1
|
Gamit N, Patil M, Soumya BS, Dharmarajan A, Warrier S. Development of In Vitro Parkinson's Disease Model Mediated by MPP+ and α-Synuclein Using Wharton's Jelly Mesenchymal Stem Cells. CNS Neurosci Ther 2025; 31:e70299. [PMID: 40260646 PMCID: PMC12012574 DOI: 10.1111/cns.70299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 04/23/2025] Open
Abstract
MAIN PROBLEM The mechanism behind Parkinson's disease (PD) is still unclear, and a cure to stop its progression is yet to be found. This is mainly due to the lack of effective human PD models. To address this, we generated an in vitro PD model using Wharton's jelly-derived mesenchymal stem cells (WJMSCs). METHODS WJMSCs were isolated from the umbilical cord using an enzymatic method. MSCs were characterized by RT-PCR, immunofluorescence, and trilineage differentiation. MSCs were differentiated into dopaminergic neuron-like cells (DAN) and further degenerated by treating them with either MPP+ iodide or the A53T mutated α-synuclein variant. Gene expression analysis by qRT-PCR and protein analysis by immunofluorescence, flow cytometry, and ELISA were performed. Assays to measure LDH, ROS, NO, GSH, and mitochondrial membrane potential were also performed after degeneration. RESULTS WJMSCs were positive for MSC markers and were able to differentiate into adipocytes, chondrocytes, and osteocytes. DAN obtained after the differentiation of WJMSCs for 48 h expressed neuronal markers such as synapsin 1, neuropilin, neurofilament, and MAPT along with dopaminergic markers such as Nurr1, DAT, TH, DDC, and KCNJ6 and were functionally active. Upon degeneration of DAN by MPP+ or A53T, elevated levels of SNCA and downregulation of TH, Nurr1, DAT, and KCNJ6 were observed. Furthermore, increased expression of α-SYN was detected at the protein level as well. Finally, reduction in mitochondrial membrane potential and GSH levels along with an increase in intracellular ROS, nitrite production, and LDH levels confirmed that the in vitro PD-like model exhibited the molecular characteristics of PD. CONCLUSION This model is rapid, cost-efficient, and effective for understanding the molecular mechanisms of the disease and can also be used for screening of emerging therapeutics for PD.
Collapse
Affiliation(s)
- Naisarg Gamit
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal Academy of Higher Education (MAHE)BangaloreIndia
| | - Manasi Patil
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal Academy of Higher Education (MAHE)BangaloreIndia
| | - B. S. Soumya
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal Academy of Higher Education (MAHE)BangaloreIndia
| | - Arun Dharmarajan
- School of Human SciencesThe University of Western AustraliaNedlandsWestern AustraliaAustralia
- Curtin Medical SchoolCurtin UniversityPerthWestern AustraliaAustralia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative MedicineManipal Academy of Higher Education (MAHE)BangaloreIndia
- Department of Biotechnology, Faculty of Biomedical Sciences and TechnologySri Ramachandra Institute of Higher Education and ResearchChennaiIndia
| |
Collapse
|
2
|
Almasi F, Abbasloo F, Soltani N, Dehbozorgi M, Moghadam Fard A, Kiani A, Ghasemzadeh N, Mesgari H, Zadeh Hosseingholi E, Payandeh Z, Rahmanpour P. Biology, Pathology, and Targeted Therapy of Exosomal Cargoes in Parkinson's Disease: Advances and Challenges. Mol Neurobiol 2025:10.1007/s12035-025-04788-7. [PMID: 39998798 DOI: 10.1007/s12035-025-04788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD) involves the loss of dopamine neurons and accumulation of alpha-synuclein (α-syn), leading to Lewy bodies. While α-syn-targeting immunotherapies show promise, clinical application is challenging. Emerging strategies include nano-platforms for targeted delivery and imaging, and cell-based therapies with patient-specific dopaminergic neurons, aiming to enhance treatment effectiveness despite challenges. Exosome-based methodologies are emerging as a promising area of research in PD due to their role in the spread of α-syn pathology. Exosomes are small extracellular vesicles that can carry misfolded α-syn and transfer it between cells, contributing to the progression of PD. They can be isolated from biological fluids such as blood and cerebrospinal fluid, making them valuable biomarkers for the disease. Additionally, engineering exosomes to deliver therapeutic agents, including small molecules, RNA, or proteins, offers a novel approach for targeted therapy, capitalizing on their natural ability to cross the blood-brain barrier (BBB). Ongoing studies are evaluating the safety and efficacy of these engineered exosomes in clinical settings. This review explores the role of exosomes in PD, focusing on their potential for diagnosis, treatment, and understanding of pathology. It highlights advancements and future directions in using exosomes as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Faezeh Almasi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran.
| | - Faeze Abbasloo
- Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Soltani
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, OH, 44115, USA
| | - Masoud Dehbozorgi
- Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen), Aachen City, Germany
| | | | - Arash Kiani
- Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasim Ghasemzadeh
- School of Natural Sciences and Mathematics, University of Dallas, Richardson, TX, USA
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Zadeh Hosseingholi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41346, Gothenburg, Sweden.
| | | |
Collapse
|
3
|
Zheng YY, Xu H, Wang YS. Progress in direct reprogramming of dopaminergic cell replacement therapy. Neurol Sci 2024; 45:873-881. [PMID: 37945931 DOI: 10.1007/s10072-023-07175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Parkinson's disease (PD) is a gradual neurodegenerative disease. While drug therapy and surgical treatments have been the primary means of addressing PD, they do not offer a cure, and the risks associated with surgical treatment are high. Recent advances in cell reprogramming have given rise to new prospects for the treatment of Parkinson's disease (PD), with induced pluripotent stem cells (iPSCs), induced dopamine neurons (iDNs), and induced neural stem cells (iNSCs) being created. These cells can potentially be used in the treatment of Parkinson's disease. On the other hand, this article emphasizes the limits of iPSCs and iNSCs in the context of Parkinson's disease treatment, as well as approaches for direct reprogramming of somatic cells into iDNs. The paper will examine the benefits and drawbacks of directly converting somatic cells into iDNs.
Collapse
Affiliation(s)
- Yuan Yuan Zheng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hui Xu
- Human Resources Department, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yue Si Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China.
- Yantai Key Laboratory of Stem Cell and Regenerative Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
4
|
Bruno A, Milillo C, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases. Int J Mol Sci 2024; 25:976. [PMID: 38256050 PMCID: PMC10815412 DOI: 10.3390/ijms25020976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Over the past 20 years, stem cell therapy has been considered a promising option for treating numerous disorders, in particular, neurodegenerative disorders. Stem cells exert neuroprotective and neurodegenerative benefits through different mechanisms, such as the secretion of neurotrophic factors, cell replacement, the activation of endogenous stem cells, and decreased neuroinflammation. Several sources of stem cells have been proposed for transplantation and the restoration of damaged tissue. Over recent decades, intensive research has focused on gestational stem cells considered a novel resource for cell transplantation therapy. The present review provides an update on the recent preclinical/clinical applications of gestational stem cells for the treatment of protein-misfolding diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). However, further studies should be encouraged to translate this promising therapeutic approach into the clinical setting.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Gamit N, Dharmarajan A, Sethi G, Warrier S. Want of Wnt in Parkinson's disease: Could sFRP disrupt interplay between Nurr1 and Wnt signaling? Biochem Pharmacol 2023; 212:115566. [PMID: 37088155 DOI: 10.1016/j.bcp.2023.115566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Nuclear receptor related 1 (Nurr1) is a transcription factor known to regulate the development and maintenance of midbrain dopaminergic (mDA) neurons. Reports have confirmed that defect or obliteration of Nurr1 results in neurodegeneration and motor function impairment leading to Parkinson's disease (PD). Studies have also indicated that Nurr1 regulates the expression of alpha-synuclein (α-SYN) and mutations in Nurr1 cause α-SYN overexpression, thereby increasing the risk of PD. Nurr1 is modulated via various pathways including Wnt signaling pathway which is known to play an important role in neurogenesis and deregulation of it contributes to PD pathogenesis. Both Wnt/β-catenin dependent and independent pathways are implicated in the activation of Nurr1 and subsequent downregulation of α-SYN. This review highlights the interaction between Nurr1 and Wnt signaling pathways in mDA neuronal development. We further hypothesize how modulation of Wnt signaling pathway by its antagonist, secreted frizzled related proteins (sFRPs) could be a potential route to treat PD.
Collapse
Affiliation(s)
- Naisarg Gamit
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India; School of Pharmacy and Biomedical Sciences, Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia; School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117 600, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| |
Collapse
|
6
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
7
|
Asemi-Rad A, Moafi M, Aliaghaei A, Abbaszadeh HA, Abdollahifar MA, Ebrahimi MJ, Heidari MH, Sadeghi Y. The effect of dopaminergic neuron transplantation and melatonin co-administration on oxidative stress-induced cell death in Parkinson's disease. Metab Brain Dis 2022; 37:2677-2685. [PMID: 36074314 PMCID: PMC9668958 DOI: 10.1007/s11011-022-01021-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
Abstract
A gradual degeneration of the striatum and loss of nigral dopamine cells are characteristic of Parkinson's disease. Nowadays, combination therapy for neurodegenerative disease is considered. This study aimed to investigate the effects of melatonin and dopaminergic neurons derived from adipose tissue stem cells (ADSCs) in a rat model of Parkinson's disease. Parkinson's disease was induced in rats using neurotoxin 6-Hydroxydopamine. The treatment was performed using melatonin and dopaminergic neurons transplantation. Subsequently, behavioral tests, western blot analysis for Caspase-3 expression, GSH (Glutathione) content and stereology analysis for the volume and cell number of substantia nigra and striatum were performed. Treatment with melatonin and dopaminergic neuron transplantation increased the number of neurons in substantia nigra and striatum while the number of glial cell and the volume of substantia nigra and striatum did not show significant change between groups. Western blot analysis for caspase 3 indicated the significant differences between groups. The results also indicated the increased level of glutathione (GSH) content in treatment groups. this study showed that combination therapy with melatonin and dopaminergic neurons could greatly protect the neurons, reduce oxidative stress and improve the symptoms of PD.
Collapse
Affiliation(s)
- Azam Asemi-Rad
- Anatomy Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maral Moafi
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Ebrahimi
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Heidari
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Sadeghi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Anatomy and Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VlC, Australia.
| |
Collapse
|
8
|
Salahi S, Mousavi MA, Azizi G, Hossein-Khannazer N, Vosough M. Stem Cell-based and Advanced Therapeutic Modalities for Parkinson's Disease: A Risk-effectiveness Patient-centered Analysis. Curr Neuropharmacol 2022; 20:2320-2345. [PMID: 35105291 PMCID: PMC9890289 DOI: 10.2174/1570159x20666220201100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Treatment of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is currently considered a challenging issue since it causes substantial disability, poor quality of life, and mortality. Despite remarkable progress in advanced conventional therapeutic interventions, the global burden of the disease has nearly doubled, prompting us to assess the riskeffectiveness of different treatment modalities. Each protocol could be considered as the best alternative treatment depending on the patient's situation. Prescription of levodopa, the most effective available medicine for this disorder, has been associated with many complications, i.e., multiple episodes of "off-time" and treatment resistance. Other medications, which are typically used in combination with levodopa, may have several adverse effects as well. As a result, the therapies that are more in line with human physiology and make the least interference with other pathways are worth investigating. On the other hand, remaining and persistent symptoms after therapy and the lack of effective response to the conventional approaches have raised expectations towards innovative alternative approaches, such as stem cell-based therapy. It is critical to not overlook the unexplored side effects of innovative approaches due to the limited number of research. In this review, we aimed to compare the efficacy and risk of advanced therapies with innovative cell-based and stemcell- based modalities in PD patients. This paper recapitulated the underlying factors/conditions, which could lead us to more practical and established therapeutic outcomes with more advantages and few complications. It could be an initial step to reconsider the therapeutic blueprint for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Sarvenaz Salahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
9
|
Goyal S, Seth B, Chaturvedi RK. Polyphenols and Stem Cells for Neuroregeneration in Parkinson's Disease and Amyotrophic Lateral Sclerosis. Curr Pharm Des 2021; 28:806-828. [PMID: 34781865 DOI: 10.2174/1381612827666211115154450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS) are neurological disorders, pathologically characterized by chronic degeneration of dopaminergic neurons and motor neurons respectively. There is still no cure or effective treatment against the disease progression and most of the treatments are symptomatic. The present review offers an overview of the different factors involved in the pathogenesis of these diseases. Subsequently, we focused on the recent advanced studies of dietary polyphenols and stem cell therapies, which have made it possible to slow down the progression of neurodegeneration. To date, stem cells and different polyphenols have been used for the directional induction of neural stem cells into dopaminergic neurons and motor neurons. We have also discussed their involvement in the modulation of different signal transduction pathways and growth factor levels in various in vivo and in vitro studies. Likewise stem cells, polyphenols also exhibit the potential of neuroprotection by their anti-apoptotic, anti-inflammatory, anti-oxidant properties regulating the growth factors levels and molecular signaling events. Overall this review provides a detailed insight into recent strategies that promise the use of polyphenol with stem cell therapy for the possible treatment of PD and ALS.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| |
Collapse
|
10
|
Yan Y, Chen Y, Liu Z, Cai F, Niu W, Song L, Liang H, Su Z, Yu B, Yan F. Brain Delivery of Curcumin Through Low-Intensity Ultrasound-Induced Blood-Brain Barrier Opening via Lipid-PLGA Nanobubbles. Int J Nanomedicine 2021; 16:7433-7447. [PMID: 34764649 PMCID: PMC8575349 DOI: 10.2147/ijn.s327737] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disorder. Owing to the presence of blood-brain barrier (BBB), conventional pharmaceutical agents are difficult to the diseased nuclei and exert their action to inhibit or delay the progress of PD. Recent literatures have demonstrated that curcumin shows the great potential to treat PD. However, its applications are still difficult in vivo due to its poor druggability and low bioavailability through the BBB. Methods Melt-crystallization methods were used to improve the solubility of curcumin, and curcumin-loaded lipid-PLGA nanobubbles (Cur-NBs) were fabricated through encapsulating the curcumin into the cavity of lipid-PLGA nanobubbles. The bubble size, zeta potentials, ultrasound imaging capability and drug encapsulation efficiency of the Cur-NBs were characterized by a series of analytical methods. Low-intensity focused ultrasound (LIFU) combined with Cur-NB was used to open the BBB to facilitate curcumin delivery into the deep brain of PD mice, followed by behavioral evaluation for the treatment efficacy. Results The solubility of curcumin was improved by melt-crystallization methods, with 2627-fold higher than pure curcumin. The resulting Cur-NBs have a nanoscale size about 400 nm and show excellent contrast imaging performance. Curcumin drugs encapsulated into Cur-NBs could be effectively released when Cur-NBs were irradiated by LIFU at the optimized acoustic pressure, achieving 30% cumulative release rate within 6 h. Importantly, Cur-NBs combined with LIFU can open the BBB and locally deliver the curcumin into the deep-seated brain nuclei, significantly enhancing efficacy of curcumin in the Parkinson C57BL/6J mice model in comparison with only Cur-NBs and LIFU groups. Conclusion In this work, we greatly improved the solubility of curcumin and developed Cur-NBs for brain delivery of curcumin against PD through combining with LIFU-mediating BBB. Cur-NBs provide a platform for these potential drugs which are difficult to cross the BBB to treat PD disease or other central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yan Chen
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhongxun Liu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Wanting Niu
- VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Liming Song
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Haifeng Liang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhiwen Su
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| |
Collapse
|
11
|
Han F, Liu Y, Huang J, Zhang X, Wei C. Current Approaches and Molecular Mechanisms for Directly Reprogramming Fibroblasts Into Neurons and Dopamine Neurons. Front Aging Neurosci 2021; 13:738529. [PMID: 34658841 PMCID: PMC8515543 DOI: 10.3389/fnagi.2021.738529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease is mainly caused by specific degeneration of dopaminergic neurons (DA neurons) in the substantia nigra of the middle brain. Over the past two decades, transplantation of neural stem cells (NSCs) from fetal brain-derived neural stem cells (fNSCs), human embryonic stem cells (hESCs), and induced pluripotent stem cells (iPSCs) has been shown to improve the symptoms of motor dysfunction in Parkinson's disease (PD) animal models and PD patients significantly. However, there are ethical concerns with fNSCs and hESCs and there is an issue of rejection by the immune system, and the iPSCs may involve tumorigenicity caused by the integration of the transgenes. Recent studies have shown that somatic fibroblasts can be directly reprogrammed to NSCs, neurons, and specific dopamine neurons. Directly induced neurons (iN) or induced DA neurons (iDANs) from somatic fibroblasts have several advantages over iPSC cells. The neurons produced by direct transdifferentiation do not pass through a pluripotent state. Therefore, direct reprogramming can generate patient-specific cells, and it can overcome the safety problems of rejection by the immune system and teratoma formation related to hESCs and iPSCs. However, there are some critical issues such as the low efficiency of direct reprogramming, biological functions, and risks from the directly converted neurons, which hinder their clinical applications. Here, the recent progress in methods, mechanisms, and future challenges of directly reprogramming somatic fibroblasts into neurons or dopamine neurons were summarized to speed up the clinical translation of these directly converted neural cells to treat PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabin Han
- Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shenzhen Research Institute of Shandong University, Jinan, China.,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Yanming Liu
- Shenzhen Research Institute of Shandong University, Jinan, China.,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Jin Huang
- Laboratory of Basic Medical Research, Medical Centre of PLA Strategic Support Force, Beijing, China
| | - Xiaoping Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanfei Wei
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
12
|
Alizadeh R, Boroujeni ME, Kamrava SK, Tehrani AM, Bagher Z, Heidari F, Bluyssen HAR, Farhadi M. From Transcriptome to Behavior: Intranasal Injection of Late Passage Human Olfactory Stem Cells Displays Potential in a Rat Model of Parkinson's Disease. ACS Chem Neurosci 2021; 12:2209-2217. [PMID: 34048212 DOI: 10.1021/acschemneuro.1c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which is caused by the loss of dopaminergic (DAergic) neurons. Thus, cell replacement therapy (CRT) might be regarded as an alternative therapy to effectively treat motor functional defects in PD patients. Human olfactory ectomesenchymal stem cells (OE-MSCs) are a novel type of mesenchymal stem cells (MSCs) with a strong tendency to differentiate into DAergic neurons. However, there are various barriers to successful CRT including the proliferation capacity of stem cells at higher passage numbers as well as the route of stem cell delivery. In this regard, we aimed to explore the efficacy of late passage OE-MSC administration through the intranasal (IN) route in PD rat models. Herein, the proliferation capacity of OE-MSCs was compared at early and late passage numbers; then, the results were validated via RNA sequencing analysis. Subsequently, the efficacy of IN injection of late passage OE-MSC in PD models was evaluated. The results manifested the absence of noticeable differences in proliferation capacity and signaling pathways in OE-MSCs at early and late passage numbers. Moreover, it was found that the IN administration of OE-MSCs with a high passage number substantially increased the levels of DAergic markers and improved the motor function in rat models of PD. Overall, our findings suggested that OE-MSCs with a high passage number are a promising CRT candidate due to their fundamental potential to provide a large number of cells with an enormous proliferation capacity. Moreover, they exhibit the high efficiency of IN administration as a noninvasive route of late-passage OE-MSC delivery for CRT, particularly for PD.
Collapse
Affiliation(s)
- Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran 1445613131, Iran
| | - Mahdi Eskandarian Boroujeni
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Seyed Kamran Kamrava
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran 1445613131, Iran
| | - Ava Modirzadeh Tehrani
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran 1445613131, Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom 3716993456, Iran
| | - Hans A. R. Bluyssen
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran 1445613131, Iran
| |
Collapse
|
13
|
Sivandzade F, Cucullo L. Regenerative Stem Cell Therapy for Neurodegenerative Diseases: An Overview. Int J Mol Sci 2021; 22:2153. [PMID: 33671500 PMCID: PMC7926761 DOI: 10.3390/ijms22042153] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases resulting from the progressive loss of structure and/or function of neurons contribute to different paralysis degrees and loss of cognition and sensation. The lack of successful curative therapies for neurodegenerative disorders leads to a considerable burden on society and a high economic impact. Over the past 20 years, regenerative cell therapy, also known as stem cell therapy, has provided an excellent opportunity to investigate potentially powerful innovative strategies for treating neurodegenerative diseases. This is due to stem cells' capability to repair injured neuronal tissue by replacing the damaged or lost cells with differentiated cells, providing a conducive environment that is in favor of regeneration, or protecting the existing healthy neurons and glial cells from further damage. Thus, in this review, the various types of stem cells, the current knowledge of stem-cell-based therapies in neurodegenerative diseases, and the recent advances in this field are summarized. Indeed, a better understanding and further studies of stem cell technologies cause progress into realistic and efficacious treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA;
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
14
|
Abstract
Cerebral palsy is the most common disease in children associated with lifelong disability in many countries. Clinical research has demonstrated that traditional physiotherapy and rehabilitation therapies cannot alone cure cerebral palsy. Stem cell transplantation is an emerging therapy that has been applied in clinical trials for a variety of neurological diseases because of the regenerative and unlimited proliferative capacity of stem cells. In this review, we summarize the design schemes and results of these clinical trials. Our findings reveal great differences in population characteristics, stem cell types and doses, administration methods, and evaluation methods among the included clinical trials. Furthermore, we also assess the safety and efficacy of these clinical trials. We anticipate that our findings will advance the rational development of clinical trials of stem cell therapy for cerebral palsy and contribute to the clinical application of stem cells.
Collapse
Affiliation(s)
- Zhong-Yue Lv
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
15
|
Fričová D, Korchak JA, Zubair AC. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson's disease. NPJ Regen Med 2020; 5:20. [PMID: 33298940 PMCID: PMC7641157 DOI: 10.1038/s41536-020-00106-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the presence of Lewy bodies, which gives rise to motor and non-motor symptoms. Unfortunately, current therapeutic strategies for PD merely treat the symptoms of the disease, only temporarily improve the patients' quality of life, and are not sufficient for completely alleviating the symptoms. Therefore, cell-based therapies have emerged as a novel promising therapeutic approach in PD treatment. Mesenchymal stem/stromal cells (MSCs) have arisen as a leading contender for cell sources due to their regenerative and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Although several studies have shown that MSCs have the potential to mitigate the neurodegenerative pathology of PD, variabilities in preclinical and clinical trials have resulted in inconsistent therapeutic outcomes. In this review, we strive to highlight the sources of variability in studies using MSCs in PD therapy, including MSC sources, the use of autologous or allogenic MSCs, dose, delivery methods, patient factors, and measures of clinical outcome. Available evidence indicates that while the use of MSCs in PD has largely been promising, conditions need to be standardized so that studies can be effectively compared with one another and experimental designs can be improved upon, such that this body of science can continue to move forward.
Collapse
Affiliation(s)
- Dominika Fričová
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jennifer A Korchak
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
16
|
Liu Z, Cheung HH. Stem Cell-Based Therapies for Parkinson Disease. Int J Mol Sci 2020; 21:ijms21218060. [PMID: 33137927 PMCID: PMC7663462 DOI: 10.3390/ijms21218060] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson disease (PD) is a neurological movement disorder resulting primarily from damage to and degeneration of the nigrostriatal dopaminergic pathway. The pathway consists of neural populations in the substantia nigra that project to the striatum of the brain where they release dopamine. Diagnosis of PD is based on the presence of impaired motor features such as asymmetric or unilateral resting tremor, bradykinesia, and rigidity. Nonmotor features including cognitive impairment, sleep disorders, and autonomic dysfunction are also present. No cure for PD has been discovered, and treatment strategies focus on symptomatic management through restoration of dopaminergic activity. However, proposed cell replacement therapies are promising because midbrain dopaminergic neurons have been shown to restore dopaminergic neurotransmission and functionally rescue the dopamine-depleted striatum. In this review, we summarize our current understanding of the molecular pathogenesis of neurodegeneration in PD and discuss the development of new therapeutic strategies that have led to the initiation of exploratory clinical trials. We focus on the applications of stem cells for the treatment of PD and discuss how stem cell research has contributed to an understanding of PD, predicted the efficacy of novel neuroprotective therapeutics, and highlighted what we believe to be the critical areas for future research.
Collapse
Affiliation(s)
- Zhaohui Liu
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Hoi-Hung Cheung
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
- Correspondence:
| |
Collapse
|
17
|
Ebrahimi V, Eskandarian Boroujeni M, Aliaghaei A, Abdollahifar MA, Piryaei A, Haghir H, Sadeghi Y. Functional dopaminergic neurons derived from human chorionic mesenchymal stem cells ameliorate striatal atrophy and improve behavioral deficits in Parkinsonian rat model. Anat Rec (Hoboken) 2020; 303:2274-2289. [PMID: 31642188 DOI: 10.1002/ar.24301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/17/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022]
Abstract
Human chorionic mesenchymal stem cells (HCMSCs) have been recognized as a desirable choice for cell therapy in neurological disorders such as Parkinson's disease (PD). Due to invaluable features of HCMSCs including their immunomodulatory and immunosuppressive properties, easily accessible and less differentiated compared to other types of MSCs, HCMSCs provide a great hope for regenerative medicine. Thus, the purpose of this study was to determine the in vitro and in vivo efficacy of HCMSCs-derived dopaminergic (DA) neuron-like cells with regard to PD. Initially, HCMSCs were isolated and underwent a 2-week DA differentiation, followed by in vitro assessments, using quantitative real-time polymerase chain reaction, immunocytochemistry, patch clamp recording, and high-performance liquid chromatography. In addition, the effects of implanted HCMSCs-derived DA neuron-like cells on the motor coordination along with stereological alterations in the striatum of rat models of PD were investigated. Our results showed that under neuronal induction, HCMSCs revealed neuron-like morphology, and expressed neuronal and DA-specific genes, together with DA release. Furthermore, transplantation of HCMSCs-derived DA neurons into the striatum of rat models of PD, augmented performance. Besides, it prevented reduction of striatal volume, dendritic length, and the total number of neurons, coupled with a diminished level of cleaved caspase-3. Altogether, these findings suggest that HCMSCs could be considered as an attractive strategy for cell-based therapies in PD.
Collapse
Affiliation(s)
- Vahid Ebrahimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Haghir
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Sadeghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42:1073-1101. [DOI: 10.1007/s10529-020-02886-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
|
19
|
Willis CM, Nicaise AM, Peruzzotti-Jametti L, Pluchino S. The neural stem cell secretome and its role in brain repair. Brain Res 2020; 1729:146615. [DOI: 10.1016/j.brainres.2019.146615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
|
20
|
Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat 2020; 104:101752. [PMID: 31996329 DOI: 10.1016/j.jchemneu.2020.101752] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Since the discovery of L-dopa in the middle of the 20th century (1960s), there is not any neuroprotective therapy available although significant development has been made in the treatment of symptomatic Parkinson's disease (PD). Neurological disorders like PD can be modelled in animals so as to recapitulates most of the symptoms seen in PD patients. In aging population, PD is the second most common neurodegenerative disease after Alzheimer's disease, even though significant outcomes have been achieved in PD research yet it still is a mystery to solve the treatments for PD. In the last two decades, PD models have provided enhanced precision into the understanding of the process of PD disease, its etiology, pathology, and molecular mechanisms behind it. Furthermore, at the same time as cellular models have helped to recognize specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are very helpful for testing and finding new strategies for neuroprotection. Recently, in both classical and newer models, major advances have been done in the modelling of supplementary PD features have come into the light. In this review, we have try to provide an updated summary of the characteristics of these models related to in vitro and in vivo models, animal models for PD, stem cell model for PD, newer 3D model as well as the strengths and limitations of these most popular PD models.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
21
|
Uncovering the Pharmacological Mechanism of Stemazole in the Treatment of Neurodegenerative Diseases Based on a Network Pharmacology Approach. Int J Mol Sci 2020; 21:ijms21020427. [PMID: 31936558 PMCID: PMC7013392 DOI: 10.3390/ijms21020427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/17/2022] Open
Abstract
Stemazole exerts potent pharmacological effects against neurodegenerative diseases and protective effects in stem cells. However, on the basis of the current understanding, the molecular mechanisms underlying the effects of stemazole in the treatment of Alzheimer's disease and Parkinson's disease have not been fully elucidated. In this study, a network pharmacology-based strategy integrating target prediction, network construction, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking was adopted to predict the targets of stemazole relevant to the treatment of neurodegenerative diseases and to further explore the involved pharmacological mechanisms. The majority of the predicted targets were highly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. RAC-alpha serine/threonine-protein kinase (AKT1), caspase-3 (CASP3), caspase-8 (CASP8), mitogen-activated protein kinase 8 (MAPK8), and mitogen-activated protein kinase 14 (MAPK14) are the core targets regulated by stemazole and play a central role in its anti-apoptosis effects. This work provides a scientific basis for further elucidating the mechanism underlying the effects of stemazole in the treatment of neurodegenerative diseases.
Collapse
|
22
|
Quality Standards of Stem Cell Sources for Clinical Treatment of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:9-19. [PMID: 33105492 DOI: 10.1007/978-981-15-4370-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A large number of experimental and clinical studies have shown that cell transplantation has therapeutic effects for PD, AD and other neurodegenerative diseases or damages. Good Manufacturing Practice (GMP) guidance must be defined to produce clinical-grade cells for transplantation to the patients. Standardized quality and clinical preparation procedures of the transplanted cells will ensure the therapeutic efficacy and reduce the side-effect risk of cell therapy. Here we review the cell quality standards governing the clinical transplantation of stem cells for neurodegenerative diseases to clinical practitioners. These quality standards include cell quality control, minimal suggested cell doses for undergoing cell transplantation, documentation of procedure and therapy, safety evaluation, efficacy evaluation, policy of repeated treatments, not charging the patients for unproven therapies, basic principles of cell therapy, and publishing responsibility.
Collapse
|
23
|
Chen C, Chen Q, Liu Y, Zhang C, Zhu K, Li X, Xie H, Zhang R. The cell repair research for Parkinson’s disease: A systematic review. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background and Objective: Parkinson’s disease (PD) is a common neurodegenerative disease. Previous studies have demonstrated the effect of cell-based therapies, but their clinical efficacy and safety have not been evaluated. This review protocol aimed to systematically evaluate the effect of stem cell therapy in patients with PD and to develop an evidence base for guiding policy and practice. Methods: PubMed, Embase, MedlinePlus, The Lancet and Brain were searched over the period January 2001 to October 2019. The keywords used for searching were "Parkinson’s disease" and "cell therapy" and "mesenchymal stem cells" and "embryonic stem cells" and "brain-derived neural stem cells" and "neural progenitor cells" . The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and a measurement tool, Assessment of Multiple Systematic Reviews (AMSTAR), to assess systematic reviews were used to assess the reporting quality and methodological quality. Data extracted included study details, participant details, intervention details and outcome. Results: Nine valid research papers were screened out by systematic analysis. These nine studies were carried out in different countries, with different populations and cell types. According to evaluation methods used, all of the transplantation therapies reported can improve the symptoms of PD patients. Conclusions: Cell transplantation is a potential treatment option for PD. More studies with strict study design, larger sample sizes, and longer follow-up are needed in the future.
Collapse
|
24
|
Han F, Hu B. Stem Cell Therapy for Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:21-38. [PMID: 33105493 DOI: 10.1007/978-981-15-4370-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases caused by specific degeneration and loss of dopamine neurons in substantia nigra of the midbrain. PD is clinically characterized by motor dysfunctions and non-motor symptoms. Even though the dopamine replacement can improve the motor symptoms of PD, it cannot stop the neural degeneration and disease progression. Electrical deep brain stimulation (DBS) to the specific brain areas can improve the symptoms, but it eventually loses the effectiveness. Stem cell transplantation provides an exciting potential for the treatment of PD. Current available cell sources include neural stem cells (NSCs) from fetal brain tissues, human embryonic stem cells (hESCs) isolated from blastocyst, and induced pluripotent stem cells (iPSCs) reprogrammed from the somatic cells such as the fibroblasts and blood cells. Here, we summarize the research advance in experimental and clinical studies to transplant these cells into animal models and clinical patients, and specifically highlight the studies to use hESCs /iPSCs-derived dopaminergic precursor cells and dopamine neurons for the treatment of PD, at last propose future challenges for developing clinical-grade dopaminergic cells for treating the PD.
Collapse
Affiliation(s)
- Fabin Han
- The Institute for Translational Medicine, Affiliated Hospital, Shandong University, Jinan, Shandong, China. .,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, China. .,Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Garitaonandia I, Gonzalez R, Sherman G, Semechkin A, Evans A, Kern R. Novel Approach to Stem Cell Therapy in Parkinson's Disease. Stem Cells Dev 2019; 27:951-957. [PMID: 29882481 DOI: 10.1089/scd.2018.0001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this commentary we discuss International Stem Cell Corporation's (ISCO's) approach to developing a pluripotent stem cell based treatment for Parkinson's disease (PD). In 2016, ISCO received approval to conduct the world's first clinical study of a pluripotent stem cell based therapy for PD. The Australian regulatory agency Therapeutic Goods Administration (TGA) and the Melbourne Health's Human Research Ethics Committee (HREC) independently reviewed ISCO's extensive preclinical data and granted approval for the evaluation of a novel human parthenogenetic derived neural stem cell (NSC) line, ISC-hpNSC, in a PD phase 1 clinical trial ( ClinicalTrials.gov NCT02452723). This is a single-center, open label, dose escalating 12-month study with a 5-year follow-up evaluating a number of objective and patient-reported safety and efficacy measures. A total of 6 years of safety and efficacy data will be collected from each patient. Twelve participants are recruited in this study with four participants per single dose cohort of 30, 50, and 70 million ISC-hpNSC. The grafts are placed bilaterally in the caudate nucleus, putamen, and substantia nigra by magnetic resonance imaging-guided stereotactic surgery. Participants are 30-70 years old with idiopathic PD ≤13 years duration and unified PD rating scale motor score (Part III) in the "OFF" state ≤49. This trial is fully funded by ISCO with no economic involvement from the patients. It is worth noting that ISCO underwent an exhaustive review process and successfully answered the very comprehensive, detailed, and specific questions posed by the TGA and HREC. The regulatory/ethic review process is based on applying scientific and clinical expertise to decision-making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines or novel therapies.
Collapse
Affiliation(s)
| | | | - Glenn Sherman
- 1 International Stem Cell Corporation , Carlsbad, California
| | | | - Andrew Evans
- 2 Royal Melbourne Hospital , Parkville, Australia
| | - Russell Kern
- 1 International Stem Cell Corporation , Carlsbad, California.,3 Cyto Therapeutics , Melbourne, Australia
| |
Collapse
|
26
|
Li H, Tan Q, Zhang Y, Zhang J, Zhao C, Lu S, Qiao J, Han M. Pharmacokinetics and absolute oral bioavailability of stemazole by UPLC-MS/MS and its bio-distribution through tritium labeling. Drug Test Anal 2019; 12:101-108. [PMID: 31486294 DOI: 10.1002/dta.2694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/08/2022]
Abstract
The small molecule, stemazole, has significant therapeutic effects on neurodegenerative diseases, such as Alzheimer's disease (AD), due to its neuroprotective effects and remarkable survival-promoting activity in stem cells. However, pharmacokinetic properties of stemazole were unclear. In this study, a rapid and effective ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to detect stemazole. The detector was operated in the positive-ion mode with an electrospray ionization (ESI) interface in multiple reaction monitoring (MRM) mode. Chromatographic separation was performed on an Acquity UPLC® BEH C18 column with gradient elution. Stemazole was extracted from plasma following a one-step protein precipitation method. The method was fully validated for its selectivity, specificity, and sensitivity. The calibration curve range of 5-1125 ng/mL showed good linearity for stemazole. Intra-day and inter-day precision rates were less than 10%, and accuracy ranged from 95.87% to 105.23%. The pharmacokinetic profiles were illustrated through the newly developed method for the first time. The absolute oral bioavailability of stemazole is 32.10%. Therefore, it is feasible as an oral medication, which greatly facilitates its broad application. The biological distribution of tritium-labeled stemazole in mice was studied, and the results showed that stemazole was absorbed rapidly and distributed widely, mainly in the liver and kidneys. A specific amount was also detected in the brain, which provides a prerequisite for the use of stemazole to treat neurodegenerative diseases. This work represents first description of the pharmacokinetics, bioavailability, and tissue distribution of stemazole and will lay the foundation for further investigation and drug development.
Collapse
Affiliation(s)
- Huajun Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Qi Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yubo Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jing Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Chaoran Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuai Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Mei Han
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
27
|
Ma Y, Ma J, Zhao Y, Yang K, Zhou J, Gao F, Pan R, Lu G. Comparison of phenotypic markers and neural differentiation potential of human bone marrow stromal cells from the cranial bone and iliac crest. J Cell Physiol 2019; 234:15235-15242. [PMID: 30677139 DOI: 10.1002/jcp.28167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Cellular therapies represent a new frontier in the treatment of neurological diseases. Accumulating evidence from preclinical studies of animal models suggests that mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, are an effective therapy for neurological diseases. In this study, we established human MSC lines from both cranial bone marrow (cBMMSCs) and iliac crest bone marrow (iBMMSCs) from the same donors and found that cBMMSCs show higher expression of neural crest-associated genes than iBMMSCs. Moreover, as observed in both mRNA and protein assays, neurogenic-induced cells from cBMMSCs expressed significantly higher levels of neural markers, such as NESTIN, SLUG, SOX9, and TWIST, than those from iBMMSCs. Thus, cBMMSCs showed a greater tendency than iBMMSCs to differentiate into neuron-like cells.
Collapse
Affiliation(s)
- Yuyuan Ma
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuanyuan Zhao
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kaichuang Yang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jia Zhou
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Faliang Gao
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China.,Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
| | - Gang Lu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
28
|
Relaño-Ginés A, Lehmann S, Deville de Périère D, Hirtz C. Dental stem cells as a promising source for cell therapies in neurological diseases. Crit Rev Clin Lab Sci 2019; 56:170-181. [DOI: 10.1080/10408363.2019.1571478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aroa Relaño-Ginés
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Dominique Deville de Périère
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Christophe Hirtz
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
29
|
Stem Cell Transplantation and Physical Exercise in Parkinson's Disease, a Literature Review of Human and Animal Studies. Stem Cell Rev Rep 2018; 14:166-176. [PMID: 29270820 DOI: 10.1007/s12015-017-9798-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The absence of effective and satisfactory treatments that contribute to repairing the dopaminergic damage caused by Parkinson's Disease (PD) and the limited recovery capacity of the nervous system are troubling issues and the focus of many research and clinical domains. Recent advances in the treatment of PD through stem cell (SC) therapy have recognized their promising restorative and neuroprotective effects that are implicated in the potentiation of endogenous mechanisms of repair and contribute to functional locomotor improvement. Physical exercise (PE) has been considered an adjuvant intervention that by itself induces beneficial effects in patients and animal models with Parkinsonism. In this sense, the combination of both therapies could provide synergic or superior effects for motor recovery, in contrast with their individual use. This review aims to provide an update on recent progress and the potential effectiveness of SC transplantation and PE for the treatment of locomotor deficits in PD. It has reviewed the neuropathological pathways involved in the classical motor symptoms of this condition and the mechanisms of action described in experimental studies that are associated with locomotor enhancement through exercise, cellular transplantation, and their union in some neurodegenerative conditions.
Collapse
|
30
|
Mendes-Pinheiro B, Teixeira FG, Anjo SI, Manadas B, Behie LA, Salgado AJ. Secretome of Undifferentiated Neural Progenitor Cells Induces Histological and Motor Improvements in a Rat Model of Parkinson's Disease. Stem Cells Transl Med 2018; 7:829-838. [PMID: 30238668 PMCID: PMC6216452 DOI: 10.1002/sctm.18-0009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that results from the death of dopamine (DA) neurons. Over recent years, differentiated or undifferentiated neural stem cells (NSCs) transplantation has been widely used as a means of cell replacement therapy. However, compelling evidence has brought attention to the array of bioactive molecules produced by stem cells, defined as secretome. As described in the literature, other cell populations have a high‐neurotrophic activity, but little is known about NSCs. Moreover, the exploration of the stem cell secretome is only in its initial stages, particularly as applied to neurodegenerative diseases. Thus, we have characterized the secretome of human neural progenitor cells (hNPCs) through proteomic analysis and investigated its effects in a 6‐hydroxidopamine (6‐OHDA) rat model of PD in comparison with undifferentiated hNPCs transplantation. Results revealed that the injection of hNPCs secretome potentiated the histological recovery of DA neurons when compared to the untreated group 6‐OHDA and those transplanted with cells (hNPCs), thereby supporting the functional motor amelioration of 6‐OHDA PD animals. Additionally, hNPCs secretome proteomic characterization has revealed that these cells have the capacity to secrete a wide range of important molecules with neuroregulatory actions, which are most likely support the effects observed. Overall, we have concluded that the use of hNPCs secretome partially modulate DA neurons cell survival and ameliorate PD animals’ motor deficits, disclosing improved results when compared to cell transplantation approaches, indicating that the secretome itself could represent a route for new therapeutic options for PD regenerative medicine. stem cells translational medicine2018;7:829–838
Collapse
Affiliation(s)
- Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Sandra I Anjo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Leo A Behie
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
31
|
Tasnim N, Thakur V, Chattopadhyay M, Joddar B. The Efficacy of Graphene Foams for Culturing Mesenchymal Stem Cells and Their Differentiation into Dopaminergic Neurons. Stem Cells Int 2018; 2018:3410168. [PMID: 29971110 PMCID: PMC6008666 DOI: 10.1155/2018/3410168] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 11/18/2022] Open
Abstract
The implantation of stem cells in vivo is the ideal approach for the restoration of normal life functions, such as replenishing the decreasing levels of affected dopaminergic (DA) neurons during neurodegenerative disease conditions. However, combining stem cells with biomaterial scaffolds provides a promising strategy for engineering tissues or cellular delivery for directed stem cell differentiation as a means of replacing diseased/damaged tissues. In this study, mouse mesenchymal stem cells (MSCs) were differentiated into DA neurons using sonic hedgehog, fibroblast growth factor, basic fibroblast growth factor, and brain-derived neurotrophic factor, while they were cultured within collagen-coated 3D graphene foams (GF). The differentiation into DA neurons within the collagen-coated GF and controls (collagen gels, plastic) was confirmed using β-III tubulin, tyrosine hydroxylase (TH), and NeuN positive immunostaining. Enhanced expression of β-III tubulin, TH, and NeuN and an increase in the average neurite extension length were observed when cells were differentiated within collagen-coated GF in comparison with collagen gels. Furthermore, these graphene-based scaffolds were not cytotoxic as MSC seemed to retain viability and proliferated substantially during in vitro culture. In summary, these results suggest the utility of 3D graphene foams towards the differentiation of DA neurons from MSC, which is an important step for neural tissue engineering applications.
Collapse
Affiliation(s)
- Nishat Tasnim
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Vikram Thakur
- Department of Biomedical Sciences, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Munmun Chattopadhyay
- Department of Biomedical Sciences, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| |
Collapse
|
32
|
Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats. Cytotherapy 2018; 20:670-686. [PMID: 29576501 DOI: 10.1016/j.jcyt.2018.02.371] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/11/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study explored the neural differentiation and therapeutic effects of stem cells from human exfoliated deciduous teeth (SHED) in a rat model of Parkinson's disease (PD). METHODS The SHED were isolated from fresh dental pulp and were induced to differentiate to neurons and dopamine neurons by inhibiting similar mothers against dpp (SMAD) signaling with Noggin and increase conversion of dopamine neurons from SHED with CHIR99021, Sonic Hedgehog (SHH) and FGF8 in vitro. The neural-primed SHED were transplanted to the striatum of 6-hydroxydopamine (6-OHDA)-induced PD rats to evaluate their neural differentiation and functions in vivo. RESULTS These SHED were efficiently differentiated to neurons (62.7%) and dopamine neurons (42.3%) through a newly developed method. After transplantation, the neural-induced SHED significantly improved recovery of the motor deficits of the PD rats. The grafted SHED were differentiated into neurons (61%), including dopamine neurons (22.3%), and integrated into the host rat brain by forming synaptic connections. Patch clamp analysis showed that neurons derived from grafted SHED have the same membrane potential profile as dopamine neurons, indicating these cells are dopamine neuron-like cells. The potential molecular mechanism of SHED transplantation in alleviating motor deficits of the rats is likely to be mediated by neuronal replacement and immune-modulation as we detected the transplanted dopamine neurons and released immune cytokines from SHED. CONCLUSION Using neural-primed SHED to treat PD showed significant restorations of motor deficits in 6-OHDA-induced rats. These observations provide further evidence that SHED can be used for cell-based therapy of PD.
Collapse
|
33
|
Kwon D, Ahn HJ, Kang KS. Generation of Human Neural Stem Cells by Direct Phenotypic Conversion. Results Probl Cell Differ 2018; 66:103-121. [PMID: 30209656 DOI: 10.1007/978-3-319-93485-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human neural stem cells (hNSC) are multipotent adult stem cells. Various studies are underway worldwide to identify new methods for treatment of neurological diseases using hNSC. This chapter summarizes the latest research trends in and fields for application of patient-specific hNSC using direct phenotypic conversion technology. The aim of the study was to analyze the advantages and disadvantages of current technology and to suggest relevant directions for future hNSC research.
Collapse
Affiliation(s)
- Daekee Kwon
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Seoul National University, Seoul, South Korea
| | - Hee-Jin Ahn
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Seoul National University, Seoul, South Korea
| | - Kyung-Sun Kang
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Seoul National University, Seoul, South Korea.
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
34
|
Ku J, El-Hashash A. Stem Cell Roles and Applications in Genetic Neurodegenerative Diseases. STEM CELLS IN CLINICAL APPLICATIONS 2018. [DOI: 10.1007/978-3-319-98065-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Polgar S, Karimi L, Buultjens M, Morris ME, Busse M. Assessing the Efficacy of Cell Transplantation for Parkinson's Disease: A Patient-Centered Approach. JOURNAL OF PARKINSON'S DISEASE 2018; 8:375-383. [PMID: 29889080 PMCID: PMC6130410 DOI: 10.3233/jpd-181309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Evidence from a growing number of preclinical studies indicate that recently discovered stem cell lines may be translated into viable cellular therapies for people with Parkinson's disease. OBJECTIVES In a brief but critical review, we examine the use of primary and secondary outcome measures currently used to evaluate the efficacy of cellular therapies. METHODS The current practice of relying on a single primary outcome measure does not appear to provide the evidence required for demonstrating the robust, life-changing recovery anticipated with the successful implementation of cellular therapies. RESULTS We propose a 360-degree assessment protocol, which includes co-primary and composite outcome measures to provide accurate and comprehensive evidence of treatment efficacy, from the perspectives of both the researchers and the patients.
Collapse
Affiliation(s)
- Stephen Polgar
- School of Allied Health, La Trobe University, Bundoora, Melbourne, Australia
| | - Leila Karimi
- School of Psychology and Public Health, La Trobe University, Bundoora, Melbourne, Australia
- School of Health Policy and Management, Ilia State University, Georgia
| | - Melissa Buultjens
- School of Psychology and Public Health, La Trobe University, Bundoora, Melbourne, Australia
| | - Meg E. Morris
- La Trobe Centre for Sport and Exercise Medicine Research, School Allied Health, La Trobe University and Healthscope, Bundoora, Melbourne, Australia
| | - Monica Busse
- Centre For Trials Research, Cardiff University, Cardiff, UK
| |
Collapse
|
36
|
Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson's disease: Targets for potential treatments. Transl Neurodegener 2017; 6:28. [PMID: 29090092 PMCID: PMC5655877 DOI: 10.1186/s40035-017-0099-z] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Gradual degeneration and loss of dopaminergic neurons in the substantia nigra, pars compacta and subsequent reduction of dopamine levels in striatum are associated with motor deficits that characterize Parkinson’s disease (PD). In addition, half of the PD patients also exhibit frontostriatal-mediated executive dysfunction, including deficits in attention, short-term working memory, speed of mental processing, and impulsivity. The most commonly used treatments for PD are only partially or transiently effective and are available or applicable to a minority of patients. Because, these therapies neither restore the lost or degenerated dopaminergic neurons, nor prevent or delay the disease progression, the need for more effective therapeutics is critical. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways involved in PD, particularly within the context of how genetic and environmental factors contribute to the initiation and progression of this disease. The involvement of molecular chaperones, autophagy-lysosomal pathways, and proteasome systems in PD are also highlighted. In addition, emerging therapies, including pharmacological manipulations, surgical procedures, stem cell transplantation, gene therapy, as well as complementary, supportive and rehabilitation therapies to prevent or delay the progression of this complex disease are reviewed.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mt. Pleasant, MI 48859 USA.,Program in Neuroscience, Mt. Pleasant, MI 48859 USA.,Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604 USA.,Department of Biology, Saginaw Valley State University, Saginaw, MI 48604 USA
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38105 USA
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mt. Pleasant, MI 48859 USA.,Program in Neuroscience, Mt. Pleasant, MI 48859 USA.,Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604 USA
| |
Collapse
|
37
|
Consales C, Merla C, Marino C, Benassi B. The epigenetic component of the brain response to electromagnetic stimulation in Parkinson's Disease patients: A literature overview. Bioelectromagnetics 2017; 39:3-14. [PMID: 28990199 DOI: 10.1002/bem.22083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022]
Abstract
Modulations of epigenetic machinery, namely DNA methylation pattern, histone modification, and non-coding RNAs expression, have been recently included among the key determinants contributing to Parkinson's Disease (PD) aetiopathogenesis and response to therapy. Along this line of reasoning, a set of experimental findings are highlighting the epigenetic-based response to electromagnetic (EM) therapies used to alleviate PD symptomatology, mainly Deep Brain Stimulation (DBS) and Transcranial Magnetic Stimulation (TMS). Notwithstanding the proven efficacy of EM therapies, the precise molecular mechanisms underlying the brain response to these types of stimulations are still far from being elucidated. In this review we provide an overview of the epigenetic changes triggered by DBS and TMS in both PD patients and neurons from different experimental animal models. Furthermore, we also propose a critical overview of the exposure modalities currently applied, in order to evaluate the technical robustness and dosimetric control of the stimulation, which are key issues to be carefully assessed when new molecular findings emerge from experimental studies. Bioelectromagnetics. 39:3-14, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudia Consales
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Caterina Merla
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.,CNRS, Gustave Roussy, University of Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Carmela Marino
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Barbara Benassi
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
38
|
Stem Cell Technology for (Epi)genetic Brain Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:443-475. [PMID: 28523560 DOI: 10.1007/978-3-319-53889-1_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).
Collapse
|
39
|
Ramot Y, Nyska A, Maronpot RR, Shaltiel-Karyo R, Tsarfati Y, Manno RA, Sacco G, Yacoby-Zeevi O. Ninety-day Local Tolerability and Toxicity Study of ND0612, a Novel Formulation of Levodopa/Carbidopa, Administered by Subcutaneous Continuous Infusion in Minipigs. Toxicol Pathol 2017; 45:764-773. [PMID: 28891435 DOI: 10.1177/0192623317729891] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A 90-day study in Göttingen minipigs was conducted to test the local tolerability and systemic toxicity of ND0612, a novel aqueous solution of carbidopa (CD)/levodopa (LD) intended for the treatment of Parkinson's disease by continuous subcutaneous administration using a discrete infusion pump. To evaluate tissue site reactions, we used a unique study design involving multiple infusion sites to evaluate the effect of dose per site (270/63, 360/45, and 360/84 mg LD/CD), volume of infusion per site (4.5 and 6 ml per site), formulation concentration (60/14 and 60/7.5 mg/ml LD/CD), daily rate of infusion per site (240 μl/hr for16 hr and 80 μl/hr for 8 hr, 320 μl/hr for 16 hr and 100 μl/hr for 8 hr, or 750 μl/hr for 8 hr), frequency (once every 5, 10, 15, or 20 days), and number of infusions (4, 6, or 9) to the same infusion site. No systemic adverse effects were observed. Histopathological changes at infusion sites started with localized minimal necrosis and acute inflammation that progressed to subacute and chronic inflammatory and reparative changes with evidence of progressive recovery following the final infusion. None of the infusion site effects were judged to be adverse, and clinical exposures to ND0612 are not expected to result in adverse responses.
Collapse
Affiliation(s)
- Yuval Ramot
- 1 Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress. Biomed Pharmacother 2017; 88:754-761. [DOI: 10.1016/j.biopha.2017.01.123] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
|
41
|
Combining NT3-overexpressing MSCs and PLGA microcarriers for brain tissue engineering: A potential tool for treatment of Parkinson's disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:934-943. [PMID: 28482609 DOI: 10.1016/j.msec.2017.02.178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/03/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that characterized by destruction of substantia nigrostriatal pathway due to the loss of dopaminergic (DA) neurons. Regardless of substantial efforts for treatment of PD in recent years, an effective therapeutic strategy is still missing. In a multidisciplinary approach, bone marrow derived mesenchymal stem cells (BMSCs) are genetically engineered to overexpress neurotrophin-3 (nt-3 gene) that protect central nervous system tissues and stimulates neuronal-like differentiation of BMSCs. Poly(lactic-co-glycolic acid) (PLGA) microcarriers are designed as an injectable scaffold and synthesized via double emulsion method. The surface of PLGA microcarriers are functionalized by collagen as a bioadhesive agent for improved cell attachment. The results demonstrate effective overexpression of NT-3. The expression of tyrosine hydroxylase (TH) in transfected BMSCs reveal that NT-3 promotes the intracellular signaling pathway of DA neuron differentiation. It is also shown that transfected BMSCs are successfully attached to the surface of microcarriers. The presence of dopamine in peripheral media of cell/microcarrier complex reveals that BMSCs are successfully differentiated into dopaminergic neuron. Our approach that sustains presence of growth factor can be suggested as a novel complementary therapeutic strategy for treatment of Parkinson disease.
Collapse
|
42
|
Pimentel-Parra G, Murcia-Ordoñez B. Células madre, una nueva alternativa médica. PERINATOLOGÍA Y REPRODUCCIÓN HUMANA 2017. [DOI: 10.1016/j.rprh.2017.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
43
|
Wang Y, Ji X, Leak RK, Chen F, Cao G. Stem cell therapies in age-related neurodegenerative diseases and stroke. Ageing Res Rev 2017; 34:39-50. [PMID: 27876573 PMCID: PMC5250574 DOI: 10.1016/j.arr.2016.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
Abstract
Aging, a complex process associated with various structural, functional and metabolic changes in the brain, is an important risk factor for neurodegenerative diseases and stroke. These diseases share similar neuropathological changes, such as the formation of misfolded proteins, oxidative stress, loss of neurons and synapses, dysfunction of the neurovascular unit (NVU), reduction of self-repair capacity, and motor and/or cognitive deficiencies. In addition to gray matter dysfunction, the plasticity and repair capacity of white matter also decrease with aging and contribute to neurodegenerative diseases. Aging not only renders patients more susceptible to these disorders, but also attenuates their self-repair capabilities. In addition, low drug responsiveness and intolerable side effects are major challenges in the prevention and treatment of senile diseases. Thus, stem cell therapies-characterized by cellular plasticity and the ability to self-renew-may be a promising strategy for aging-related brain disorders. Here, we review the common pathophysiological changes, treatments, and the promises and limitations of stem cell therapies in age-related neurodegenerative diseases and stroke.
Collapse
Affiliation(s)
- Yuan Wang
- Departments of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Xunming Ji
- Departments of Neurosurgery, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Geriatric Research Education and Clinical Centers, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
44
|
Choi DH, Kim JH, Kim SM, Kang K, Han DW, Lee J. Therapeutic Potential of Induced Neural Stem Cells for Parkinson's Disease. Int J Mol Sci 2017; 18:E224. [PMID: 28117752 PMCID: PMC5297853 DOI: 10.3390/ijms18010224] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative disorder that results from the loss of cells in the substantia nigra (SN) which is located in the midbrain. However, no cure is available for PD. Recently, fibroblasts have been directly converted into induced neural stem cells (iNSCs) via the forced expression of specific transcription factors. Therapeutic potential of iNSC in PD has not been investigated yet. Here, we show that iNSCs directly converted from mouse fibroblasts enhanced functional recovery in an animal model of PD. The rotational behavior test was performed to assess recovery. Our results indicate that iNSC transplantation into the striatum of 6-hydroxydopamine (6-OHDA)-injected mice can significantly reduce apomorphine-induced rotational asymmetry. The engrafted iNSCs were able to survive in the striatum and migrated around the medial forebrain bundle and the SN pars compacta. Moreover, iNSCs differentiated into all neuronal lineages. In particular, the transplanted iNSCs that committed to the glial lineage were significantly increased in the striatum of 6-OHDA-injected mice. Engrafted iNSCs differentiated to dopaminergic (DA) neurons and migrated into the SN in the 6-OHDA lesion mice. Therefore, iNSC transplantation serves as a valuable tool to enhance the functional recovery in PD.
Collapse
Affiliation(s)
- Dong-Hee Choi
- Department of Medical Science, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Ji-Hye Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Sung Min Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Kyuree Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Konkuk Univesity Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| |
Collapse
|
45
|
Singh S, Srivastava A, Srivastava P, Dhuriya YK, Pandey A, Kumar D, Rajpurohit CS. Advances in Stem Cell Research- A Ray of Hope in Better Diagnosis and Prognosis in Neurodegenerative Diseases. Front Mol Biosci 2016; 3:72. [PMID: 27878120 PMCID: PMC5099954 DOI: 10.3389/fmolb.2016.00072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Neurodegeneration and neurodegenerative disorders have been a global health issue affecting the aging population worldwide. Recent advances in stem cell biology have changed the current face of neurodegenerative disease modeling, diagnosis, and transplantation therapeutics. Stem cells also serve the purpose of a simple in-vitro tool for screening therapeutic drugs and chemicals. We present the application of stem cells and induced pluripotent stem cells (iPSCs) in the field of neurodegeneration and address the issues of diagnosis, modeling, and therapeutic transplantation strategies for the most prevalent neurodegenerative disorders. We have discussed the progress made in the last decade and have largely focused on the various applications of stem cells in the neurodegenerative research arena.
Collapse
Affiliation(s)
- Shripriya Singh
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| | - Akriti Srivastava
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
| | - Pranay Srivastava
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
| | - Yogesh K. Dhuriya
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| | - Ankita Pandey
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
| | - Dipak Kumar
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| | - Chetan S. Rajpurohit
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| |
Collapse
|
46
|
Csöbönyeiová M, Danišovič Ľ, Polák Š. Induced pluripotent stem cells for modeling and cell therapy of Parkinson's disease. Neural Regen Res 2016; 11:727-728. [PMID: 27335549 PMCID: PMC4904456 DOI: 10.4103/1673-5374.182692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Mária Csöbönyeiová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
47
|
Polgar S, Karimi L, Buultjens M, Morris ME. A Critical Evaluation of the Methodological Obstacles to Translating Cell-Based Research Into an Effective Treatment for People With Parkinson's Disease. Neurorehabil Neural Repair 2016; 30:845-53. [PMID: 26944320 DOI: 10.1177/1545968316635277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The remarkable scientific and technological advances in the field of cell research have not been translated into viable restorative therapies for brain disorders. In this article, we examine the best available evidence for the clinical efficacy of reconstructive intracerebral transplantation in people with Parkinson's disease (PD), with the aim of identifying methodological obstacles to the translation process. The major stumbling block is the fact that the potential contributions of people with neural grafts and the effects of the physical and social environment in which they recover have not been adequately investigated and applied to advancing the clinical stages of the research program. We suggest that the biopsychosocial model along with emerging evidence of targeted rehabilitation can provide a useful framework for conducting research and evaluation that will ensure the best possible outcomes following intracerebral transplantation for PD.
Collapse
Affiliation(s)
| | - Leila Karimi
- La Trobe University, Melbourne, Australia Ilia State University, Georgia
| | | | | |
Collapse
|