1
|
Becker ER, Wetmore GC, Goodman MD, Rodriquez D, Branson RD. Review of Ventilation in Traumatic Brain Injury. Respir Care 2025; 70:450-457. [PMID: 40028858 DOI: 10.1089/respcare.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Acute brain injury is a prominent admitting diagnosis of critically ill patients, often requiring endotracheal intubation to protect the airway and resulting in respiratory failure and the need for mechanical ventilation. Following brain injury, a primary focus is avoidance of secondary insults including both hypercarbia and hypoxemia. Hyperoxemia may also result in unanticipated neurologic consequences. Brain-lung crosstalk refers to complex relationships that drive iatrogenic injury in both organs, mediated by inflammation, immunosuppression, and autonomic dysfunction. In an effort to further reduce secondary brain injury, care must be taken from time of intubation to extubation to preserve cerebral blood flow and adequate oxygen delivery. This review describes timing and methodology for intubation of a patient with brain injury, the controversies and current recommendations related to mechanical ventilation settings, and the difficulty of decision-making with extubation and tracheostomy.
Collapse
Affiliation(s)
- Ellen R Becker
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Gregory C Wetmore
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael D Goodman
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Dario Rodriquez
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Richard D Branson
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Barakat R, Al-Sarraf H, Redzic Z. Hypoxemia exerts detrimental effects on the choroid plexuses and cerebrospinal fluid system in rats. Fluids Barriers CNS 2025; 22:27. [PMID: 40075475 PMCID: PMC11905537 DOI: 10.1186/s12987-024-00613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Hypoxemia can cause secondary acute brain injury, but the mechanisms behind it are not entirely clear and could involve disturbances in the brain extracellular fluids. We aimed to explore the effects of hypoxemia on the choroid plexus (CPs) and cerebrospinal fluid (CSF) system in rats. METHODS Male Sprague Dawley rats were kept in O2 control in vivo cabinet with either 21% (normoxia) or 8% O2 (hypoxemia) for up to 48 h. In some cases, signaling of selected cytokines was inhibited prior to hypoxemia. CSF and blood samples were collected by Cisterna Magna puncture and through venous catheters, respectively. The percentages of dead cells in the CPs and ependymal layers (EL) after hypoxemia or normoxia was estimated using TUNEL staining. CP's ultrastructure was analyzed by transmission electron microscopy. Protein concentration in the CSF and plasma was measured and the CSF albumin-to-total protein ratios were estimated. Concentrations of hypoxia-related cytokines in the CSF and plasma samples were estimated using the multiplex immunoassay. Data was analyzed by one-way ANOVA followed by either Bonferroni or Tukey's multiple comparison tests, or Student's t-test. Results are presented as mean ± SD; p < 0.05 was considered statistically significant. RESULTS Duration of hypoxemia exerted significant effects on the cell viability in the CPs (p < 0.01) and EL (p < 0.01) and caused apoptosis-related changes in the CP. Hypoxemia had significant effects on the protein concentration in the CSF (p < 0.05), but not in plasma (p > 0.05), with a significant increase in the CSF albumin-to-total protein ratio after 6 h hypoxemia (p < 0.05). Thirty-two cytokines were detected in the CSF. Hypoxemia caused a statistically significant reduction in the concentrations of 12 cytokines, while concentrations of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) increased significantly. Exposure to hypoxemia after inhibitions of EPO, VEGF, or tumor necrosis factor alpha (TNFα) signaling resulted in more dead cells (p < 0.01), less dead cells (p < 0.01) and more dead cells (p < 0.01) in the CPs, respectively, when compared to the number of dead cells when these cytokines were not inhibited. The density of macrophages in the CPs decreased significantly during hypoxemia; that effect was cancelled out by TNFα inhibition. CONCLUSION Hypoxemia had detrimental effects on the CPs and CSF system, which was modulated by hypoxia- and inflammation-related cytokines.
Collapse
Affiliation(s)
- Rawan Barakat
- Department of Physiology, College of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait
| | - Hameed Al-Sarraf
- Department of Physiology, College of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait
| | - Zoran Redzic
- Department of Physiology, College of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait.
| |
Collapse
|
3
|
Silva PL, Chiumello D, Pozzi T, Rocco PRM. Beyond the Lungs: Extrapulmonary Effects of Non-Invasive and Invasive Ventilation Strategies. J Clin Med 2025; 14:1242. [PMID: 40004773 PMCID: PMC11856178 DOI: 10.3390/jcm14041242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Non-invasive respiratory support and invasive mechanical ventilation are critical interventions that can induce significant changes not only in the lungs but also in extra-pulmonary organs, which are often overlooked. Understanding the extra-pulmonary effects of non-invasive respiratory support and invasive mechanical ventilation is crucial since it can help prevent or mitigate complications and improve outcomes. This narrative review explores these consequences in detail and highlights areas that require further research. Main Text: Non-invasive respiratory support and invasive mechanical ventilation can significantly impact various extrapulmonary organs. For instance, some ventilation strategies can affect venous return from the brain, which may lead to neurological sequelae. In the heart, regardless of the chosen ventilation method, increased intrathoracic pressure (ITP) can also reduce venous return to the heart. This reduction in turn can decrease cardiac output, resulting in hypotension and diminished perfusion of vital organs. Conversely, in certain situations, both ventilation strategies may enhance cardiac function by decreasing the work of breathing and lowering oxygen consumption. In the kidneys, these ventilation methods can impair renal perfusion and function through various mechanisms, including hemodynamic changes and the release of stress hormones. Such alterations can lead to acute kidney injury or exacerbate pre-existing renal conditions. Conclusions: This review emphasizes the critical importance of understanding the extensive mechanisms by which non-invasive respiratory support and invasive mechanical ventilation affect extrapulmonary organs, including neurological, cardiovascular, and renal systems. Such knowledge is essential for optimizing patient care and improving outcomes in critical care settings.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil; (P.L.S.); (P.R.M.R.)
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital Milan, 20142 Milan, Italy
| | - Tommaso Pozzi
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital Milan, 20142 Milan, Italy
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil; (P.L.S.); (P.R.M.R.)
| |
Collapse
|
4
|
Pisano DV, Ortoleva JP, Wieruszewski PM. Short-Term Neurologic Complications in Patients Undergoing Extracorporeal Membrane Oxygenation Support: A Review on Pathophysiology, Incidence, Risk Factors, and Outcomes. Pulm Ther 2024; 10:267-278. [PMID: 38937418 PMCID: PMC11339018 DOI: 10.1007/s41030-024-00265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Regardless of the type, extracorporeal membrane oxygenation (ECMO) requires the use of large intravascular cannulas and results in multiple abnormalities including non-physiologic blood flow, hemodynamic perturbation, rapid changes in blood oxygen and carbon dioxide levels, coagulation abnormalities, and a significant systemic inflammatory response. Among other sequelae, neurologic complications are an important source of mortality and long-term morbidity. The frequency of neurologic complications varies and is likely underreported due to the high mortality rate. Neurologic complications in patients supported by ECMO include ischemic and hemorrhagic stroke, hypoxic brain injury, intracranial hemorrhage, and brain death. In addition to the disease process that necessitates ECMO, cannulation strategies and physiologic disturbances influence neurologic outcomes in this high-risk population. For example, the overall documented rate of neurologic complications in the venovenous ECMO population is lower, but a higher rate of intracranial hemorrhage exists. Meanwhile, in the venoarterial ECMO population, ischemia and global hypoperfusion seem to compose a higher percentage of neurologic complications. In what follows, the literature is reviewed to discuss the pathophysiology, incidence, risk factors, and outcomes related to short-term neurologic complications in patients supported by ECMO.
Collapse
Affiliation(s)
- Dominic V Pisano
- Department of Anesthesiology, Boston Medical Center, Boston, MA, USA
| | - Jamel P Ortoleva
- Department of Anesthesiology, Boston Medical Center, Boston, MA, USA
| | - Patrick M Wieruszewski
- Department of Anesthesiology, Department of Pharmacy, Mayo Clinic, 200 First Street SW, Rochester, MN, 55906, USA.
| |
Collapse
|
5
|
Li X, Deng J, Long Y, Ma Y, Wu Y, Hu Y, He X, Yu S, Li D, Li N, He F. Focus on brain-lung crosstalk: Preventing or treating the pathological vicious circle between the brain and the lung. Neurochem Int 2024; 178:105768. [PMID: 38768685 DOI: 10.1016/j.neuint.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Recently, there has been increasing attention to bidirectional information exchange between the brain and lungs. Typical physiological data is communicated by channels like the circulation and sympathetic nervous system. However, communication between the brain and lungs can also occur in pathological conditions. Studies have shown that severe traumatic brain injury (TBI), cerebral hemorrhage, subarachnoid hemorrhage (SAH), and other brain diseases can lead to lung damage. Conversely, severe lung diseases such as acute respiratory distress syndrome (ARDS), pneumonia, and respiratory failure can exacerbate neuroinflammatory responses, aggravate brain damage, deteriorate neurological function, and result in poor prognosis. A brain or lung injury can have adverse effects on another organ through various pathways, including inflammation, immunity, oxidative stress, neurosecretory factors, microbiome and oxygen. Researchers have increasingly concentrated on possible links between the brain and lungs. However, there has been little attention given to how the interaction between the brain and lungs affects the development of brain or lung disorders, which can lead to clinical states that are susceptible to alterations and can directly affect treatment results. This review described the relationships between the brain and lung in both physiological and pathological conditions, detailing the various pathways of communication such as neurological, inflammatory, immunological, endocrine, and microbiological pathways. Meanwhile, this review provides a comprehensive summary of both pharmacological and non-pharmacological interventions for diseases related to the brain and lungs. It aims to support clinical endeavors in preventing and treating such ailments and serve as a reference for the development of relevant medications.
Collapse
Affiliation(s)
- Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei He
- Department of Geratology, Yongchuan Hospital of Chongqing Medical University(the Fifth Clinical College of Chongqing Medical University), Chongqing, 402160, China.
| |
Collapse
|
6
|
Yao Z, Zhao Y, Lu L, Li Y, Yu Z. Extracerebral multiple organ dysfunction and interactions with brain injury after cardiac arrest. Resusc Plus 2024; 19:100719. [PMID: 39149223 PMCID: PMC11325081 DOI: 10.1016/j.resplu.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Cardiac arrest and successful resuscitation cause whole-body ischemia and reperfusion, leading to brain injury and extracerebral multiple organ dysfunction. Brain injury is the leading cause of death and long-term disability in resuscitated survivors, and was conceptualized and treated as an isolated injury, which has neglected the brain-visceral organ crosstalk. Extracerebral organ dysfunction is common and is significantly associated with mortality and poor neurological prognosis after resuscitation. However, detailed description of the characteristics of post-resuscitation multiple organ dysfunction is lacking, and the bidirectional interactions between brain and visceral organs need to be elucidated to explore new treatment for neuroprotection. This review aims to describe current concepts of post-cardiac arrest brain injury and specific characteristics of post-resuscitation dysfunction in cardiovascular, respiratory, renal, hepatic, adrenal, gastrointestinal, and neurohumoral systems. Additionally, we discuss the crosstalk between brain and extracerebral organs, especially focusing on how visceral organ dysfunction and other factors affect brain injury progression. We think that clarifying these interactions is of profound significance on how we treat patients for neural/systemic protection to improve outcome.
Collapse
Affiliation(s)
- Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liping Lu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yinping Li
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430060, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
7
|
Leal APF, Nieto Marín V, Cabistany VV, Morales J, Buccini DF, Franco OL. Applicability of mouse models for induction of severe acute lung injury. Pulm Pharmacol Ther 2024; 86:102316. [PMID: 39069252 DOI: 10.1016/j.pupt.2024.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Acute lung injury (ALI) is a significant clinical challenge associated with high morbidity and mortality. Worldwide, it affects approximately 200.000 individuals annually, with a staggering 40 % mortality rate in hospitalized cases and persistent complications in out-of-hospital cases. This review focuses on the key immunological pathways underlying bacterial ALI and the exploration of mouse models as tools for its induction. These models serve as indispensable platforms for unraveling the inflammatory cascades and biological responses inherent to ALI, while also facilitating the evaluation of novel therapeutic agents. However, their utility is not without challenges, mainly due to the stringent biosafety protocols required by the diverse bacterial virulence profiles. Simple and reproducible models of pulmonary bacterial infection are currently available, including intratracheal, intranasal, pleural and, intraperitoneal approaches. These models use endotoxins such as commercially available lipopolysaccharide (LPS) or live pathogens such as Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Streptococcus pneumoniae, all of which are implicated in the pathogenesis of ALI. Combining murine models of bacterial lung infection with in-depth studies of the underlying immunological mechanisms is a cornerstone in advancing the therapeutic landscape for acute bacterial lung injury.
Collapse
Affiliation(s)
- Ana Paula Ferreira Leal
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Valentina Nieto Marín
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Vinícius Varzim Cabistany
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Júlia Morales
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Pontifícia Universidade Católica de Brasília, Brasília, DF, 70790160, Brazil.
| |
Collapse
|
8
|
Tisch C, Xourgia E, Exadaktylos A, Ziaka M. Potential use of sodium glucose co-transporter 2 inhibitors during acute illness: a systematic review based on COVID-19. Endocrine 2024; 85:660-675. [PMID: 38448675 PMCID: PMC11291544 DOI: 10.1007/s12020-024-03758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE SGLT-2i are increasingly recognized for their benefits in patients with cardiometabolic risk factors. Additionally, emerging evidence suggests potential applications in acute illnesses, including COVID-19. This systematic review aims to evaluate the effects of SGLT-2i in patients facing acute illness, particularly focusing on SARS-CoV-2 infection. METHODS Following PRISMA guidelines, a systematic search of PubMed, Scopus, medRxiv, Research Square, and Google Scholar identified 22 studies meeting inclusion criteria, including randomized controlled trials and observational studies. Data extraction and quality assessment were conducted independently. RESULTS Out of the 22 studies included in the review, six reported reduced mortality in DM-2 patients taking SGLT-2i, while two found a decreased risk of hospitalization. Moreover, one study demonstrated a lower in-hospital mortality rate in DM-2 patients under combined therapy of metformin plus SGLT-2i. However, three studies showed a neutral effect on the risk of hospitalization. No increased risk of developing COVID-19 was associated with SGLT-2i use in DM-2 patients. Prior use of SGLT-2i was not associated with ICU admission and need for MV. The risk of acute kidney injury showed variability, with inconsistent evidence regarding diabetic ketoacidosis. CONCLUSION Our systematic review reveals mixed findings on the efficacy of SGLT-2i use in COVID-19 patients with cardiometabolic risk factors. While some studies suggest potential benefits in reducing mortality and hospitalizations, others report inconclusive results. Further research is needed to clarify optimal usage and mitigate associated risks, emphasizing caution in clinical interpretation.
Collapse
Affiliation(s)
- Carmen Tisch
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland
| | - Eleni Xourgia
- Department of Cardiology, Inselspital, University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Mairi Ziaka
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Palakshappa JA, Batt JAE, Bodine SC, Connolly BA, Doles J, Falvey JR, Ferrante LE, Files DC, Harhay MO, Harrell K, Hippensteel JA, Iwashyna TJ, Jackson JC, Lane-Fall MB, Monje M, Moss M, Needham DM, Semler MW, Lahiri S, Larsson L, Sevin CM, Sharshar T, Singer B, Stevens T, Taylor SP, Gomez CR, Zhou G, Girard TD, Hough CL. Tackling Brain and Muscle Dysfunction in Acute Respiratory Distress Syndrome Survivors: NHLBI Workshop Report. Am J Respir Crit Care Med 2024; 209:1304-1313. [PMID: 38477657 PMCID: PMC11146564 DOI: 10.1164/rccm.202311-2130ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with long-term impairments in brain and muscle function that significantly impact the quality of life of those who survive the acute illness. The mechanisms underlying these impairments are not yet well understood, and evidence-based interventions to minimize the burden on patients remain unproved. The NHLBI of the NIH assembled a workshop in April 2023 to review the state of the science regarding ARDS-associated brain and muscle dysfunction, to identify gaps in current knowledge, and to determine priorities for future investigation. The workshop included presentations by scientific leaders across the translational science spectrum and was open to the public as well as the scientific community. This report describes the themes discussed at the workshop as well as recommendations to advance the field toward the goal of improving the health and well-being of ARDS survivors.
Collapse
Affiliation(s)
| | - Jane A. E. Batt
- University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Sue C. Bodine
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Bronwen A. Connolly
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Jason Doles
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Jason R. Falvey
- University of Maryland School of Medicine, Baltimore, Maryland
| | | | - D. Clark Files
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Michael O. Harhay
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | - Meghan B. Lane-Fall
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michelle Monje
- Howard Hughes Medical Institute, Stanford University, Stanford, California
| | - Marc Moss
- University of Colorado School of Medicine, Aurora, Colorado
| | - Dale M. Needham
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Shouri Lahiri
- Cedars Sinai Medical Center, Los Angeles, California
| | - Lars Larsson
- Center for Molecular Medicine, Karolinska Institute, Solna, Sweden
- Department of Physiology & Pharmacology, Karolinska Institute and Viron Molecular Medicine Institute, Boston, Massachusetts
| | - Carla M. Sevin
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tarek Sharshar
- Anesthesia and Intensive Care Department, GHU Paris Psychiatry and Neurosciences, Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, University Paris Cité, Paris, France
| | | | | | | | - Christian R. Gomez
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Guofei Zhou
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Timothy D. Girard
- Center for Research, Investigation, and Systems Modeling of Acute Illness, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
10
|
Park H, Lee CH. The Impact of Pulmonary Disorders on Neurological Health (Lung-Brain Axis). Immune Netw 2024; 24:e20. [PMID: 38974208 PMCID: PMC11224666 DOI: 10.4110/in.2024.24.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
The brain and lungs, vital organs in the body, play essential roles in maintaining overall well-being and survival. These organs interact through complex and sophisticated bi-directional pathways known as the 'lung-brain axis', facilitated by their close proximity and neural connections. Numerous studies have underscored the mediation of the lung-brain axis by inflammatory responses and hypoxia-induced damage, which are pivotal to the progression of both pulmonary and neurological diseases. This review aims to delve into how pulmonary diseases, including acute/chronic airway diseases and pulmonary conditions, can instigate neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. Additionally, we highlight the emerging research on the lung microbiome which, drawing parallels between the gut and lungs in terms of microbiome contents, may play a significant role in modulating brain health. Ultimately, this review paves the way for exciting avenues of future research and therapeutics in addressing respiratory and neurological diseases.
Collapse
Affiliation(s)
- Hongryeol Park
- Department of Tissue Morphogenesis, Max-Planck Institute for Molecular Biomedicine, Muenster 48149, Germany
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
11
|
Ziaka M, Exadaktylos A. Exploring the lung-gut direction of the gut-lung axis in patients with ARDS. Crit Care 2024; 28:179. [PMID: 38802959 PMCID: PMC11131229 DOI: 10.1186/s13054-024-04966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a life-threatening inflammatory reaction marked by refractory hypoxaemia and pulmonary oedema. Despite advancements in treatment perspectives, ARDS still carries a high mortality rate, often due to systemic inflammatory responses leading to multiple organ dysfunction syndrome (MODS). Indeed, the deterioration and associated mortality in patients with acute lung injury (LI)/ARDS is believed to originate alongside respiratory failure mainly from the involvement of extrapulmonary organs, a consequence of the complex interaction between initial inflammatory cascades related to the primary event and ongoing mechanical ventilation-induced injury resulting in multiple organ failure (MOF) and potentially death. Even though recent research has increasingly highlighted the role of the gastrointestinal tract in this process, the pathophysiology of gut dysfunction in patients with ARDS remains mainly underexplored. This review aims to elucidate the complex interplay between lung and gut in patients with LI/ARDS. We will examine various factors, including systemic inflammation, epithelial barrier dysfunction, the effects of mechanical ventilation (MV), hypercapnia, and gut dysbiosis. Understanding these factors and their interaction may provide valuable insights into the pathophysiology of ARDS and potential therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Memisoglu A, Hinton M, Elsayed Y, Graham R, Dakshinamurti S. Assessment of Autoregulation of the Cerebral Circulation during Acute Lung Injury in a Neonatal Porcine Model. CHILDREN (BASEL, SWITZERLAND) 2024; 11:611. [PMID: 38790606 PMCID: PMC11119854 DOI: 10.3390/children11050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
In neonates with acute lung injury (ALI), targeting lower oxygenation saturations is suggested to limit oxygen toxicity while maintaining vital organ function. Although thresholds for cerebral autoregulation are studied for the management of premature infants, the impact of hypoxia on hemodynamics, tissue oxygen consumption and extraction is not well understood in term infants with ALI. We examined hemodynamics, cerebral autoregulation and fractional oxygen extraction, as measured by near-infrared spectroscopy (NIRS) and blood gases, in a neonatal porcine oleic acid injury model of moderate ALI. We hypothesized that in ALI animals, cerebral oxygen extraction would be increased to a greater degree than kidney or gut oxygen extraction as indicative of the brain's adaptive efforts to increase cerebral oxygen extraction at the expense of splanchnic end organs. Fifteen anesthetized, ventilated 5-day-old neonatal piglets were divided into moderate lung injury by treatment with oleic acid or control (sham injection). The degree of lung injury was quantified at baseline and after establishment of ALI by blood gases, ventilation parameters and calculated oxygenation deficit, hemodynamic indices by echocardiography and lung injury score by ultrasound. PaCO2 was maintained constant during ventilation. Cerebral, renal and gut oxygenation was determined by NIRS during stepwise decreases in inspired oxygen from 50% to 21%, correlated with PaO2 and PvO2; changes in fractional oxygen extraction (ΔFOE) were calculated from NIRS and from regional blood gas samples. The proportion of cerebral autoregulation impairment attributable to blood pressure, and to hypoxemia, was calculated from autoregulation nomograms. ALI manifested as hypoxemia with increasing intrapulmonary shunt fraction, decreased lung compliance and increased resistance, and marked increase in lung ultrasound score. Brain, gut and renal NIRS, obtained from probes placed over the anterior skull, central abdomen and flank, respectively, correlated with concurrent SVC (brain) or IVC (gut, renal) PvO2 and SvO2. Cerebral autoregulation was impaired after ALI as a function of blood pressure at all FiO2 steps, but predominantly by hypoxemia at FiO2 < 40%. Cerebral ΔFOE was higher in ALI animals at all FiO2 steps. We conclude that in an animal model of neonatal ALI, cerebrovascular blood flow regulation is primarily dependent on oxygenation. There is not a defined oxygenation threshold below which cerebral autoregulation is impaired in ALI. Cerebral oxygen extraction is enhanced in ALI, reflecting compensation for exhausted cerebral autoregulation due to the degree of hypoxemia and/or hypotension, thereby protecting against tissue hypoxia.
Collapse
Affiliation(s)
- Asli Memisoglu
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; (A.M.); (M.H.)
| | - Martha Hinton
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; (A.M.); (M.H.)
- Department of Physiology, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| | - Yasser Elsayed
- Section of Neonatology, Department of Pediatrics, Women’s Hospital, Health Sciences Centre, 665 William Ave., Winnipeg, MB R3E 0L8, Canada;
| | - Ruth Graham
- Departments of Anesthesiology, Perioperative and Pain Medicine, Health Sciences Centre, 671 William Ave., Winnipeg, MB R3E 0Z3, Canada;
| | - Shyamala Dakshinamurti
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; (A.M.); (M.H.)
- Department of Physiology, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
- Section of Neonatology, Department of Pediatrics, Women’s Hospital, Health Sciences Centre, 665 William Ave., Winnipeg, MB R3E 0L8, Canada;
| |
Collapse
|
13
|
Menni AE, Tzikos G, Fyntanidou B, Ioannidis A, Loukipoudi L, Grosomanidis V, Chorti A, Shrewsbury A, Stavrou G, Kotzampassi K. The Effect of Probiotics on the Prognostication of the Neutrophil-to-Lymphocyte Ratio in Severe Multi-Trauma Patients. J Pers Med 2024; 14:419. [PMID: 38673046 PMCID: PMC11051514 DOI: 10.3390/jpm14040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The ratio of neutrophils to lymphocytes [NLR] is one of the most accepted prognostic indices and demonstrates a positive correlation with the severity of a disease. Given that probiotics exerted immunomodulatory properties and thus positively affected lymphocytopenia induction in severely ill patients, we performed a post hoc analysis in the ProVAP protocol to investigate whether probiotics affected the prognostication of NLR in respect to ventilator-associated pneumonia in multi-trauma patients. This cohort mandatorily involved severe traumatic brain injury patients. METHODS The white blood cell data of all patients, after being retrieved for the days 0 and 7, were statistically assessed in respect to neutrophils, lymphocytes and NLR among the 4 sub-groups of the study: placebo/no-VAP, placebo/VAP, probiotics/no-VAP, and probiotics/VAP. RESULTS Lymphopenia was dominant in placebo sub-groups, while an increased level of lymphocytes was prominent in probiotics sub-groups. This resulted in an increase [p = 0.018] in the NLR value in the probiotics/VAP group in relation to the probiotics/no-VAP cohort; this was an increase of half the value of the placebo/VAP [p < 0.001], while the NLR value in placebo/no-VAP group increased almost four-fold in relation to probiotics/no-VAP [p < 0.001]. Additionally, the ROC curve for probiotic-treated patients revealed a NLR7 cut-off value of 7.20 as a prognostic factor of VAP (AUC: 78.6%, p = 0.015, 95% CI: 62.6-94.5%), having a high specificity of 90.2% and a sensitivity of 42.9%. CONCLUSIONS NLR may considered a credible prognostic biomarker in multi-trauma patients since it can evaluate the immunomodulatory benefits of probiotic treatment. However, the results of the present post hoc analysis should be interpreted meticulously until further evaluation, since they may be basically species- or strain-specific.
Collapse
Affiliation(s)
- Alexandra-Eleftheria Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| | - Georgios Tzikos
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| | - Barbara Fyntanidou
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Aristeidis Ioannidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| | - Lamprini Loukipoudi
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (L.L.); (V.G.)
| | - Vasilis Grosomanidis
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (L.L.); (V.G.)
| | - Angeliki Chorti
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| | - Anne Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| | - George Stavrou
- Department of General Surgery, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK;
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| |
Collapse
|
14
|
Lian F, Li F, Tang X, Yuan Y. Risk factors for hypoactive delirium in patients with nontraumatic ARDS: a prospective observational study. Sci Rep 2024; 14:6980. [PMID: 38523173 PMCID: PMC10961304 DOI: 10.1038/s41598-024-57525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
To investigate the incidence, characteristics and risk factors for hypoactive delirium in patients with nontraumatic acute respiratory distress syndrome (ARDS) and to explore the independent risk factors associated with hypoactive delirium and provide new ideas for early prediction and treatment. Hypoactive delirium is a known serious complication in ARDS patients, and currently, there are no effective early detection models or clinical prediction tools, and there is a lack of clinical treatment. This study included nontraumatic ARDS patients who stayed in the intensive care unit (ICU) for more than 24 h and were older than 18 years. A total of 205 ARDS patients admitted to the ICU of Gansu Provincial People's Hospital between December 2021 and February 2023 were selected. Demographic data, clinical characteristics and laboratory test results were collected within 24 h after the patients entered the ICU. Multivariate logistic regression analysis was used to investigate risk factors, evaluate the clinical prediction effect of the model and construct a nomogram for visual display. The incidence of hypoactive delirium among the patients included in the study was 41%. Patients with hypoactive delirium had hypertension; diabetes mellitus; Acute Physiology and Chronic Health Evaluation II (APACHE II) scores ≥ 15; and increased procalcitonin, C-reactive protein (CRP), lactic dehydrogenase and interleukin-6 (IL-6) levels compared with those without hypoactive delirium. Logistic regression analysis revealed that diabetes mellitus (OR 3.305, 95% CI: 1.866-12.616; p = 0.047), CRP level (OR 1.002, 95% CI: 1.001-1.023; p = 0.044), and IL-6 level (OR 1.045, 95% CI: 1.017-1.063; p = 0.001) were independent risk factors for hypoactive delirium. After receiver operating characteristic (ROC) curve analysis, calibration plot and decision curve analysis (DCA) confirmed that the clinical prediction ability of this study model was satisfactory, and a nomogram was drawn for visual display. Hypoactive delirium is a common serious complication in nontraumatic ARDS patients. Our logistic regression model not only effectively predicts hypoactive delirium early but also reveals potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Fuyan Lian
- Department of Critical Care Medicine, Gansu Provincial People's Hospital, Lanzhou, 70030, China.
| | - Fei Li
- Department of Infection Management, Lanzhou University Second Hospital, Lanzhou, 70030, China
| | - Xuemei Tang
- Department of Critical Care Medicine, Gansu Provincial People's Hospital, Lanzhou, 70030, China
| | - Yuan Yuan
- Department of Critical Care Medicine, Gansu Provincial People's Hospital, Lanzhou, 70030, China
| |
Collapse
|
15
|
Barakat RM, Turcani M, Al-Khaledi G, Kilarkaje N, Al-Sarraf H, Sayed Z, Redzic Z. Low oxygen in inspired air causes severe cerebrocortical hypoxia and cell death in the cerebral cortex of awake rats. Neurosci Lett 2024; 818:137515. [PMID: 37865187 DOI: 10.1016/j.neulet.2023.137515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
Type 1 respiratory failure (T1RF) is associated with secondary acute brain injury (sABI). The underlying mechanisms of sABI could include injury to brain cells mediated either by hypoxia or by lung injury-triggered inflammation. To elucidate to what extent T1RF causes hypoxia and a consequent hypoxic injury in the brain in the absence of lung injury, we exposed healthy, conscious Sprague-Dawley rats to 48 h long low partial pressure of O2 in inspired air (PiO2) (7.5-8 % O2 in N2, CO2 < 0.5 %, normal barometric pressure) and measured the partial pressure of oxygen in the premotor cortex (PtO2), cerebral blood flow (CBF), lactate concentrations, and cell death. Low PiO2 significantly affected PtO2, which was 52.3 (SD 2.1) mmHg when PiO2 was normal but declined to 6.4 (SD 3.8) mmHg when PiO2 was low for 1 h. This was accompanied by increased lactate concentrations in plasma, CSF, and premotor cortex. Low PiO2 elevated the number of dead cells in the cerebral cortex from 5.6 (SD 4.8) % (when PiO2 was normal) to 20.5 (SD 4.1) % and 32.37 (SD 6.5) % after 24 h and 48 h exposure to low PiO2, respectively. The Mann-Kendall test could not detect any monotonic increase or decrease in pial blood flow during the 48 h exposure to low PiO2. In summary, our findings suggest that exposure to low PiO2 caused a severe hypoxia in the cerebral cortex, which triggers a massive cell death. Since these conditions mimic T1RF, hypoxic injury could be an important underlying cause of T1RF-induced sABI.
Collapse
Affiliation(s)
- Rawan M Barakat
- Department of Physiology, College of Medicine, Kuwait University, Kuwait
| | - Marian Turcani
- Department of Physiology, College of Medicine, Kuwait University, Kuwait
| | - Ghanim Al-Khaledi
- Department of Pharmacology, College of Medicine, Kuwait University, Kuwait
| | | | - Hameed Al-Sarraf
- Department of Physiology, College of Medicine, Kuwait University, Kuwait
| | - Zeinab Sayed
- Department of Physiology, College of Medicine, Kuwait University, Kuwait
| | - Zoran Redzic
- Department of Physiology, College of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
16
|
Zhu L, Liu D, Xu M, Wang W, Xiong X, Zhou Q, Shi R. Yantiao Formula Intervention in Rats with Sepsis: Network Pharmacology and Experimental Analysis. Comb Chem High Throughput Screen 2024; 27:1071-1080. [PMID: 37817514 DOI: 10.2174/0113862073262718230921113659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 10/12/2023]
Abstract
AIM AND OBJECTIVE Traditional Chinese Medicine prescribes Yantiao Formula (YTF; peach kernel, mirabilite, Angelica sinensis, Radix Scrophulariae, raw rhubarb, Radix Paeoniae, Flos Lonicerae, Forsythia and Ophiopogon japonicus) to treat sepsis. Clinically, it reduced the inflammatory response of sepsis. It also reduced lung damage by decreasing the level of TNF-α in septic rats' serum. Using network pharmacology analysis, we investigated the efficacy network and mechanism of YTF in treating sepsis. MATERIALS AND METHODS We used the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and a Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine (BATMAN-TCM) combined with literature to collect the main components in YTF and their targets. DisGeNET and GENECARDS databases were used for sepsis-related targets. Cytoscape 3.7.1 software was used to construct the herbcomponent- target and ingredient-target-disease interaction protein-protein interaction networks of YTF. The jvenn was used to perform the intersection of YTF targets and sepsis targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. We also created a sepsis rat model using cecal ligation and perforation and stimulated alveolar macrophages (NR8383) with endotoxin to investigate the mechanisms of YTF. RESULTS GO, and KEGG enrichment analysis revealed that these targets involved mineralocorticoid secretion, aldosterone secretion, active regulation of chronic inflammatory response, the exogenous coagulation pathway, and other pathophysiology. It was linked to various inflammatory factors and the MAPK pathway. YTF inhibits the p38MAPK pathway and decreases TNF- α, IL-6, and CXCL8 levels. CONCLUSION YTF has a multi-component, multi-target, and multi-channel role in treating sepsis. The primary mechanisms may involve inhibiting the p38MAPK pathway to reduce the inflammatory response.
Collapse
Affiliation(s)
- Leilei Zhu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Deng Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Menghan Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenqing Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xudong Xiong
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qianmei Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong Shi
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
17
|
Owens CD, Pinto CB, Detwiler S, Mukli P, Peterfi A, Szarvas Z, Hoffmeister JR, Galindo J, Noori J, Kirkpatrick AC, Dasari TW, James J, Tarantini S, Csiszar A, Ungvari Z, Prodan CI, Yabluchanskiy A. Cerebral small vessel disease pathology in COVID-19 patients: A systematic review. Ageing Res Rev 2023; 88:101962. [PMID: 37224885 PMCID: PMC10202464 DOI: 10.1016/j.arr.2023.101962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Cerebral small vessel disease (CSVD) is the leading cause of vascular cognitive impairment and is associated with COVID-19. However, contributing factors that often accompany CSVD pathology in COVID-19 patients may influence the incidence of cerebrovascular complications. Thus, a mechanism linking COVID-19 and CSVD has yet to be uncovered and differentiated from age-related comorbidities (i.e., hypertension), and medical interventions during acute infection. We aimed to evaluate CSVD in acute and recovered COVID-19 patients and to differentiate COVID-19-related cerebrovascular pathology from the above-mentioned contributing factors by assessing the localization of microbleeds and ischemic lesions/infarctions in the cerebrum, cerebellum, and brainstem. A systematic search was performed in December 2022 on PubMed, Web of Science, and Embase using a pre-established search criterion related to history of, or active COVID-19 with CSVD pathology in adults. From a pool of 161 studies, 59 met eligibility criteria and were included. Microbleeds and ischemic lesions had a strong predilection for the corpus callosum and subcortical/deep white matter in COVID-19 patients, suggesting a distinct CSVD pathology. These findings have important implications for clinical practice and biomedical research as COVID-19 may independently, and through exacerbation of age-related mechanisms, contribute to increased incidence of CSVD.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Jordan R Hoffmeister
- Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Juliette Galindo
- Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jila Noori
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Angelia C Kirkpatrick
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Tarun W Dasari
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Judith James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
18
|
Guay CS, Bean CD, Kwon O, Brown EN. Recovery From Acute Respiratory Distress Syndrome Is Associated With Increasing Alpha Power in the Frontal Electroencephalogram During Propofol Sedation: A Case Report. A A Pract 2023; 17:e01698. [PMID: 37409746 PMCID: PMC11198912 DOI: 10.1213/xaa.0000000000001698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The effects of critical illness on electroencephalographic (EEG) signatures of sedatives have not been described, limiting the use of EEG-guided sedation in the intensive care unit (ICU). We report the case of a 36-year-old man recovering from acute respiratory distress syndrome (ARDS). Severe ARDS was characterized by slow-delta (0.1-4 Hz) and theta (4-8 Hz) oscillations but lacked the alpha (8-14 Hz) power expected during propofol sedation in a patient of this age. The alpha power emerged as ARDS resolved. This case raises the question of whether inflammatory states can alter EEG signatures during sedation.
Collapse
Affiliation(s)
- Christian S. Guay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Christopher D. Bean
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Ohyoon Kwon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Emery N. Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
19
|
Frisvold S, Coppola S, Ehrmann S, Chiumello D, Guérin C. Respiratory challenges and ventilatory management in different types of acute brain-injured patients. Crit Care 2023; 27:247. [PMID: 37353832 PMCID: PMC10290317 DOI: 10.1186/s13054-023-04532-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Acute brain injury (ABI) covers various clinical entities that may require invasive mechanical ventilation (MV) in the intensive care unit (ICU). The goal of MV, which is to protect the lung and the brain from further injury, may be difficult to achieve in the most severe forms of lung or brain injury. This narrative review aims to address the respiratory issues and ventilator management, specific to ABI patients in the ICU.
Collapse
Affiliation(s)
- S Frisvold
- Department of Anesthesia and Intensive Care, University Hospital of North Norway, Tromso, Norway
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway
| | - S Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
- Coordinated Research Center On Respiratory Failure, University of Milan, Milan, Italy
| | - S Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep F-CRIN Research Network, Tours, France
- INSERM, Centre d'étude Des Pathologies Respiratoires, U1100, Université de Tours, Tours, France
| | - D Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
- Coordinated Research Center On Respiratory Failure, University of Milan, Milan, Italy
| | - Claude Guérin
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
20
|
Akbar AF, Shou BL, Feng CY, Zhao DX, Kim BS, Whitman G, Bush EL, Cho SM. Lower Oxygen Tension and Intracranial Hemorrhage in Veno-venous Extracorporeal Membrane Oxygenation. Lung 2023; 201:315-320. [PMID: 37086285 PMCID: PMC10578342 DOI: 10.1007/s00408-023-00618-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
INTRODUCTION AND METHODS We examined the relationship between 24-h pre- and post-cannulation arterial oxygen tension (PaO2) and arterial carbon dioxide tension (PaCO2) and subsequent acute brain injury (ABI) in patients receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO) with granular arterial blood gas (ABG) data and institutional standardized neuromonitoring. RESULTS Eighty-nine patients underwent VV-ECMO (median age = 50, 63% male). Twenty (22%) patients experienced ABI; intracranial hemorrhage (ICH) was the most common diagnosis (n = 14, 16%). Lower post-cannulation PaO2 levels were significantly associated with ICH (66 vs. 81 mmHg, p = 0.007) and a post-cannulation PaO2 level < 70 mmHg was more frequent in these patients (71% vs. 33%, p = 0.007). PaCO2 parameters were not associated with ABI. By multivariable logistic regression, hypoxemia post-cannulation increased the odds of ICH (OR = 5.06, 95% CI:1.41-18.17; p = 0.01). CONCLUSION In summary, lower oxygen tension in the 24-h post-cannulation was associated with ICH development. The precise roles of peri-cannulation ABG changes deserve further investigation, as they may influence the management of VV-ECMO patients.
Collapse
Affiliation(s)
- Armaan F Akbar
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Benjamin L Shou
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Cheng-Yuan Feng
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
- Division of Neurosciences Critical Care, Department of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, 600 N. Wolfe Street, Phipps, Baltimore, MD, 455, USA
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
- Division of General Thoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - David X Zhao
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
- Division of Neurosciences Critical Care, Department of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, 600 N. Wolfe Street, Phipps, Baltimore, MD, 455, USA
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
- Division of General Thoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Bo Soo Kim
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Glenn Whitman
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Errol L Bush
- Division of General Thoracic Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sung-Min Cho
- Division of Neurosciences Critical Care, Department of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, 600 N. Wolfe Street, Phipps, Baltimore, MD, 455, USA.
| |
Collapse
|
21
|
Dias C, de Castro A, Gaio R, Silva R, Pereira E, Monteiro E. Lung Injury Risk in Traumatic Brain Injury Managed With Optimal Cerebral Perfusion Pressure Guided-Therapy. J Crit Care Med (Targu Mures) 2023; 9:97-105. [PMID: 37593249 PMCID: PMC10429626 DOI: 10.2478/jccm-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Management of traumatic brain injury (TBI) has to counterbalance prevention of secondary brain injury without systemic complications, namely lung injury. The potential risk of developing acute respiratory distress syndrome (ARDS) leads to therapeutic decisions such as fluid balance restriction, high PEEP and other lung protective measures, that may conflict with neurologic outcome. In fact, low cerebral perfusion pressure (CPP) may induce secondary ischemic injury and mortality, but disproportionate high CPP may also increase morbidity and worse lung compliance and hypoxia with the risk of developing ARDS and fatal outcome. The evaluation of cerebral autoregulation at bedside and individualized (optimal CPP) CPPopt-guided therapy, may not only be a relevant measure to protect the brain, but also a safe measure to avoid systemic complications. Aim of the study We aimed to study the safety of CPPopt-guided-therapy and the risk of secondary lung injury association with bad outcome. Methods and results Single-center retrospective analysis of 92 severe TBI patients admitted to the Neurocritical Care Unit managed with CPPopt-guided-therapy by PRx (pressure reactivity index). During the first 10 days, we collected data from blood gas, ventilation and brain variables. Evolution along time was analyzed using linear mixed-effects regression models. 86% were male with mean age 53±21 years. 49% presented multiple trauma and 21% thoracic trauma. At hospital admission, median GCS was 7 and after 3-months GOS was 3. Monitoring data was CPP 86±7mmHg, CPP-CPPopt -2.8±10.2mmHg and PRx 0.03±0.19. The average PFratio (PaO2/FiO2) was 305±88 and driving pressure 15.9±3.5cmH2O. PFratio exhibited a significant quadratic dependence across time and PRx and driving pressure presented significant negative association with PFRatio. CPP and CPPopt did not present significant effect on PFratio (p=0.533; p=0.556). A significant positive association between outcome and the difference CPP-CPPopt was found. Conclusion Management of TBI using CPPopt-guided-therapy was associated with better outcome and seems to be safe regarding the development of secondary lung injury.
Collapse
Affiliation(s)
- Celeste Dias
- Faculty of Medicine, University of Porto, Porto, Portugal
- University Hospital Centre São João, PortoPortugal
| | | | - Rita Gaio
- Faculty of Mathematics, University of Porto, Porto, Portugal
- Centre of Mathematics of the University of Porto, Porto, Portugal
| | - Ricardo Silva
- Faculty of Mathematics, University of Porto, Porto, Portugal
| | | | - Elisabete Monteiro
- Faculty of Medicine, University of Porto, Porto, Portugal
- University Hospital Centre São João, PortoPortugal
| |
Collapse
|
22
|
Ziaka M, Exadaktylos A. The Heart Is at Risk: Understanding Stroke-Heart-Brain Interactions with Focus on Neurogenic Stress Cardiomyopathy-A Review. J Stroke 2023; 25:39-54. [PMID: 36592971 PMCID: PMC9911836 DOI: 10.5853/jos.2022.02173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years, it has been convincingly demonstrated that acute brain injury may cause severe cardiac complications-such as neurogenic stress cardiomyopathy (NSC), a specific form of takotsubo cardiomyopathy. The pathophysiology of these brain-heart interactions is complex and involves sympathetic hyperactivity, activation of the hypothalamic-pituitary-adrenal axis, as well as immune and inflammatory pathways. There have been great strides in our understanding of the axis from the brain to the heart in patients with isolated acute brain injury and more specifically in patients with stroke. On the other hand, in patients with NSC, research has mainly focused on hemodynamic dysfunction due to arrhythmias, regional wall motion abnormality, or left ventricular hypokinesia that leads to impaired cerebral perfusion pressure. Comparatively little is known about the underlying secondary and delayed cerebral complications. The aim of the present review is to describe the stroke-heart-brain axis and highlight the main pathophysiological mechanisms leading to secondary and delayed cerebral injury in patients with concurrent hemorrhagic or ischemic stroke and NSC as well as to identify further areas of research that could potentially improve outcomes in this specific patient population.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Bassi TG, Rohrs EC, Fernandez KC, Ornowska M, Nicholas M, Gani M, Evans D, Reynolds SC. Diaphragm neurostimulation reduces mechanical power and mitigates brain injury associated with MV and ARDS. Eur J Med Res 2022; 27:298. [PMID: 36529746 PMCID: PMC9762073 DOI: 10.1186/s40001-022-00932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Elizabeth C. Rohrs
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, BC Canada ,grid.416114.70000 0004 0634 3418Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC Canada
| | - Karl C. Fernandez
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, BC Canada ,grid.416114.70000 0004 0634 3418Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC Canada
| | - Marlena Ornowska
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, BC Canada
| | - Michelle Nicholas
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, BC Canada ,grid.416114.70000 0004 0634 3418Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC Canada
| | - Matt Gani
- grid.509572.cLungpacer Medical Inc, Vancouver, BC Canada
| | - Doug Evans
- grid.509572.cLungpacer Medical Inc, Vancouver, BC Canada
| | - Steven C. Reynolds
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, BC Canada ,grid.416114.70000 0004 0634 3418Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC Canada
| |
Collapse
|