1
|
Bao ZC, Liu ZD, Zhang Y, Dai HJ, Jia H, Ren F, Li N, Zhao L, Wang YW, Lv SY, Zhang Y. To investigate the effect and mechanism of tetrahydrocurcumin on hepatocellular carcinoma based on phosphoinositide 3-kinases/AKT signaling pathway. World J Gastrointest Oncol 2025; 17:102187. [PMID: 40092949 PMCID: PMC11866248 DOI: 10.4251/wjgo.v17.i3.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Liver cancer has a high incidence and mortality worldwide, especially in China. Herein, we investigated the therapeutic effect and mechanism of tetrahydrocurcumin against hepatocellular carcinoma (HCC), with a focus on the of phosphoinositide 3-kinases (PI3K)/AKT signaling pathway. AIM To investigate the effects and mechanism of tetrahydrocurcumin in HCC cell lines HepG2 and Huh7. METHODS Using Metascape, we analyzed the potential targets of tetrahydrocurcumin in HCC. Molecular docking validation was performed using SYBYL2.0. Cell Counting Kit-8, wound healing, and transwell assays were performed to evaluate the effects of tetrahydrocurcumin on HepG2 and Huh7 cell migration, invasion, and apoptosis. The expression of PI3K/AKT signaling pathway-related proteins was detected by western blotting. RESULTS Network pharmacology and molecular docking showed that tetrahydrocurcumin has high binding affinity for phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha. In vitro experiments demonstrated that tetrahydrocurcumin suppressed the migration and invasion of liver cancer cells, promoted their apoptosis, and downregulated the expression of p-PI3K, p-AKT, and B cell leukemia/lymphoma 2, while upregulating caspase-3, p53, and B cell leukemia/lymphoma 2 associated X. CONCLUSION In summary, tetrahydrocurcumin suppresses PI3K/AKT signaling, promotes apoptosis, and prevents the migration and invasion of liver cancer cells.
Collapse
Affiliation(s)
- Zhuo-Cong Bao
- Graduate School, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Zhao-Dong Liu
- Graduate School, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Ye Zhang
- Graduate School, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Hui-Jun Dai
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Fu Ren
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
- Key Laboratory of Phenomics in Shenyang, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Ning Li
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
- Key Laboratory of Phenomics in Shenyang, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
- Department of Biochemistry, School of Basic Medicine, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Lu Zhao
- Department of Biochemistry, School of Basic Medicine, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Yi-Wei Wang
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
- Molecular Morphology Laboratory, College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Shang-Yu Lv
- Batch 2022, Clinical Medicine, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Yan Zhang
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
- Key Laboratory of Phenomics in Shenyang, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
- Department of Biochemistry, School of Basic Medicine, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
- International Education School, International Exchange and Cooperation Office, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| |
Collapse
|
2
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
3
|
Liu Y, Zhu J, Wang X, Zhang W, Li Y, Yang Z, Zhang J, Cheng J, Li L, Li S, He J, Bian J. TRMT10C gene polymorphisms confer hepatoblastoma susceptibility: evidence from a seven-center case-control study. J Cancer 2024; 15:5396-5402. [PMID: 39247598 PMCID: PMC11375554 DOI: 10.7150/jca.98555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
N1-methyladenosine (m1A) is a reversible epigenetic modification of RNAs. Aberrant m1A modification levels due to dysregulation of m1A regulators have been observed in multiple cancers. tRNA methyltransferase 10C (TRMT10C) can install m1A in RNAs; however, its role in hepatoblastoma remains unknown. We conducted this study to identify causal polymorphisms in the TRMT10C gene for hepatoblastoma susceptibility in a cohort of Chinese children (313 cases vs. 1446 controls). The genotypes of four potential functional polymorphisms (rs7641261 C>T, rs2303476 T>C, rs4257518 A>G, and rs3762735 C>G) were determined in participants using TaqMan real-time PCR. The associations of these polymorphisms with hepatoblastoma susceptibility were estimated by logistic regression analysis adjusted for age and sex. All four polymorphisms were significantly associated with hepatoblastoma risk. In particular, under the recessive genetic model, these polymorphisms conferred an increased risk of hepatoblastoma: rs7641261 C>T [adjusted odds ratio (OR)=1.64, 95% confidence interval (CI)=1.04-2.58, P=0.033], rs2303476 T>C (adjusted OR=1.87, 95% CI=1.16-3.02, P=0.010), rs4257518 A>G (adjusted OR=1.45, 95% CI=1.09-1.94, P=0.012), and rs3762735 C>G (adjusted OR=3.83, 95% CI=2.15-6.82, P<0.0001). Combined analysis revealed that kids had an increased risk of developing hepatoblastoma if they harbored at least one risk genotype (adjusted OR=1.94, 95% CI=1.48-2.54, P<0.0001). In addition, the combined risk effects of the four SNPs persisted across all the subgroups. We identified four hepatoblastoma susceptibility loci in the TRMT10C gene. Identifying more disease-causing loci may facilitate the development of genetic marker panels to predict individuals' hepatoblastoma predisposition.
Collapse
Affiliation(s)
- Yanfei Liu
- Department of Pathology, Xi'an Children's Hospital, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an 710003, Shaanxi, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Xianqiang Wang
- Department of General Pediatrics, Senior Department of Pediatrics, National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, the Seventh Medical Center of PLA General Hospital, Beijing 100000, China
| | - Wenli Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jun Bian
- Department of General Surgery, Xi'an Children's Hospital, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an 710003, Shaanxi, China
| |
Collapse
|
4
|
Ferreira IC, Torrejón E, Abecasis B, Alexandre BM, Gomes RA, Verslype C, van Pelt J, Barbas A, Simão D, Bandeiras TM, Bortoluzzi A, Rebelo SP. Aldehyde Dehydrogenase 2 (ALDH2): A novel sorafenib target in hepatocellular carcinoma unraveled by the proteome-wide cellular thermal shift assay. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100154. [PMID: 38521503 DOI: 10.1016/j.slasd.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Sorafenib is a multikinase inhibitor indicated for first-line treatment of unresectable hepatocellular carcinoma. Despite its widespread use in the clinic, the existing knowledge of sorafenib mode-of-action remains incomplete. To build upon the current understanding, we used the Cellular Thermal Shift Assay (CETSA) coupled to Mass Spectrometry (CETSA-MS) to monitor compound binding to its target proteins in the cellular context on a proteome-wide scale. Among the potential sorafenib targets, we identified aldehyde dehydrogenase 2 (ALDH2), an enzyme that plays a major role in alcohol metabolism. We validated the interaction of sorafenib with ALDH2 by orthogonal methods using pure recombinant protein, proving that this interaction is not mediated by other cellular components. Moreover, we showed that sorafenib inhibits ALDH2 activity, supporting a functional role for this interaction. Finally, we were able to demonstrate that both ALDH2 protein expression and activity were reduced in sorafenib-resistant cells compared to the parental cell line. Overall, our study allowed the identification of ALDH2 as a novel sorafenib target and sheds light on its potential role in both hepatocellular carcinoma and sorafenib resistance condition.
Collapse
Affiliation(s)
- Inês C Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Estefania Torrejón
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bernardo Abecasis
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Bruno M Alexandre
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo A Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Chris Verslype
- Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Jos van Pelt
- Department of Oncology, Laboratory of Clinical Digestive Oncology, KU, Leuven, Belgium
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Bayer Portugal, Carnaxide, Portugal
| | - Daniel Simão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alessio Bortoluzzi
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| |
Collapse
|
5
|
Lin S, Kuang M. RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nat Rev Gastroenterol Hepatol 2024; 21:267-281. [PMID: 38243019 DOI: 10.1038/s41575-023-00884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/21/2024]
Abstract
Malignant liver cancer is characterized by rapid tumour progression and a high mortality rate, whereas the molecular mechanisms underlying liver cancer initiation and progression are still poorly understood. The dynamic and reversible RNA modifications have crucial functions in gene expression regulation by modulating RNA processing and mRNA translation. Emerging evidence has revealed that alterations in RNA modifications facilitate the selective translation of oncogenic transcripts and promote the diverse tumorigenic processes of liver cancer. In this Review, we first highlight the current progress on the functions and mechanisms underlying RNA modifications in the regulation of mRNA translation and then summarize the exciting discoveries on aberrant RNA modification-mediated mRNA translation in the regulation of tumour initiation, metastasis, metabolism, tumour microenvironment, and drug and radiotherapy resistance in liver cancer. Finally, we discuss the diagnostic and therapeutic potentials of targeting RNA modifications and mRNA translation for the clinical management of liver cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Monshaugen I, Luna L, Rhodes J, Kristiansen FIS, Lång A, Bøe SO, Dutta A, Su Z, Klungland A, Ougland R. Depletion of the m1A writer TRMT6/TRMT61A reduces proliferation and resistance against cellular stress in bladder cancer. Front Oncol 2024; 13:1334112. [PMID: 38304034 PMCID: PMC10830773 DOI: 10.3389/fonc.2023.1334112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Background Bladder cancer (BLCA) is a common and deadly disease that results in a reduced quality of life for the patients and a significant economic burden on society. A better understanding of tumorigenesis is needed to improve clinical outcomes. Recent evidence places the RNA modification m1A and its regulatory proteins TRMT6/TRMT61A and ALKBH3 in BLCA pathogenesis. Methods TRMT6/TRMT61A, ALKBH1, and ALKBH3 expression was examined in human BLCA cell lines and a normal urinary tract epithelium cell line through qRT-PCR and western blot analysis. Prestoblue Cell Viability Reagent, wound-healing assay, and live-cell imaging-based cell displacement analysis, were conducted to assess proliferation, migration, and displacement of this BLCA cell line panel. Cell survival was assessed after inducing cellular stress and activating the unfolded protein response (UPR) with tunicamycin. Moreover, siRNA-mediated gene silencing in two BLCA cell lines (5637 and HT1197) was conducted to investigate the biological roles of TRMT6/TRMT61A. Results Heterogeneous morphology, proliferation, displacement, tunicamycin sensitivity, and expression levels of m1A regulators were observed among the panel of cell lines examined. In general, TRMT61A expression was increased in BLCA cell lines when compared to SV-HUC-1. Depletion of TRMT6/TRMT61A reduced proliferation capacity in both 5637 and HT1197 cell lines. The average cell displacement of 5637 was also reduced upon TRMT6/TRMT61A depletion. Interestingly, TRMT6/TRMT61A depletion decreased mRNA expression of targets associated with the ATF6-branch of the UPR in 5637 but not in HT1197. Moreover, cell survival after induction of cellular stress was compromised after TRMT6/TRMT61A knockdown in 5637 but not in HT1197 cells. Conclusion The findings suggest that TRMT6/TRMT61A plays an oncogenic role in BLCA and is involved in desensitizing BLCA cells against cellular stress. Further investigation into the regulation of TRMT6/TRMT61A expression and its impact on cellular stress tolerance may provide insights for future BLCA treatment.
Collapse
Affiliation(s)
- Ida Monshaugen
- Centre for Embryology and Healthy Development, Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, Gjettum, Norway
| | - Luisa Luna
- Centre for Embryology and Healthy Development, Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jayden Rhodes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Felicia Iselin Svensson Kristiansen
- Centre for Embryology and Healthy Development, Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, Gjettum, Norway
- Centre for Embryology and Healthy Development, Department of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anna Lång
- Centre for Embryology and Healthy Development, Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Stig Ove Bøe
- Centre for Embryology and Healthy Development, Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Anindya Dutta
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhangli Su
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Arne Klungland
- Centre for Embryology and Healthy Development, Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Centre for Embryology and Healthy Development, Department of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rune Ougland
- Centre for Embryology and Healthy Development, Department of Microbiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Surgery, Baerum Hospital Vestre Viken Hospital Trust, Gjettum, Norway
| |
Collapse
|
7
|
Ma L, Zhu J, Zhang J, Zhang W, Li Y, Yang Z, Li S, Cheng J, Li L, He J, Liu P. Identification of hepatoblastoma susceptibility loci in the TRMT6 gene from a seven-center case-control study. J Cell Mol Med 2024; 28:e18006. [PMID: 37850543 PMCID: PMC10805499 DOI: 10.1111/jcmm.18006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Hepatoblastoma, the most frequently diagnosed primary paediatric liver tumour, bears the lowest somatic mutation burden among paediatric neoplasms. Therefore, it is essential to identify pathogenic germline genetic variants, especially those in oncogenic genes, for this disease. The tRNA methyltransferase 6 noncatalytic subunit (TRMT6) forms a tRNA methyltransferase complex with TRMT61A to catalyse adenosine methylation at position N1 of RNAs. TRMT6 has displayed tumour-promoting functions in several cancer types. However, the contribution of its genetic variants to hepatoblastoma remains unclear. In this study, we investigated the association between four TRMT6 polymorphisms (rs236170 A > G, rs451571 T > C, rs236188 G > A and rs236110 C > A) and the risk of hepatoblastoma in a cohort of 313 cases and 1446 healthy controls. Germline DNA was subjected to polymorphism genotyping via the TaqMan qPCR method. Odds ratio (OR) and 95% confidence interval (CI) were used to determine hepatoblastoma susceptibility variants. The rs236170 A > G, rs236188 G > A and rs236110 C > A polymorphisms were significantly associated with hepatoblastoma risk. Combination analysis of the four polymorphisms revealed that children bearing 1-4 risk genotypes were at significantly enhanced hepatoblastoma risk compared to those without risk genotype (adjusted OR = 1.52, 95% CI = 1.19-1.95, p = 0.0008). We also conducted stratification analyses by age, sex and clinical stage. Ultimately, we found that the rs236110 C > A was significantly associated with the downregulation of MCM8, a neighbouring gene of TRMT6. In conclusion, we identified three susceptibility loci in the TRMT6 gene for hepatoblastoma. Our findings warrant further validation by extensive case-control studies across different ethnicities.
Collapse
Affiliation(s)
- Lin Ma
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan ProvinceZhengzhouHenanChina
| | - Jinhong Zhu
- Department of Clinical LaboratoryBiobank, Harbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Jiao Zhang
- Department of Pediatric Surgerythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Wenli Zhang
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yong Li
- Department of Pediatric SurgeryHunan Children's HospitalChangshaHunanChina
| | - Zhonghua Yang
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Suhong Li
- Department of PathologyChildren Hospital and Women Health Center of ShanxiTaiyuanShannxiChina
| | - Jiwen Cheng
- Department of Pediatric Surgerythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease ResearchYunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's HospitalKunmingYunnanChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Peng Liu
- Department of Pediatric Intensive Care Unitthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
8
|
Liu HT, Rau CS, Liu YW, Hsieh TM, Huang CY, Chien PC, Lin HP, Wu CJ, Chuang PC, Hsieh CH. Deciphering the Divergent Gene Expression Landscapes of m6A/m5C/m1A Methylation Regulators in Hepatocellular Carcinoma Through Single-Cell and Bulk RNA Transcriptomic Analysis. J Hepatocell Carcinoma 2023; 10:2383-2395. [PMID: 38164510 PMCID: PMC10758181 DOI: 10.2147/jhc.s448047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction RNA modifications mediated by the m6A, m1A, and m5C regulatory genes are crucial for the progression of malignancy. This study aimed to explore the expression of regulator genes for m6A/m5C/m1A methylation at the single-cell level and to validate their expression in cancerous and adjacent para-cancerous liver tissues of adult patients with HCC who underwent tumor resection. Methods The bulk sequencing from The Cancer Genome Atlas (TCGA) database and the single-cell RNA sequencing (scRNA-seq) data obtained from the Gene Expression Omnibus (GEO) database were used to identify the dysregulated m6A/m5C/m1A genes for hepatocellular carcinoma (HCC). A real-time polymerase chain reaction (real-time PCR) was used to measure the expression of dysregulated m6A/m5C/m1A genes in collected human HCC tissues and compared with adjacent para-cancerous liver tissues. Immune cell infiltration with these significantly expressed methylation-related genes was evaluated using Timer2.0. Results A discrepancy in m6A/m5C/m1A gene expression was observed between bulk sequencing and scRNA-seq. The clustered heatmap of the scRNA-seq-identified dysregulated m6A/m5C/m1A genes in TCGA cohort revealed heterogeneous expression of these methylation regulators within the cancer, whereas their expression in the adjacent liver tissues was more homogeneous. The real-time PCR validated the significant overexpression of DNMT1, NSUN5, TRMT6, IGF2BP1, and IGFBP3, which were identified using scRNA-seq, and IGFBP2, which was identified using bulk sequencing. These dysregulated methylation genes are mainly correlated with the infiltration of natural killer cells. Discussion This study suggests that cellular diversity inside tumors contributes to the discrepancy in the expression of methylation regulator genes between traditional bulk sequencing and scRNA-seq. This study identified five regulatory genes that will be the focus of further studies regarding the function of m6A/m5C/m1A in HCC.
Collapse
Affiliation(s)
- Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yueh-Wei Liu
- Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chun-Ying Huang
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Peng-Chen Chien
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Hui-Ping Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chia-Jung Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| |
Collapse
|
9
|
Janin M, Davalos V, Esteller M. Cancer metastasis under the magnifying glass of epigenetics and epitranscriptomics. Cancer Metastasis Rev 2023; 42:1071-1112. [PMID: 37369946 PMCID: PMC10713773 DOI: 10.1007/s10555-023-10120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Most of the cancer-associated mortality and morbidity can be attributed to metastasis. The role of epigenetic and epitranscriptomic alterations in cancer origin and progression has been extensively demonstrated during the last years. Both regulations share similar mechanisms driven by DNA or RNA modifiers, namely writers, readers, and erasers; enzymes responsible of respectively introducing, recognizing, or removing the epigenetic or epitranscriptomic modifications. Epigenetic regulation is achieved by DNA methylation, histone modifications, non-coding RNAs, chromatin accessibility, and enhancer reprogramming. In parallel, regulation at RNA level, named epitranscriptomic, is driven by a wide diversity of chemical modifications in mostly all RNA molecules. These two-layer regulatory mechanisms are finely controlled in normal tissue, and dysregulations are associated with every hallmark of human cancer. In this review, we provide an overview of the current state of knowledge regarding epigenetic and epitranscriptomic alterations governing tumor metastasis, and compare pathways regulated at DNA or RNA levels to shed light on a possible epi-crosstalk in cancer metastasis. A deeper understanding on these mechanisms could have important clinical implications for the prevention of advanced malignancies and the management of the disseminated diseases. Additionally, as these epi-alterations can potentially be reversed by small molecules or inhibitors against epi-modifiers, novel therapeutic alternatives could be envisioned.
Collapse
Affiliation(s)
- Maxime Janin
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Veronica Davalos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
10
|
Chang X, Zhu J, Hua RX, Deng C, Zhang J, Cheng J, Li S, Zhou H, He J, Wang H. TRMT6 gene rs236110 C > A polymorphism increases the risk of Wilms tumor. Gene 2023; 882:147646. [PMID: 37473973 DOI: 10.1016/j.gene.2023.147646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
tRNA methyltransferase 6 (TRMT6)is an enzyme catalyzing N1-methyladenosine, a reversible modification in RNA, including tRNA, mRNA, rRNA, and lncRNA. Increasing evidence has shown the implications of this post-transcriptional modification and its regulators in carcinogenesis. However, its roles in Wilms tumor haven't been reported. In this study, four TRMT6 gene polymorphisms (rs236170 A > G, rs451571 T > C, rs236188 G > A, and rs236110 C > A) were tested for association with susceptibility to Wilms tumor, the most frequently diagnosed pediatric renal tumor. TaqMan method was adopted to analyze the genotypes of these polymorphisms in 414 cases and 1199 controls. Among the four TRMT6 gene polymorphisms, only the rs236110 C > A displayed a significant association with the risk of Wilms tumor [AA vs. CC, adjusted odds ratio (OR) = 1.93, 95 % confidence interval (CI) = 1.14-3.27, P = 0.015]. This association was confirmed under the recessive models (AA vs. CC/CA, OR = 1.92, 95 % CI = 1.14-3.23, P = 0.015). Furthermore, after stratifying by age, gender, and clinical stage, we mainly detected significant associations for the rs236110 C > A in children older than 18 months, boys, and those with stage IV or III + IV diseases. The rs236110 A allele was significantly associated with decreased expression of MCM8. In conclusion, we identified the rs236110 C > A in the TRMT6 gene as a Wilms tumor susceptibility locus, and this polymorphism warrants more validation studies to be translated into individualized risk prediction strategies for children.
Collapse
Affiliation(s)
- Xiaofeng Chang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China.
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
11
|
Zeng D, Zhu J, Li J, Liao F, Yang Z, Li Y, Zhang J, Cheng J, Li S, Li L, He J. TRMT61B rs4563180 G>C variant reduces hepatoblastoma risk: a case-control study of seven medical centers. Aging (Albany NY) 2023; 15:7583-7592. [PMID: 37531210 PMCID: PMC10457066 DOI: 10.18632/aging.204926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
N1-methyladenosine (m1A) is an essential chemical modification of RNA. Dysregulation of RNA m1A modification and m1A-related regulators is detected in several adult tumors. Whether aberrant RNA m1A modification is involved in hepatoblast carcinogenesis has not been reported. tRNA methyltransferase 61B (TRMT61B) is responsible for mitochondrial RNA m1A modification. Some evidence has shown that genetic variants of TRMT61B might contribute to cancer susceptibility; however, its roles in hepatoblastoma are unknown. This study attempted to discover novel hepatoblastoma susceptibility loci. With the TaqMan method, we examined genotypes of the TRMT61B rs4563180 G>C polymorphism among germline DNA samples from 313 cases and 1446 controls. The association of the rs4563180 G>C polymorphism with hepatoblastoma risk was estimated based on odds ratios (ORs) and 95% confidence intervals (CIs). We found that the TRMT61B rs4563180 G>C polymorphism correlated significantly with a reduction in hepatoblastoma risk (GC vs. GG: adjusted OR=0.65, 95% CI=0.49-0.85, P=0.002; GC/CC vs. GG: adjusted OR=0.66, 95% CI=0.51-0.85, P=0.002). In stratified analysis, significant associations were detected in children younger than 17 months old, girls, and subgroups with stage I+II or III+IV tumors. False-positive report probability analysis validated that children with the GC or CC genotype, particularly in those <17 months of age, had a decreased risk of hepatoblastoma. The rs4563180 G>C polymorphism also correlated with expression of TRMT61B and the nearby gene PPP1CB. We identified a high-quality biomarker measuring hepatoblastoma susceptibility, which may contribute to future screening programs.
Collapse
Affiliation(s)
- Dingyuan Zeng
- Department of Gynecology and Obstetrics, Guangxi Clinical Research Center for Obstetrics and Gynecology, Liuzhou Key Laboratory of Gynecologic Oncology, Liuzhou Hospital, Guangzhou Women and Children’s Medical Center, Liuzhou 545616, Guangxi, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jingjing Li
- Department of Gynecology and Obstetrics, Guangxi Clinical Research Center for Obstetrics and Gynecology, Liuzhou Key Laboratory of Gynecologic Oncology, Liuzhou Hospital, Guangzhou Women and Children’s Medical Center, Liuzhou 545616, Guangxi, China
| | - Fan Liao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha 410004, Hunan, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming 650228, Yunnan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Department of Pediatric Surgery, Liuzhou Key Laboratory of Birth Defect Prevention and Control, Liuzhou Hospital, Guangzhou Women and Children’s Medical Center, Liuzhou 545616, Guangxi, China
| |
Collapse
|