of all global Mycobacterium tuberculosis (TB) cases, with TB incidence rates ranging from 1 per 100,000 per year in the United Arab Emirates (UAE) to 204 per 100,000 in Djibouti. The national surveillance data from the Middle East and North Africa (MENA) region on the epidemiology and antimicrobial resistance trends of TB, including MDR-TB remains scarce. METHODS A retrospective 12-year analysis of N = 8,086 non-duplicate diagnostic Mycobacterium tuberculosis complex (MTB complex) isolates from the UAE was conducted. Data were generated through routine patient care during the 2010-2021 years, collected by trained personnel and reported by participating surveillance sites to the UAE National Antimicrobial Resistance (AMR) Surveillance program. Data analysis was conducted with WHONET, a windows-based microbiology laboratory database management software developed by the World Health Organization Collaborating Center for Surveillance of Antimicrobial Resistance, Boston, United States (https://whonet.org/). RESULTS A total of 8,086 MTB-complex isolates were analyzed. MTB-complex was primarily isolated from respiratory samples (sputum 80.1%, broncho-alveolar lavage 4.6%, pleural fluid 4.1%). Inpatients accounted for 63.2%, including 1.3% from ICU. Nationality was known for 84.3% of patients, including 3.8% Emiratis. Of UAE non-nationals, 80.5% were from 110 countries, most of which were Asian countries. India accounted for 20.8%, Pakistan 13.6%, Philippines 12.7%, and Bangladesh 7.8%. Rifampicin-resistant MTB-complex isolates (RR-TB) were found in 2.8% of the isolates, resistance to isoniazid, streptomycin, pyrazinamide, and ethambutol, was 8.9, 6.9, 3.4 and 0.4%, respectively. A slightly increasing trend of resistance among MTB-complex was observed for rifampicin from 2.5% (2010) to 2.8% (2021). CONCLUSION Infections due to MTB-complex are relatively uncommon in the United Arab Emirates compared to other countries in the MENA region. Most TB patients in the UAE are of Asian origin, mainly from countries with a high prevalence of TB. Resistance to first line anti-tuberculous drugs is generally low, however increasing trends for MDR-TB mainly rifampicin linked resistance is a major concern. MDR-TB was not associated with a higher mortality, admission to ICU, or increased length of hospitalization as compared to non-MDR-TB.
Collapse
Affiliation(s)
- Jens Thomsen
- Department of Environmental and Occupational Health, Abu Dhabi Public Health Center, Abu Dhabi, United Arab Emirates
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Peter S. Nyasulu
- Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Farida Al Hosani
- Department of Environmental and Occupational Health, Abu Dhabi Public Health Center, Abu Dhabi, United Arab Emirates
| | - Maya Habous
- Rashid Hospital, Dubai, United Arab Emirates
| | - Stefan Weber
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
- Pure Labs, Abu Dhabi, United Arab Emirates
| | - Fouzia Jabeen
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
- Pure Labs, Abu Dhabi, United Arab Emirates
| | - Godfred Antony Menezes
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | | | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Dean B. Everett
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Al-Mutairi NM, Ahmad S, Mokaddas E. Discordance in Phenotypic and Genotypic Susceptibility Testing for Streptomycin Due to Nonsynonymous/Nonsense/Deletion Frame-Shift Mutations in Gidb Among Clinical Mycobacterium tuberculosis Isolates in Kuwait. Med Princ Pract 2024; 33:000538584. [PMID: 38560979 PMCID: PMC11324218 DOI: 10.1159/000538584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Increasing reports of resistance to newer anti-tuberculosis drugs have prompted the search for other alternative drugs. Streptomycin could be used for the treatment of drug-resistant tuberculosis if susceptibility of Mycobacterium tuberculosis isolate to streptomycin could be accurately detected. We performed phenotypic and genotypic drug susceptibility testing (DST) of 118 M. tuberculosis isolates for streptomycin. MATERIALS AND METHODS Fifty pansusceptible and 68 multidrug-resistant M. tuberculosis (MDR-TB) isolates were used. Phenotypic DST for streptomycin, rifampicin, isoniazid and ethambutol was performed by mycobacteria growth indicator tube (MGIT) 960 System. Genotypic DST was done by GenoTypeMTBDRplus assay for rifampicin and isoniazid and by PCR-sequencing of rpsL, rrs and gidB genes for streptomycin. MDR-TB isolates were genotyped by spoligotyping. RESULTS Phenotypic DST identified 50 isolates susceptible to all four drugs (pansusceptible). Sixty-one of 68 MDR-TB isolates were resistant to streptomycin. Genotypic testing for rifampicin and isoniazid yielded expected results. Fifty pansusceptible and 7 streptomycin-susceptible MDR-TB isolates contained no mutation in rpsL or rrs, while 47, 2 and 1 STR-resistant isolate contained rpsL, rrs and rpsL + rrs mutations, respectively. Of the remaining 11 STR-resistant MDR-TB, 9 isolates contained deletion frame-shift/nonsynonymous mutations in gidB. Surprisingly, 13 pansusceptible isolates also contained deletion frame-shift/nonsense/nonsynonymous mutations in gidB. Also, 30 of 68 MDR-TB but only 2 of 50 pansusceptible isolates belonged to the Beijing genotype. CONCLUSIONS Our data show that, like ifampicin, ethambutol and pyrazinamide, streptomycin also exhibits discordant phenotypic and genotypic DST results for some M. tuberculosis isolates. Hence, streptomycin should be included in therapy regimens only if both phenotypic and genotypic resistance testing indicate susceptibility to avoid amplification of resistance and drug toxicity.
Collapse
|
3
|
Ferdosnejad K, Sholeh M, Abdolhamidi R, Soroush E, Siadat SD, Tarashi S. The occurrence rate of Haarlem and Beijing genotypes among Middle Eastern isolates of multi drug resistant Mycobacterium tuberculosis: A systematic review and meta-analysis. Respir Investig 2024; 62:296-304. [PMID: 38295613 DOI: 10.1016/j.resinv.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Antibiotic resistance is a serious problem that poses a major challenge to tuberculosis control worldwide. Many developing countries still struggle with this infection in term of various aspects as it remains a major health concern. A number of developing countries are located in the Middle East, one of the world's most important regions. The control of this infection remains largely suboptimal despite intensive research in the field, and the mechanisms that lead to its progression have not yet been fully understood. Therefore, TB control must be amended through the identification of new strategies. For this reason, monitoring genetic characterizations of TB strains by molecular typing methods in different geographical regions can be important to setting local programs and global strategies to control TB infection. It is important to know the genotype of Mycobacterium tuberculosis strains to evaluate the occurrence of outbreaks and the transmission of this disease. Beijing and Haarlem genotypes are the most prevalent and, in these families, there is greater association with drug resistance, resulting in more severe forms of TB and higher levels of treatment failure than in other families. The current study is planned to systematically conduct a review using a meta-analysis to show the prevalence of Beijing and Haarlem genotypes in the Middle Eastern MDR-TB cases. M. tuberculosis strains pose particular epidemiological and clinical concerns as they can endanger tuberculosis control programs.
Collapse
Affiliation(s)
| | - Mohammad Sholeh
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Bacteriology, Pasture Institute of Iran, Tehran, Iran
| | | | - Erfan Soroush
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Tarashi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Hosseinali Z, Mohammadshahi J, Teimourpour A, Habibzadeh S, Esmaelizad M, Arzanlou M, Mirzanejad-Asl H, Sadeghnezhad M, Sohrabi S, Teimourpour R. Molecular identification of multiple drug resistance (MDR) strain of Mycobacterium tuberculosis. Mol Biol Rep 2023; 50:10271-10275. [PMID: 37971566 DOI: 10.1007/s11033-023-08867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND OBJECTIVES Isoniazid and rifampin are the first -line drugs against Mycobacterium tuberculosis. Resistance to these important drugs is a serious threat to human public health. Therefore, this study aimed at molecular detection of resistance to these valuable drugs. MATERIALS AND METHODS In this descriptive cross-sectional study, 111 non - duplicated clinical samples including sputum and Bronchoalveolar lavage (BAL) samples were collected from patients referred to the Ardabil Health Center between 2017 and 2020. The samples were first examined by microscopic method, then their DNA was extracted using the boiling method. Specific primers and MAS-PCR method were employed for the detection resistance to isoniazid and rifampin drugs and identification of MDR strain. RESULTS of 111 specimens, 15.3% belonged to NTM. In total, the resistance rate to isoniazid and rifampin was 17% and 27% respectively while the resistance rate to isoniazid and rifampin among NTM was 61.54% and 38.46%. CONCLUSION In our study, the prevalence of resistance to isoniazid and rifampin among Mycobacterium tuberculosis complex(MTC) and non-tuberculous mycobacteria(NTM) was investigated using the MAS-PCR method. This work highlighted the high anti- tuberculosis resistance rate among NTM compared to MTC strains.
Collapse
Affiliation(s)
- Zahra Hosseinali
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Jafar Mohammadshahi
- Departments of infectious disease, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amir Teimourpour
- Blood Transfusion Research Center, High Institute for Research and Education, Tehran, Iran
| | - Shahram Habibzadeh
- Departments of infectious disease, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Esmaelizad
- Central lab, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohsen Arzanlou
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hafez Mirzanejad-Asl
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahin Sadeghnezhad
- Ardabil Health Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shabnam Sohrabi
- Ardabil Health Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Roghayeh Teimourpour
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
5
|
Wang Z, Tang Z, Heidari H, Molaeipour L, Ghanavati R, Kazemian H, Koohsar F, Kouhsari E. Global status of phenotypic pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates: an updated systematic review and meta-analysis. J Chemother 2023; 35:583-595. [PMID: 37211822 DOI: 10.1080/1120009x.2023.2214473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Pyrazinamide (PZA) is an essential first-line tuberculosis drug for its unique mechanism of action active against multidrug-resistant-TB (MDR-TB). Thus, the aim of updated meta-analysis was to estimate the PZA weighted pooled resistance (WPR) rate in M. tuberculosis isolates based on publication date and WHO regions. We systematically searched the related reports in PubMed, Scopus, and Embase (from January 2015 to July 2022). Statistical analyses were performed using STATA software. The 115 final reports in the analysis investigated phenotypic PZA resistance data. The WPR of PZA was 57% (95% CI 48-65%) in MDR-TB cases. According to the WHO regions, the higher WPRs of PZA were reported in the Western Pacific (32%; 95% CI 18-46%), South East Asian region (37%; 95% CI 31-43%), and the Eastern Mediterranean (78%; 95% CI 54-95%) among any-TB patients, high risk of MDR-TB patients, and MDR-TB patients, respectively. A negligible increase in the rate of PZA resistance were showed in MDR-TB cases (55% to 58%). The rate of PZA resistance has been rising in recent years among MDR-TB cases, underlines the essential for both standard and novel drug regimens development.
Collapse
Affiliation(s)
- Zheming Wang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Molaeipour
- Department of Epidemiology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Faramarz Koohsar
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
6
|
Italia A, Shaik MM, Peri F. Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection. Biomolecules 2023; 13:999. [PMID: 37371579 PMCID: PMC10296423 DOI: 10.3390/biom13060999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Emerging pharmacological strategies that target major virulence factors of antibiotic-resistant Mycobacterium tuberculosis (Mtb) are presented and discussed. This review is divided into three parts corresponding to structures and functions important for Mtb pathogenicity: the cell wall, the lipoarabinomannan, and the secretory proteins. Within the cell wall, we further focus on three biopolymeric sub-components: mycolic acids, arabinogalactan, and peptidoglycan. We present a comprehensive overview of drugs and drug candidates that target cell walls, envelopes, and secretory systems. An understanding at a molecular level of Mtb pathogenesis is provided, and potential future directions in therapeutic strategies are suggested to access new drugs to combat the growing global threat of antibiotic-resistant Mtb infection.
Collapse
Affiliation(s)
| | | | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (A.I.); (M.M.S.)
| |
Collapse
|
7
|
Sharma RK, Kumari U, Kumari N, Kumar R. Characterization of Genetic Mutations in Multi-Drug-Resistant Isolates of Mycobacterium tuberculosis Bacilli Conferring Resistance to a Second-Line Anti-tuberculosis Drug. Cureus 2023; 15:e40442. [PMID: 37456413 PMCID: PMC10349655 DOI: 10.7759/cureus.40442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
INTRODUCTION Multi-drug-resistant tuberculosis (MDR-TB) has become a major public health concern globally. Mutations in first- and second-line drug targets such as katG, inhA, rpoB, rrs, eis, gyrA, and gyrB have been associated with drug resistance. Monitoring predominant mutations in the MDR-TB patient population is essential to monitor and devise future therapeutic regimes. The present study is aimed to characterize genetic mutations in MDR isolates of Mycobacterium tuberculosis (MTB) bacilli conferring resistance to a second-line anti-tuberculosis drug in the Eastern Indian population. METHODS This cross-sectional study was conducted in the Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, and in the Tuberculosis Demonstration & Training Centre, Agamkuan, Patna. A total of 3270 patients suspected to have MDR-TB were recruited in the study. Two sputum samples, one on the spot, and the other in the morning were collected from each patient and the diagnosis of rifampicin-sensitive (RS)/rifampicin-resistant (RR/MDR) TB was done by Gene-Xpert test. One hundred fifty RS-TB samples and 150 RR/MDR-TB samples were considered for line probe assay (LPA). RS samples were subjected to first-line LPA using Genotype® MTBDR Plus ver 2.0 and RR/MDR samples were considered for second-line LPA using Genotype® MTBDRsl ver 2.0. All sputum samples were subjected to sputum smear microscopy using the Ziehl-Neelsen staining method. Statistical analysis was done using Statistical Package for Social Sciences (SPSS) version 26.0 (IBM Corp. Armonk, NY) and R (version 4.1; R Core Team 2021). RESULTS In the present study, out of 3270 patients, we detected RR/MDR-TB in 235 patients (7.19%), RS-TB in 812 patients (24.83%), the rest of the patients negative for MTB (2223, 67.98%). Out of 150 RR/MDR-TB sputum samples tested, resistance to fluoroquinolone (FQ) was observed in 41 samples. The selected patients had predominantly FQ resistance due to the gyrA gene mutations (97.56%, n=40) compared to the gyrB gene mutations (2.44%, n=1). We observed >60% of the mutations in the gyrA gene in codon 94 (MUT3C (D94G), MUT3A (D94A), and MUT3D (D94H). In addition, we found the mutations MUT1 (A90V) and MUT2 (S91P) in the codons 90 and 91 of the gyrA gene in the considered MTB patient population. CONCLUSION The identified genes can be further validated to be considered as therapeutic targets, but more therapeutics and advanced strategies should be applied in the management of MTB.
Collapse
Affiliation(s)
| | - Usha Kumari
- Biochemistry, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Namrata Kumari
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Rakesh Kumar
- Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| |
Collapse
|
8
|
Al-Mutairi NM, Ahmad S, Mokaddas E, Al-Hajoj S. First insights into the phylogenetic diversity of Mycobacterium tuberculosis in Kuwait and evaluation of REBA MTB-MDR assay for rapid detection of MDR-TB. PLoS One 2022; 17:e0276487. [PMID: 36264939 PMCID: PMC9584360 DOI: 10.1371/journal.pone.0276487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Early detection of Mycobacterium tuberculosis (Mtb) in clinical specimens, its susceptibility to anti-TB drugs and disruption of infection transmission to new hosts are essential components for global tuberculosis (TB) control efforts. This study investigated major Mtb genotypes circulating in Kuwait and evaluated the performance of REBA MTB-MDR (REBA) test in comparison to GenoType MTBDRplus (gMTBDR+) assay for rapid detection of resistance of Mtb to isoniazid and rifampicin (MDR-TB). M. tuberculosis isolates (n = 256) originating predominantly from expatriate patients during a 6-month period were tested by spoligotyping and a dendrogram was created by UPGMA using MIRU-VNTRplus software. Phenotypic drug susceptibility testing (DST) was performed by MGIT 960 system. Genotypic DST for isoniazid and rifampicin was done by REBA and gMTBDR+ assays. Spoligotyping assigned 188 (73.4%) isolates to specific spoligotype international type (SIT) while 68 isolates exhibited orphan patterns. All major M. tuberculosis lineages were detected and EAI, CAS and Beijing families were predominant. Phylogenetic tree showed 131 patterns with 105 isolates exhibiting a unique pattern while 151 isolates clustered in 26 patterns. Fifteen isolates were resistant to one/more drugs. REBA and gMTBDR+ detected isoniazid resistance in 11/12 and 10/12 and rifampicin resistance in 4/5 and 4/5 resistant isolates, respectively. The diversity of SIT patterns are highly suggestive of infection of most expatriate patients with unique Mtb strains, likely acquired in their native countries before their arrival in Kuwait. Both, REBA and gMTBDR+ assays performed similarly for detection of resistance of Mtb to isoniazid and rifampicin for rapid detection of MDR-TB.
Collapse
Affiliation(s)
- Noura M. Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- * E-mail: ,
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Special Hospital and Research Center (KFSH & RC), Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Bwalya P, Solo ES, Chizimu JY, Shrestha D, Mbulo G, Thapa J, Nakajima C, Suzuki Y. Characterization of embB mutations involved in ethambutol resistance in multi-drug resistant Mycobacterium tuberculosis isolates in Zambia. Tuberculosis (Edinb) 2022; 133:102184. [DOI: 10.1016/j.tube.2022.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
|
10
|
Experimental confirmation that an uncommon
rrs
gene mutation (g878a) of
Mycobacterium tuberculosis
confers resistance to streptomycin. Antimicrob Agents Chemother 2022; 66:e0191521. [DOI: 10.1128/aac.01915-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effective treatment of patients diagnosed with drug resistant tuberculosis is highly dependent upon the ability to rapidly and accurately determine the antibiotic susceptibility profile of the
Mycobacterium tuberculosis
isolate(s) involved. Thus, as more clinical microbiology laboratories advance towards the use of DNA sequence-based diagnostics, it is imperative that their predictive functions extend beyond the well-known resistance mutations, in order to also encompass as many of the lower-frequency mutations as possible. However, in most cases, the fundamental experimental proof that links these uncommon mutations with phenotypic resistance is lacking. One such example is the g878a polymorphism within the
rrs
16s rRNA gene. We, and others, have identified this mutation within a small number of drug-resistant isolates, although a consensus regarding exactly which aminoglycoside antibiotic(s) it confers resistance toward has not previously been reached. Here we have employed oligo-mediated recombineering to introduce the g878a polymorphism into the
rrs
gene of
M. bovis
BCG - a close relative of
M. tuberculosis
- and demonstrate that it confers low-level resistance to streptomycin alone. It does not confer cross-resistance towards amikacin, capreomycin, nor kanamycin. We also demonstrate that the
rrs
g878a
mutation exerts a substantial fitness defect
in vitro
, that may at least in part explain why clinical isolates bearing this mutation appear to be quite rare. Overall, this study provides clarity to the phenotype attributable to the
rrs
g878a
mutation and is relevant to the future implementation of genomics-based diagnostics, as well as the clinical management of patients where this particular polymorphism is encountered.
Collapse
|
11
|
Mokaddas E, Ahmad S, Eldeen HS, Zaglul H, Al-Mutairi NM, Al-Otaibi A. First report of extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) infection in Kuwait. J Infect Public Health 2021; 14:1612-1613. [PMID: 34624715 DOI: 10.1016/j.jiph.2021.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait; Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait; Microbiology Laboratory, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait.
| | | | - Husam Zaglul
- Tuberculosis Department, Chest Diseases Hospital, Shuwaikh, Kuwait
| | - Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ahad Al-Otaibi
- Microbiology Laboratory, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
12
|
Campelo TA, Cardoso de Sousa PR, Nogueira LDL, Frota CC, Zuquim Antas PR. Revisiting the methods for detecting Mycobacterium tuberculosis: what has the new millennium brought thus far? Access Microbiol 2021; 3:000245. [PMID: 34595396 PMCID: PMC8479963 DOI: 10.1099/acmi.0.000245] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Tuberculosis (TB) affects around 10 million people worldwide in 2019. Approximately 3.4 % of new TB cases are multidrug-resistant. The gold standard method for detecting Mycobacterium tuberculosis, which is the aetiological agent of TB, is still based on microbiological culture procedures, followed by species identification and drug sensitivity testing. Sputum is the most commonly obtained clinical specimen from patients with pulmonary TB. Although smear microscopy is a low-cost and widely used method, its sensitivity is 50-60 %. Thus, owing to the need to improve the performance of current microbiological tests to provide prompt treatment, different methods with varied sensitivity and specificity for TB diagnosis have been developed. Here we discuss the existing methods developed over the past 20 years, including their strengths and weaknesses. In-house and commercial methods have been shown to be promising to achieve rapid diagnosis. Combining methods for mycobacterial detection systems demonstrates a correlation of 100 %. Other assays are useful for the simultaneous detection of M. tuberculosis species and drug-related mutations. Novel approaches have also been employed to rapidly identify and quantify total mycobacteria RNA, including assessments of global gene expression measured in whole blood to identify the risk of TB. Spoligotyping, mass spectrometry and next-generation sequencing are also promising technologies; however, their cost needs to be reduced so that low- and middle-income countries can access them. Because of the large impact of M. tuberculosis infection on public health, the development of new methods in the context of well-designed and -controlled clinical trials might contribute to the improvement of TB infection control.
Collapse
Affiliation(s)
- Thales Alves Campelo
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | | | - Lucas de Lima Nogueira
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane Cunha Frota
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Saati AA, Khurram M, Faidah H, Haseeb A, Iriti M. A Saudi Arabian Public Health Perspective of Tuberculosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10042. [PMID: 34639342 PMCID: PMC8508237 DOI: 10.3390/ijerph181910042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022]
Abstract
Tuberculosis is a global health challenge due to its spreading potential. The Kingdom of Saudi Arabia (KSA) faces a challenge in the spread of tuberculosis from migrant workers, but the foremost threat is the huge number of pilgrims who travel to visit sacred sites of the Islamic world located in the holy cities of Makkah and Al Madina. Pilgrims visit throughout the year but especially in the months of Ramadan and Zul-Hijah. The rise of resistance in Mycobacterium tuberculosis is an established global phenomenon that makes such large congregations likely hotspots in the dissemination and spread of disease at a global level. Although very stringent and effective measures exist, the threat remains due to the ever-changing dynamics of this highly pathogenic disease. This overview primarily highlights the current public health challenges posed by this disease to the Saudi health system, which needs to be highlighted not only to the concerned authorities of KSA, but also to the concerned global quarters since the pilgrims and migrants come from all parts of the world with a majority coming from high tuberculosis-burdened countries.
Collapse
Affiliation(s)
- Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Muhammad Khurram
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al Qura University, Makkah 24382, Saudi Arabia;
| | - Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al Qura University, Makkah 24382, Saudi Arabia;
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Phytochem Lab, Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Center for Studies on Bioispired Agro-Environmental Technology (BAT Center), Università degli Studi di Napoli “Federico II”, 80055 Portici, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| |
Collapse
|
14
|
Current Epidemiological Characteristics of Imported Malaria, Vector Control Status and Malaria Elimination Prospects in the Gulf Cooperation Council (GCC) Countries. Microorganisms 2021; 9:microorganisms9071431. [PMID: 34361867 PMCID: PMC8307262 DOI: 10.3390/microorganisms9071431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
Malaria is the most common vector-borne parasitic infection causing significant human morbidity and mortality in nearly 90 tropical/sub-tropical countries worldwide. Significant differences exist in the incidence of malaria cases, dominant Plasmodium species, drug-resistant strains and mortality rates in different countries. Six Gulf Cooperation Council (GCC) countries (Bahrain, Kuwait, Qatar, Oman, Saudi Arabia and United Arab Emirates, UAE) in the Middle East region with similar climates, population demographics and economic prosperity are aiming to achieve malaria elimination. In this narrative review, all studies indexed in PubMed describing epidemiological characteristics of indigenous and imported malaria cases, vector control status and how malaria infections can be controlled to achieve malaria elimination in GCC countries were reviewed and discussed. These studies have shown that indigenous malaria cases are absent in Bahrain, Kuwait, Qatar and UAE and have progressively declined in Oman and Saudi Arabia. However, imported malaria cases continue to occur as GCC countries have large expatriate populations originating from malaria-endemic countries. Various malaria control and prevention strategies adopted by GCC countries including more stringent measures to reduce the likelihood of importing malaria cases by prior screening of newly arriving expatriates and vector elimination programs are likely to lead to malaria elimination in this region.
Collapse
|
15
|
Wei H, Duan X. Application of KTH-integrated nursing model in care of patients with multi-drug resistant tuberculosis. Am J Transl Res 2021; 13:6855-6863. [PMID: 34306436 PMCID: PMC8290726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/19/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To evaluate the effect of the KTH-integrated nursing model of the knowledge-attitude-belief-practice model (KABP)-transtheoretical model (TTM)-as a health belief model (HBM) in nursing care of patients with multi-drug resistant tuberculosis (MDR-TB). METHODS Using a prospective study method, 102 patients with MDR-TB were randomly divided into two groups according to a random number table. The control group (n=51) received conventional nursing care, and the study group (n=51) received a KTH-integrated nursing model. The sputum negative conversion rate, effective rate of lesion absorption, level of disease cognition, compliance, self-efficacy (general self-efficacy scale, GSES score), healthy behavior (health-promoting lifestyle profile, HPLP), and quality of life (GQOL-74 scale score) were compared between the two groups. RESULTS Six months after enrollment, the sputum-negative conversion rate, total effective rate of lesion absorption, and total compliance rate of the study group were significantly higher than those of the control group (80.39% vs. 62.75%, 84.31% vs. 66.67%, 96.08% vs. 78.43%, P<0.05). 6 months after enrollment, the treatment plan, etiopathogenesis and harm, precautions, importance of treatment compliance, observation and follow-up, and total score of the study were all significantly higher than those of the control group (P<0.05). Six months after enrollment, the scores of GSES, HPLP and GQOL-74 in the study group were significantly higher than those of the control group (P<0.05). CONCLUSION The implementation of a KTH integrated nursing model for patients with MDR-TB was beneficial to promote sputum-negative conversion and lesion absorption, and improved disease awareness, medication compliance, self-efficacy, healthy behavior, and quality of life.
Collapse
Affiliation(s)
- Hanfen Wei
- The Five Tuberculosis Endemic Areas, The Public Health Clinical Center of ChengduChengdu, Sichuan Province, China
| | - Xiaoqian Duan
- Department of Psychosomatic Medicine, Xijing Hospital, Air Force Military Medical UniversityXi’an, Shaanxi Province, China
| |
Collapse
|
16
|
Rocha DMGC, Magalhães C, Cá B, Ramos A, Carvalho T, Comas I, Guimarães JT, Bastos HN, Saraiva M, Osório NS. Heterogeneous Streptomycin Resistance Level Among Mycobacterium tuberculosis Strains From the Same Transmission Cluster. Front Microbiol 2021; 12:659545. [PMID: 34177837 PMCID: PMC8226182 DOI: 10.3389/fmicb.2021.659545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Widespread and frequent resistance to the second-line tuberculosis (TB) medicine streptomycin, suggests ongoing transmission of low fitness cost streptomycin resistance mutations. To investigate this hypothesis, we studied a cohort of 681 individuals from a TB epidemic in Portugal. Whole-genome sequencing (WGS) analyses were combined with phenotypic growth studies in culture media and in mouse bone marrow derived macrophages. Streptomycin resistance was the most frequent resistance in the cohort accounting for 82.7% (n = 67) of the resistant Mycobacterium tuberculosis isolates. WGS of 149 clinical isolates identified 13 transmission clusters, including three clusters containing only streptomycin resistant isolates. The biggest cluster was formed by eight streptomycin resistant isolates with a maximum of five pairwise single nucleotide polymorphisms of difference. Interestingly, despite their genetic similarity, these isolates displayed different resistance levels to streptomycin, as measured both in culture media and in infected mouse bone marrow derived macrophages. The genetic bases underlying this phenotype are a combination of mutations in gid and other genes. This study suggests that specific streptomycin resistance mutations were transmitted in the cohort, with the resistant isolates evolving at the cluster level to allow low-to-high streptomycin resistance levels without a significative fitness cost. This is relevant not only to better understand transmission of streptomycin resistance in a clinical setting dominated by Lineage 4 M. tuberculosis infections, but mainly because it opens new prospects for the investigation of selection and spread of drug resistance in general.
Collapse
Affiliation(s)
- Deisy M G C Rocha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Carlos Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Baltazar Cá
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Angelica Ramos
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Teresa Carvalho
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Iñaki Comas
- Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain.,CIBER in Epidemiology and Public Health, Valencia, Spain
| | - João Tiago Guimarães
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal.,Institute of Public Health, University of Porto, Porto, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Helder Novais Bastos
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal.,Serviço de Pneumologia, Centro Hospitalar Universitário de São João EPE, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
17
|
Al-Mutairi NM, Ahmad S, Mokaddas E. Increasing prevalence of resistance to second-line drugs among multidrug-resistant Mycobacterium tuberculosis isolates in Kuwait. Sci Rep 2021; 11:7765. [PMID: 33833390 PMCID: PMC8032671 DOI: 10.1038/s41598-021-87516-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular methods detect genetic mutations associated with drug resistance. This study detected resistance-conferring mutations in gyrA/gyrB for fluoroquinolones and rrs/eis genes for second-line injectable drugs (SLIDs) among multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates in Kuwait. Fifty pansusceptible M. tuberculosis and 102 MDR-TB strains were tested. Phenotypic susceptibility testing was performed by MGIT 960 system using SIRE drug kit. GenoType MTBDRsl version 1 (gMTBDRslv1) and GenoType MTBDRsl version 2 (gMTBDRslv2) tests were used for mutation detection. Results were validated by PCR-sequencing of respective genes. Fingerprinting was performed by spoligotyping. No mutations were detected in pansusceptible isolates. gMTBDRslv1 detected gyrA mutations in 12 and rrs mutations in 8 MDR-TB isolates. gMTBDRsl2 additionally detected gyrB mutations in 2 and eis mutation in 1 isolate. Mutations in both gyrA/gyrB and rrs/eis were not detected. gMTBDRslv1 also detected ethambutol resistance-conferring embB mutations in 59 isolates. Although XDR-TB was not detected, frequency of resistance-conferring mutations for fluoroquinolones or SLIDs was significantly higher among isolates collected during 2013–2019 versus 2006–2012. Application of both tests is warranted for proper management of MDR-TB patients in Kuwait as gMTBDRslv2 detected resistance to fluoroquinolones and/or SLIDs in 3 additional isolates while gMTBDRslv1 additionally detected resistance to ethambutol in 58% of MDR-TB isolates.
Collapse
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.,Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| |
Collapse
|
18
|
Current Status and the Epidemiology of Malaria in the Middle East Region and Beyond. Microorganisms 2021; 9:microorganisms9020338. [PMID: 33572053 PMCID: PMC7915327 DOI: 10.3390/microorganisms9020338] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Vector-borne parasitic infectious diseases are important causes of morbidity and mortality globally. Malaria is one of the most common vector-borne parasitic infection and is caused by five Plasmodium species, namely P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. Epidemiologically, differences in the patterns of malaria cases, causative agent, disease severity, antimicrobial resistance, and mortality exist across diverse geographical regions. The world witnessed 229 million malaria cases which resulted in 409,000 deaths in 2019 alone. Although malaria cases are reported from 87 countries globally, Africa bears the brunt of these infections and deaths as nearly 94% of total malaria cases and deaths occur in this continent, particularly in sub-Saharan Africa. Most of the Middle East Region countries are malaria-free as no indigenous cases of infection have been described in recent years. However, imported cases of malaria continue to occur as some of these countries. Indeed, the six Gulf Cooperation Council (GCC) countries have large expatriate population originating from malaria endemic countries. In this review, the current status and epidemiology of malaria in the Middle East Region countries and other malaria-endemic countries that are home to a large migrant workforce being employed in Middle East Region countries are discussed.
Collapse
|
19
|
Al-Mutairi NM, Ahmad S, Mokaddas EM. Correction to: Molecular characterization of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates identifies local transmission of infection in Kuwait, a country with a low incidence of TB and MDR-TB. Eur J Med Res 2020; 25:14. [PMID: 32312322 PMCID: PMC7171810 DOI: 10.1186/s40001-020-00412-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Eiman M Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| |
Collapse
|