1
|
Liu X, Zhang Q, Zong C, Gai H. Digital Immunoassay for Proteins: Theory, Methodology, and Clinical Applications. Anal Chem 2025. [PMID: 40257815 DOI: 10.1021/acs.analchem.4c05421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Chenghua Zong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| |
Collapse
|
2
|
Hazan J, Abel E, Rosa Grilo M, Alawode D, Laranjinha I, Heslegrave AJ, Liu KY, Schott JM, Howard R, Zetterberg H, Fox NC. How well do plasma Alzheimer's disease biomarkers reflect the CSF amyloid status? J Neurol Neurosurg Psychiatry 2025:jnnp-2024-334122. [PMID: 39694821 DOI: 10.1136/jnnp-2024-334122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Can plasma biomarkers as well as cerebrospinal fluid (CSF) perform in the separation of amyloid-beta-positive (Aβ+) vs amyloid-beta-negative (Aβ-) groups across an age range seen in an NHS cognitive disorder clinic? METHODS As part of the routine diagnostic investigation of 111 clinic patients who had contemporaneous blood and CSF samples taken, patients were categorised into Aβ+ and Aβ- groups based on their CSF in an Aβ42/40 ratio. We then evaluated four single molecule array (Simoa) Quanterix assays, quantifying single plasma analytes and ratios (p-tau217, p-tau217/Aβ42 ratio, p-tau181, p-tau181/Aβ42 ratio and Aβ42/40 ratio) in their ability to distinguish between these groups and the effect of age. RESULTS The median (range) age of participants was 66 (55-79) years with 48 females (43.2%). The areas under the curve (AUC), not accounting for age, for the ability to discriminate Aβ+ from Aβ- groups were plasma p-tau217 AUC=0.94, Aβ42/40 AUC=0.78 and p-tau181 AUC=0.77. Combining p-tau217/Aβ42 increased the AUC to 0.97. The difference between the groups was influenced by age with less separation in older individuals: a significant negative interaction term between age and group for plasma p-tau217 concentrations (-0.037, p=0.013) and p-tau217/Aβ42 ratio (-0.007, p=0.008). CONCLUSIONS There was variable performance of plasma biomarkers to recapitulate the CSF assay. Both p-tau217 and p-tau217/Aβ42 showed excellent promise as surrogates of CSF amyloid status, although with slightly reduced performance in older individuals. There was poorer discriminatory ability for p-tau181 and Aβ42/40. Further research is needed to address potential age-related confounds.
Collapse
Affiliation(s)
| | - Emily Abel
- UCL, UK Dementia Research Institute, London, UK
| | | | | | | | | | | | | | | | - Henrik Zetterberg
- UCL, UK Dementia Research Institute, London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Goteborg, Sweden
| | - Nick C Fox
- UCL, UK Dementia Research Institute, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
3
|
Wang J, Lu X, He Y. Electrochemical Technology for the Detection of Tau Proteins as a Biomarker of Alzheimer's Disease in Blood. BIOSENSORS 2025; 15:85. [PMID: 39996987 PMCID: PMC11853436 DOI: 10.3390/bios15020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and a significant cause of dementia in elderly individuals, with a growing prevalence in our aging population. Extracellular amyloid-β peptides (Aβ), intracellular tau proteins, and their phosphorylated forms have gained prominence as critical biomarkers for early and precise diagnosis of AD, correlating with disease progression and response to therapy. The high costs and invasiveness of conventional diagnostic methods, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), limit their suitability for large-scale or routine screening. However, electrochemical (EC) analysis methods have made significant progress in disease detection due to their high sensitivity, excellent specificity, portability, and cost-effectiveness. This article reviews the progress in EC biosensing technologies, focusing on the detection of tau protein biomarkers in the blood (a low-invasive, accessible diagnostic medium). The article then discusses various EC sensing platforms, including their fabrication processes, limit of detection (LOD), sensitivity, and clinical potential to show the role of these sensors as transformers changing the face of AD diagnostics.
Collapse
Affiliation(s)
- Jianman Wang
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa 999078, Macau SAR, China;
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| | - Xing Lu
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa 999078, Macau SAR, China;
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yao He
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa 999078, Macau SAR, China;
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Linard M, Garrigue I, Vellas B, Coley N, Zetterberg H, Blennow K, Ashton NJ, Payoux P, Salabert AS, Dartigues JF, Mazere J, Andrieu S, Helmer C. Association between herpes simplex virus infection and Alzheimer's disease biomarkers: analysis within the MAPT trial. Sci Rep 2025; 15:2362. [PMID: 39825066 PMCID: PMC11748617 DOI: 10.1038/s41598-024-84583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/24/2024] [Indexed: 01/20/2025] Open
Abstract
In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan. Plasma Aβ42/40 ratio, neurofilament light chain and p-tau181 were also available for a sub-sample of participants. Multivariate linear regressions were performed and stratified by APOE4 genotype. The median age was 74.0 years, 85.2% were infected with HSV-1. Infected participants tended to have a lower cortical amyloid load than uninfected participants (β = -0.08, p = 0.06), especially those suspected of reactivating HSV-1 most frequently (i.e. with a high anti-HSV-1 IgG level; n = 58, β = -0.09 p = 0.04). After stratification, the association was only significant in APOE4 carriers (n = 43, β = -0.21 p = 0.01). No association was found with the plasma biomarkers. The trend toward lower cortical amyloid load in HSV-1-infected participants was unexpected given the pre-existing literature and may be explained either by a modified immune response in HSV-1 infected subjects which could favour the clearance of amyloid deposits or by a selection bias.
Collapse
Affiliation(s)
- Morgane Linard
- INSERM U1219 Bordeaux Population Health Research Center, University of Bordeaux, 146, rue Léo Saignat, 33076, Bordeaux Cedex, France.
| | - Isabelle Garrigue
- CNRS, MFP, UMR 5234, University of Bordeaux, Bordeaux, France
- Virology Department, University Hospital of Bordeaux, Bordeaux, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, University Hospital of Toulouse, Toulouse, France
- INSERM, CERPOP, U1295, University of Toulouse, Toulouse, France
| | - Nicola Coley
- INSERM, CERPOP, U1295, University of Toulouse, Toulouse, France
- Department of Clinical Epidemiology and Public Health, University Hospital of Toulouse, Toulouse, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, Neurodegenerative Disorder Research Center, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Nicholas James Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Pierre Payoux
- Nuclear Medicine Department, University Hospital of Toulouse, Toulouse, France
- INSERM ToNIC, U1214, University of Toulouse, Toulouse, France
| | - Anne-Sophie Salabert
- INSERM ToNIC, U1214, University of Toulouse, Toulouse, France
- Radiopharmacy Department, University Hospital of Toulouse, Toulouse, France
| | - Jean-François Dartigues
- INSERM U1219 Bordeaux Population Health Research Center, University of Bordeaux, 146, rue Léo Saignat, 33076, Bordeaux Cedex, France
- Memory Consultation, CMRR, University Hospital of Bordeaux, Bordeaux, France
| | - Joachim Mazere
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux, France
- CNRS, INCIA, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Sandrine Andrieu
- INSERM, CERPOP, U1295, University of Toulouse, Toulouse, France
- Department of Clinical Epidemiology and Public Health, University Hospital of Toulouse, Toulouse, France
| | - Catherine Helmer
- INSERM, Bergonié Institute, BPH, U1219, CIC-P 1401, University of Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Meng J, Lei P. Testing cognitive normal for Alzheimer's disease prediction. J Neurochem 2025; 169:e16272. [PMID: 39680494 DOI: 10.1111/jnc.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024]
Abstract
One standing challenge for Alzheimer's disease (AD) research is early diagnosis, which provides a time window for early intervention. Sharmin et al recently reported a positive association between plasma ptau181 and plasma metabolites, medium- and long-chain acylcarnitines (ACs) in both cognitively normal (CN) Aβ- and CN Aβ+ older adults, suggesting a link between initial Aβ pathology and acylcarnitine-mediated energy metabolism pathways. Consistently, ACs could classify PET-Aβ status in elderly individuals. This study has provided further clues for early biomarker searching for AD, linking metabolic pathways with AD pathogenesis.
Collapse
Affiliation(s)
- Jie Meng
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Liampas I, Kyriakoulopoulou P, Karakoida V, Kavvoura PA, Sgantzos M, Bogdanos DP, Stamati P, Dardiotis E, Siokas V. Blood-Based Biomarkers in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:11838. [PMID: 39519389 PMCID: PMC11546606 DOI: 10.3390/ijms252111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review explores the current landscape of blood biomarkers in Frontotemporal dementia (FTD). Neurofilament light chain (NfL) may be useful in the differentiation of behavioral variant FTD from primary psychiatric disorders (PPDs) or dementia with Lewy bodies (DLB). In prodromal FTD and presymptomatic mutation carriers (GRN, MAPT, C9orf72), elevated NfL may herald pheno-conversion to full-blown dementia. Baseline NfL correlates with steeper neuroanatomical changes and cognitive, behavioral and functional decline, making NfL promising in monitoring disease progression. Phosphorylated neurofilament heavy chain (pNfH) levels have a potential limited role in the demarcation of the conversion stage to full-blown FTD. Combined NfL and pNfH measurements may allow a wider stage stratification. Total tau levels lack applicability in the framework of FTD. p-tau, on the other hand, is of potential value in the discrimination of FTD from Alzheimer's dementia. Progranulin concentrations could serve the identification of GRN mutation carriers. Glial fibrillary acidic protein (GFAP) may assist in the differentiation of PPDs from behavioral variant FTD and the detection of GRN mutation carriers (additional research is warranted). Finally, TAR DNA-binding protein-43 (TDP-43) appears to be a promising diagnostic biomarker for FTD. Its potential in distinguishing TDP-43 pathology from other FTD-related pathologies requires further research.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | | | - Vasiliki Karakoida
- School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (V.K.); (P.A.K.)
| | | | - Markos Sgantzos
- Department of Anatomy, Medical School, University of Thessaly, 41100 Larissa, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece;
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| |
Collapse
|
7
|
Mitolo M, Lombardi G, Manca R, Nacmias B, Venneri A. Association between blood-based protein biomarkers and brain MRI in the Alzheimer's disease continuum: a systematic review. J Neurol 2024; 271:7120-7140. [PMID: 39264441 PMCID: PMC11560990 DOI: 10.1007/s00415-024-12674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Blood-based biomarkers (BBM) are becoming easily detectable tools to reveal pathological changes in Alzheimer's disease (AD). A comprehensive and up-to-date overview of the association between BBM and brain MRI parameters is not available. This systematic review aimed to summarize the literature on the associations between the main BBM and MRI markers across the clinical AD continuum. A systematic literature search was carried out on PubMed and Web of Science and a total of 33 articles were included. Hippocampal volume was positively correlated with Aβ42 and Aβ42/Aβ40 and negatively with Aβ40 plasma levels. P-tau181 and p-tau217 concentrations were negatively correlated with temporal grey matter volume and cortical thickness. NfL levels were negatively correlated with white matter microstructural integrity, whereas GFAP levels were positively correlated with myo-inositol values in the posterior cingulate cortex/precuneus. These findings highlight consistent associations between various BBM and brain MRI markers even in the pre-clinical and prodromal stages of AD. This suggests a possible advantage in combining multiple AD-related markers to improve accuracy of early diagnosis, prognosis, progression monitoring and treatment response.
Collapse
Affiliation(s)
- Micaela Mitolo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Riccardo Manca
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Annalena Venneri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| |
Collapse
|
8
|
Galvin JE, Kleiman MJ, Estes PW, Harris HM, Fung E. Cognivue Clarity characterizes mild cognitive impairment and Alzheimer's disease in biomarker confirmed cohorts in the Bio-Hermes Study. Sci Rep 2024; 14:24519. [PMID: 39424626 PMCID: PMC11489461 DOI: 10.1038/s41598-024-75304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
The Bio-Hermes Study was a cross-sectional observational study designed to develop a database of blood-based and digital biomarkers to improve detection of Alzheimer's disease (AD) and mild cognitive impairment (MCI). We examined the ability of Cognivue Clarity to (a) detect MCI and AD in clinical diagnostics groups, (b) determine the presence of amyloid, and (c) distinguish between biomarker-confirmed groups. Bio-Hermes enrolled 887 participants who completed both Cognivue Clarity and amyloid PET scans (388 Cognitively Normal, 282 MCI, 217 Probable AD). Cognivue Clarity differentiated between Cognitively Normal, MCI, and probable AD in clinical cohorts, amyloid positive from amyloid negative individuals, and True Controls from MCI due to AD and AD in biomarker-confirmed cohorts (all p < 0.001) with large effect sizes. Cognivue Clarity correlated with amyloid PET and plasma amyloid and pTau (all p < 0.001). In biomarker confirmed groups, Cognivue Clarity had a positive likelihood ratio of 2.17, a negative likelihood ratio of 0.29, and a diagnostic odds ratio of 7.48. Cognivue Clarity detected cognitive impairment and differentiated between both clinically and biomarker defined MCI and AD groups. The use of Cognivue Clarity could assist with identification of MCI-AD or AD for inclusion into current treatment protocols or for enriching recruitment into clinical trials. Trial registration ClinicalTrials.gov (NCT04733989).
Collapse
Affiliation(s)
- James E Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, 7700 W Camino Real, Suite 200, Boca Raton, FL, 33433, USA.
- Cognivue, Inc, 7911 Rae Blvd, Victor, NY, 14564, USA.
| | - Michael J Kleiman
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, 7700 W Camino Real, Suite 200, Boca Raton, FL, 33433, USA
| | - Paul W Estes
- Cognivue, Inc, 7911 Rae Blvd, Victor, NY, 14564, USA
| | | | - Ernest Fung
- Cognivue, Inc, 7911 Rae Blvd, Victor, NY, 14564, USA
| |
Collapse
|
9
|
Khaled M, Al-Jamal H, Tajer L, El-Mir R. Alzheimer's Disease in Lebanon: Exploring Genetic and Environmental Risk Factors-A Comprehensive Review. J Alzheimers Dis 2024; 99:21-40. [PMID: 38640157 DOI: 10.3233/jad-231432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that displays a high prevalence in Lebanon causing a local burden in healthcare and socio-economic sectors. Unfortunately, the lack of prevalence studies and clinical trials in Lebanon minimizes the improvement of AD patient health status. In this review, we include over 155 articles to cover the different aspects of AD ranging from mechanisms to possible treatment and management tools. We highlight some important modifiable and non-modifiable risk factors of the disease including genetics, age, cardiovascular diseases, smoking, etc. Finally, we propose a hypothetical genetic synergy model between APOE4 and TREM2 genes which constitutes a potential early diagnostic tool that helps in reducing the risk of AD based on preventative measures decades before cognitive decline. The studies on AD in Lebanon and the Middle East are scarce. This review points out the importance of genetic mapping in the understanding of disease pathology which is crucial for the emergence of novel diagnostic tools. Hence, we establish a rigid basis for further research to identify the most influential genetic and environmental risk factors for the purpose of using more specific diagnostic tools and possibly adopting a local management protocol.
Collapse
Affiliation(s)
| | - Hadi Al-Jamal
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Layla Tajer
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Reem El-Mir
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
10
|
Du B, Chen K, Wang W, Lei P. Targeting Metals in Alzheimer's Disease: An Update. J Alzheimers Dis 2024; 101:S141-S154. [PMID: 39422951 DOI: 10.3233/jad-240140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One pathological feature of Alzheimer's disease (AD) is the dysregulated metal ions, e.g., zinc, copper, and iron in the affected brain regions. The dysregulation of metal homeostasis may cause neurotoxicity and directly addressing these dysregulated metals through metal chelation or mitigating the downstream neurotoxicity stands as a pivotal strategy for AD therapy. This review aims to provide an up-to-date comprehensive overview of the application of metal chelators and drugs targeting metal-related neurotoxicity, such as antioxidants (ferroptotic inhibitors), in the context of AD treatment. It encompasses an exploration of their pharmacological effects, clinical research progress, and potential underlying mechanisms.
Collapse
Affiliation(s)
- Bin Du
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Chen
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiwei Wang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Er Zeybekler S. Polydopamine-coated hexagonal boron nitride-based electrochemical immunosensing of T-Tau as a marker of Alzheimer's disease. Bioelectrochemistry 2023; 154:108552. [PMID: 37651881 DOI: 10.1016/j.bioelechem.2023.108552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Alzheimer's disease (AD) is a complex pathological process that is one of the leading causes of dementia globally. The demand for diagnostic tools that are minimally invasive, timely, and accurate is on the rise. Total tau (T-Tau) protein in blood serum is a promising biomarker for predicting early-stage AD diagnosis. In this study, the hexagonal boron nitride (HBN) based immunosensor platform was developed to detect T-Tau in artificial blood serum. After the exfoliation of HBN, its surface was coated with polydopamine (PDA) in alkaline conditions. The Anti-T-Tau was immobilized on a hydrophilic nanocomposite surface using PDA's reactive catechol and quinone groups, eliminating the need for extra crosslinkers. The working electrode surface of the screen-printed carbon electrode (SPCE) was coated with HBN-PDA nanocomposite using the drop-casting method. The biofunctional surface was created by directly immobilizing Anti-T-Tau on the HBN-PDA nanocomposite-modified SPCE. The analytical performance of the HBN-PDA/Anti-T-Tau/T-Tau immunosensor in the presence of T-Tau isoforms was determined through electrochemical measurements. The linear detection range was 1-30 pg/mL with a detection limit of 0.42 pg/mL for T-Tau, which is suitable for detecting T-Tau in the blood serum.
Collapse
Affiliation(s)
- Simge Er Zeybekler
- Ege University, Faculty of Science Biochemistry Department, 35100 Bornova-Izmir, Turkey
| |
Collapse
|
12
|
Sun J, Shi Z, Wang L, Zhang X, Luo C, Hua J, Feng M, Chen Z, Wang M, Xu C. Construction of a microcavity-based microfluidic chip with simultaneous SERS quantification of dual biomarkers for early diagnosis of Alzheimer's disease. Talanta 2023; 261:124677. [PMID: 37201340 DOI: 10.1016/j.talanta.2023.124677] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Since there is no effective Alzheimer's disease (AD)-modifying therapy available currently, early analysis of AD core biomarkers has become one of great significance and common concern in clinical diagnosis. Herein, we designed an Au-plasmonic shell attached polystyrene (PS) microsphere in a microfluidic chip for simultaneous detection of Aβ1-42 and p-Tau181 protein. The corresponding Raman reporters were identified in femto gram level by ultrasensitive surface enhanced Raman spectroscopy (SERS). Both of Raman experimental data and finite-difference time-domain modeling demonstrates the synergetic coupling between PS microcavity with the optical confinement property and the localized surface plasmon resonance (LSPR) of AuNPs, so leading to highly amplified electromagnetic fields at the 'hot spot'. Moreover, the microfluidic system is designed with multiplex testing and control channels in which the AD-related dual proteins were detected quantitatively with a lower limit of 100 fg mL-1. Thus, the proposed microcavity-based SERS strategy initiates a new way for accurately prediction of AD in human blood samples and provides the potential application for synchronous determination of multiple analytes in general disease assays.
Collapse
Affiliation(s)
- Jianli Sun
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Zengliang Shi
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Li Wang
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Xinyi Zhang
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Chunshan Luo
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Jianyu Hua
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Muyu Feng
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China.
| | - Mingliang Wang
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China.
| | - Chunxiang Xu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
13
|
Youssef P, Hughes L, Kim WS, Halliday GM, Lewis SJG, Cooper A, Dzamko N. Evaluation of plasma levels of NFL, GFAP, UCHL1 and tau as Parkinson's disease biomarkers using multiplexed single molecule counting. Sci Rep 2023; 13:5217. [PMID: 36997567 PMCID: PMC10063670 DOI: 10.1038/s41598-023-32480-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Objective biomarkers for Parkinson's Disease (PD) could aid early and specific diagnosis, effective monitoring of disease progression, and improved design and interpretation of clinical trials. Although alpha-synuclein remains a biomarker candidate of interest, the multifactorial and heterogenous nature of PD highlights the need for a PD biomarker panel. Ideal biomarker candidates include markers that are detectable in easily accessible samples, (ideally blood) and that reflect the underlying pathological process of PD. In the present study, we explored the diagnostic and prognostic PD biomarker potential of the SIMOA neurology 4-plex-A biomarker panel, which included neurofilament light (NFL), glial fibrillary acid protein (GFAP), tau and ubiquitin C-terminal hydrolase L1 (UCHL-1). We initially performed a serum vs plasma comparative study to determine the most suitable blood-based matrix for the measurement of these proteins in a multiplexed assay. The levels of NFL and GFAP in plasma and serum were highly correlated (Spearman rho-0.923, p < 0.0001 and rho = 0.825, p < 0.001 respectively). In contrast, the levels of tau were significantly higher in plasma compared to serum samples (p < 0.0001) with no correlation between sample type (Spearman p > 0.05). The neurology 4-plex-A panel, along with plasma alpha-synuclein was then assessed in a cross-sectional cohort of 29 PD patients and 30 controls. Plasma NFL levels positively correlated with both GFAP and alpha-synuclein levels (rho = 0.721, p < 0.0001 and rho = 0.390, p < 0.05 respectively). As diagnostic biomarkers, the control and PD groups did not differ in their mean NFL, GFAP, tau or UCHL-1 plasma levels (t test p > 0.05). As disease state biomarkers, motor severity (MDS-UPDRS III) correlated with increased NFL (rho = 0.646, p < 0.0001), GFAP (rho = 0.450, p < 0.05) and alpha-synuclein levels (rho = 0.406, p < 0.05), while motor stage (Hoehn and Yahr) correlated with increased NFL (rho = 0.455, p < 0.05) and GFAP (rho = 0.549, p < 0.01) but not alpha-synuclein levels (p > 0.05). In conclusion, plasma was determined to be most suitable blood-based matrix for multiplexing the neurology 4-plex-A panel. Given their correlation with motor features of PD, NFL and GFAP appear to be promising disease state biomarker candidates and further longitudinal validation of these two proteins as blood-based biomarkers for PD progression is warranted.
Collapse
Affiliation(s)
- Priscilla Youssef
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Laura Hughes
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Woojin S Kim
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Glenda M Halliday
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Simon J G Lewis
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Antony Cooper
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW-Sydney, Darlinghurst, NSW, 2010, Australia
| | - Nicolas Dzamko
- Faculty of Medicine and Health and the Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
14
|
Huang ZW, Zeng HX, Huang YP, Wang TZ, Huang WS, Huang YF, Lin L, Li H. The relationship between obstructive sleep apnea and circulating tau levels: A meta-analysis. Brain Behav 2023; 13:e2972. [PMID: 36938834 PMCID: PMC10097049 DOI: 10.1002/brb3.2972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an irreversible, progressive brain disorder that impairs memory, thinking, language, and, eventually, the ability to carry out the simplest of tasks. Tau protein, the major component of neurofibrillary tangles, is considered a key mediator of AD pathogenesis. The association between obstructive sleep apnea (OSA) and circulating tau remains unclear. The aim of the present meta-analysis was to evaluate the relationship between OSA and circulating tau via quantitative analysis. METHODS A systematic search of Pubmed, Embase, and Web of Science were performed. The mean values of circulating total tau (T-tau) and phosphorylated tau (P-tau) in OSA and control groups were extracted. Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated by using a random-effect model or fixed-effect model. RESULTS A total of seven studies comprising 233 controls and 306 OSA patients were included in this study. The meta-analysis showed that the circulating T-tau level was significantly higher in OSA patients than those in the control group (SMD = 1.319, 95% CI = 0.594 to 2.044, z = 3.56, p < .001). OSA patients also had significantly higher circulating P-tau level than control group (SMD = 0.343, 95% CI = 0.122 to 0.564, z = 3.04, p = .002). CONCLUSIONS The present meta-analysis demonstrated that both circulating T-tau and P-tau levels were significantly increased in OSA subjects when compared with non-OSA subjects. Larger sample-size studies on the association between OSA and circulating tau are still required to further validate our results.
Collapse
Affiliation(s)
- Zhi-Wei Huang
- Department of Otolaryngology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Hui-Xue Zeng
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People's Republic of China
| | - Ya-Ping Huang
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People's Republic of China
| | - Tie-Zhu Wang
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People's Republic of China
| | - Wen-Sen Huang
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People's Republic of China
| | - Yan-Fei Huang
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People's Republic of China
| | - Li Lin
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People's Republic of China
| | - Hao Li
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, People's Republic of China
| |
Collapse
|
15
|
Abstract
This paper reviews methods for detecting proteins based on molecular digitization, i.e., the isolation and detection of single protein molecules or singulated ensembles of protein molecules. The single molecule resolution of these methods has resulted in significant improvements in the sensitivity of immunoassays beyond what was possible using traditional "analog" methods: the sensitivity of some digital immunoassays approach those of methods for measuring nucleic acids, such as the polymerase chain reaction (PCR). The greater sensitivity of digital protein detection has resulted in immuno-diagnostics with high potential societal impact, e.g., the early diagnosis and therapeutic intervention of Alzheimer's Disease. In this review, we will first provide the motivation for developing digital protein detection methods given the limitations in the sensitivity of analog methods. We will describe the paradigm shift catalyzed by single molecule detection, and will describe in detail one digital approach - which we call digital bead assays (DBA) - based on the capture and labeling of proteins on beads, identifying "on" and "off" beads, and quantification using Poisson statistics. DBA based on the single molecule array (Simoa) technology have sensitivities down to attomolar concentrations, equating to ∼10 proteins in a 200 μL sample. We will describe the concept behind DBA, the different single molecule labels used, the ways of analyzing beads (imaging of arrays and flow), the binding reagents and substrates used, and integration of these technologies into fully automated and miniaturized systems. We provide an overview of emerging approaches to digital protein detection, including those based on digital detection of nucleic acids labels, single nanoparticle detection, measurements using nanopores, and methods that exploit the kinetics of single molecule binding. We outline the initial impact of digital protein detection on clinical measurements, highlighting the importance of customized assay development and translational clinical research. We highlight the use of DBA in the measurement of neurological protein biomarkers in blood, and how these higher sensitivity methods are changing the diagnosis and treatment of neurological diseases. We conclude by summarizing the status of digital protein detection and suggest how the lab-on-a-chip community might drive future innovations in this field.
Collapse
Affiliation(s)
- David C Duffy
- Quanterix Corporation, 900 Middlesex Turnpike, Billerica, MA 01821, USA.
| |
Collapse
|
16
|
Tian C, Stewart T, Hong Z, Guo Z, Aro P, Soltys D, Pan C, Peskind ER, Zabetian CP, Shaw LM, Galasko D, Quinn JF, Shi M, Zhang J. Blood extracellular vesicles carrying synaptic function- and brain-related proteins as potential biomarkers for Alzheimer's disease. Alzheimers Dement 2023; 19:909-923. [PMID: 35779041 PMCID: PMC9806186 DOI: 10.1002/alz.12723] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Objective and accessible markers for Alzheimer's disease (AD) and other dementias are critically needed. METHODS We identified NMDAR2A, a protein related to synaptic function, as a novel marker of central nervous system (CNS)-derived plasma extracellular vesicles (EVs) and developed a flow cytometry-based technology for detecting such plasma EVs readily. The assay was initially tested in our local cross-sectional study to distinguish AD patients from healthy controls (HCs) or from Parkinson's disease (PD) patients, followed by a validation study using an independent cohort collected from multiple medical centers (the Alzheimer's Disease Neuroimaging Initiative). Cerebrospinal fluid AD molecular signature was used to confirm diagnoses of all AD participants. RESULTS Likely CNS-derived EVs in plasma were significantly reduced in AD compared to HCs in both cohorts. Integrative models including CNS-derived EV markers and AD markers present on EVs reached area under the curve of 0.915 in discovery cohort and 0.810 in validation cohort. DISCUSSION This study demonstrated that robust and rapid analysis of individual neuron-derived synaptic function-related EVs in peripheral blood may serve as a helpful marker of synaptic dysfunction in AD and dementia.
Collapse
Affiliation(s)
- Chen Tian
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Tessandra Stewart
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Zhen Hong
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Guo
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Patrick Aro
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - David Soltys
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Catherine Pan
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elaine R Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Northwest (VISN-20) Mental Illness, Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Cyrus P. Zabetian
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Leslie M. Shaw
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Douglas Galasko
- Department of Neurology, University of California, San Diego, California, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland, OR, USA
| | - Min Shi
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
17
|
Hayes JP, Pierce ME, Brown E, Salat D, Logue MW, Constantinescu J, Valerio K, Miller MW, Sherva R, Huber BR, Milberg W, McGlinchey R. Genetic Risk for Alzheimer Disease and Plasma Tau Are Associated With Accelerated Parietal Cortex Thickness Change in Middle-Aged Adults. Neurol Genet 2023; 9:e200053. [PMID: 36742995 PMCID: PMC9893442 DOI: 10.1212/nxg.0000000000200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 02/04/2023]
Abstract
Background and Objectives Neuroimaging and biomarker studies in Alzheimer disease (AD) have shown well-characterized patterns of cortical thinning and altered biomarker concentrations of tau and β-amyloid (Aβ). However, earlier identification of AD has great potential to advance clinical care and determine candidates for drug trials. The extent to which AD risk markers relate to cortical thinning patterns in midlife is unknown. The first objective of this study was to examine cortical thickness change associated with genetic risk for AD among middle-aged military veterans. The second objective was to determine the relationship between plasma tau and Aβ and change in brain cortical thickness among veterans stratified by genetic risk for AD. Methods Participants consisted of post-9/11 veterans (N = 155) who were consecutively enrolled in the Translational Research Center for TBI and Stress Disorders prospective longitudinal cohort and were assessed for mild traumatic brain injury (TBI) and posttraumatic disorder (PTSD). Genome-wide polygenic risk scores (PRSs) for AD were calculated using summary results from the International Genomics of Alzheimer's Disease Project. T-tau and Aβ40 and Aβ42 plasma assays were run using Simoa technology. Whole-brain MRI cortical thickness change estimates were obtained using the longitudinal stream of FreeSurfer. Follow-up moderation analyses examined the AD PRS × plasma interaction on change in cortical thickness in AD-vulnerable regions. Results Higher AD PRS, signifying greater genetic risk for AD, was associated with accelerated cortical thickness change in a right hemisphere inferior parietal cortex cluster that included the supramarginal gyrus, angular gyrus, and intraparietal sulcus. Higher tau, but not Aβ42/40 ratio, was associated with greater cortical thickness change among those with higher AD PRS. Mild TBI and PTSD were not associated with cortical thickness change. Discussion Plasma tau, particularly when combined with genetic stratification for AD risk, can be a useful indicator of brain change in midlife. Accelerated inferior parietal cortex changes in midlife may be an important factor to consider as a marker of AD-related brain alterations.
Collapse
Affiliation(s)
- Jasmeet Pannu Hayes
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Meghan E Pierce
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Emma Brown
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - David Salat
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Mark W Logue
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Julie Constantinescu
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Kate Valerio
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Mark W Miller
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Richard Sherva
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Bertrand Russell Huber
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - William Milberg
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Regina McGlinchey
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Jiang L, Ding X, Wang W, Yang X, Li T, Lei P. Head-to-Head Comparison of Different Blood Collecting Tubes for Quantification of Alzheimer’s Disease Biomarkers in Plasma. Biomolecules 2022; 12:biom12091194. [PMID: 36139033 PMCID: PMC9496121 DOI: 10.3390/biom12091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Abstract
To examine whether the type of blood collection tubes affects the quantification of plasma biomarkers for Alzheimer’s disease analyzed with a single-molecule array (Simoa), we recruited a healthy cohort (n = 34, 11 males, mean age = 28.7 ± 7.55) and collected plasma in the following tubes: dipotassium ethylenediaminetetraacetic acid (K2-EDTA), heparin lithium (Li-Hep), and heparin sodium (Na-Hep). Plasma tau, phosphorylated tau 181 (p-tau181), amyloid β (1–40) (Aβ40), and amyloid β (1–42) (Aβ42) were quantified using Simoa. We compared the value of plasma analytes, as well as the effects of sex on the measurements. We found that plasma collected in Li-Hep and Na-Hep tubes yielded significantly higher tau and p-tau181 levels compared to plasma collected in K2-EDTA tubes from the same person, but there was no difference in the measured values of the Aβ40, Aβ42, and Aβ42/40 ratio. Therefore, the type of blood collecting tubes should be considered when planning studies that measure plasma tau.
Collapse
Affiliation(s)
- Lijun Jiang
- Mental Health Center and Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xulong Ding
- Mental Health Center and Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215125, China
| | - Wenxiao Wang
- Deyang Mental Health Center, Deyang 618099, China
| | - Xiaobin Yang
- Deyang Mental Health Center, Deyang 618099, China
| | - Tao Li
- Mental Health Center and Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310063, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China
- Correspondence: (T.L.); (P.L.)
| | - Peng Lei
- Mental Health Center and Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (T.L.); (P.L.)
| |
Collapse
|
19
|
Park SA, Jang YJ, Kim MK, Lee SM, Moon SY. Promising Blood Biomarkers for Clinical Use in Alzheimer's Disease: A Focused Update. J Clin Neurol 2022; 18:401-409. [PMID: 35796265 PMCID: PMC9262460 DOI: 10.3988/jcn.2022.18.4.401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most-common cause of neurodegenerative dementia, and it is characterized by abnormal amyloid and tau accumulation, which indicates neurodegeneration. AD has mostly been diagnosed clinically. However, ligand-specific positron emission tomography (PET) imaging, such as amyloid PET, and cerebrospinal fluid (CSF) biomarkers are needed to accurately diagnose AD, since they supplement the shortcomings of clinical diagnoses. Using biomarkers that represent the pathology of AD is essential (particularly when disease-modifying treatment is available) to identify the corresponding pathology of targeted therapy and for monitoring the treatment response. Although imaging and CSF biomarkers are useful, their widespread use is restricted by their high cost and the discomfort during the lumbar puncture, respectively. Recent advances in AD blood biomarkers shed light on their future use for clinical purposes. The amyloid β (Aβ)42/Aβ40 ratio and the concentrations of phosphorylated tau at threonine 181 and at threonine 217, and of neurofilament light in the blood were found to represent the pathology of Aβ, tau, and neurodegeneration in the brain when using automatic electrochemiluminescence technologies, single-molecule arrays, immunoprecipitation coupled with mass spectrometry, etc. These blood biomarkers are imminently expected to be incorporated into clinical practice to predict, diagnose, and determine the stage of AD. In this review we focus on advancements in the measurement technologies for blood biomarkers and the promising biomarkers that are approaching clinical application. We also discuss the current limitations, the needed further investigations, and the perspectives on their use.
Collapse
Affiliation(s)
- Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Neurology, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.
| | - Yu Jung Jang
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Min Kyoung Kim
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Sun Min Lee
- Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| | - So Young Moon
- Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
20
|
Wang S, Unnithan S, Bryant N, Chang A, Rosenthal LS, Pantelyat A, Dawson TM, Al‐Khalidi HR, West AB. Elevated Urinary Rab10 Phosphorylation in Idiopathic Parkinson Disease. Mov Disord 2022; 37:1454-1464. [PMID: 35521944 PMCID: PMC9308673 DOI: 10.1002/mds.29043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pathogenic leucine-rich repeat kinase 2 LRRK2 mutations may increase LRRK2 kinase activity and Rab substrate phosphorylation. Genetic association studies link variation in LRRK2 to idiopathic Parkinson disease (iPD) risk. OBJECTIVES Through measurements of the LRRK2 kinase substrate pT73-Rab10 in urinary extracellular vesicles, this study seeks to understand how LRRK2 kinase activity might change with iPD progression. METHODS Using an immunoblotting approach validated in LRRK2 transgenic mice, the ratio of pT73-Rab10 to total Rab10 protein was measured in extracellular vesicles from a cross-section of G2019S LRRK2 mutation carriers (N = 45 participants) as well as 485 urine samples from a novel longitudinal cohort of iPD and controls (N = 85 participants). Generalized estimating equations were used to conduct analyses with commonly used clinical scales. RESULTS Although the G2019S LRRK2 mutation did not increase pT73-Rab10 levels, the ratio of pT73-Rab10 to total Rab10 nominally increased over baseline in iPD urine vesicle samples with time, but did not increase in age-matched controls (1.34-fold vs. 1.05-fold, 95% confidence interval [CI], 0.004-0.56; P = 0.046; Welch's t test). Effect estimates adjusting for sex, age, disease duration, diagnosis, and baseline clinical scores identified increasing total Movement Disorder Society-Sponsored Revision of the Unified (MDS-UPDRS) scores (β = 0.77; CI, 0.52-1.01; P = 0.0001) with each fold increase of pT73-Rab10 to total Rab10. Lower Montreal Cognitive Assessment (MoCA) score in iPD is also associated with increased pT73-Rab10. CONCLUSIONS These results provide initial insights into peripheral LRRK2-dependent Rab phosphorylation, measured in biobanked urine, where higher levels of pT73-Rab10 are associated with worse disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Shijie Wang
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| | - Shakthi Unnithan
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | - Nicole Bryant
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| | - Allison Chang
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| | | | | | - Ted M. Dawson
- Department of NeurologyThe Johns Hopkins UniversityBaltimoreMarylandUSA
- Neurodegeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hussein R. Al‐Khalidi
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | - Andrew B. West
- Duke Center for Neurodegeneration and NeurotherapeuticsDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
21
|
Casas-Fernández E, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Lipids as Early and Minimally Invasive Biomarkers for Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1613-1631. [PMID: 34727857 PMCID: PMC9881089 DOI: 10.2174/1570159x19666211102150955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Specifically, typical late-onset AD is a sporadic form with a complex etiology that affects over 90% of patients. The current gold standard for AD diagnosis is based on the determination of amyloid status by analyzing cerebrospinal fluid samples or brain positron emission tomography. These procedures can be used widely as they have several disadvantages (expensive, invasive). As an alternative, blood metabolites have recently emerged as promising AD biomarkers. Small molecules that cross the compromised AD blood-brain barrier could be determined in plasma to improve clinical AD diagnosis at early stages through minimally invasive techniques. Specifically, lipids could play an important role in AD since the brain has a high lipid content, and they are present ubiquitously inside amyloid plaques. Therefore, a systematic review was performed with the aim of identifying blood lipid metabolites as potential early AD biomarkers. In conclusion, some lipid families (fatty acids, glycerolipids, glycerophospholipids, sphingolipids, lipid peroxidation compounds) have shown impaired levels at early AD stages. Ceramide levels were significantly higher in AD subjects, and polyunsaturated fatty acids levels were significantly lower in AD. Also, high arachidonic acid levels were found in AD patients in contrast to low sphingomyelin levels. Consequently, these lipid biomarkers could be used for minimally invasive and early AD clinical diagnosis.
Collapse
Affiliation(s)
| | | | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Health Research Institute La Fe, Valencia, Spain;,Address correspondence to this author at the Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, Valencia E46026, Spain;, Tel: +34-96 1246721; E-mail:
| |
Collapse
|
22
|
Zhang L, Wang D, Dai Y, Wang X, Cao Y, Liu W, Tao Z. Machine Learning Reveals a Multipredictor Nomogram for Diagnosing the Alzheimer's Disease Based on Chemiluminescence Immunoassay for Total Tau in Plasma. Front Aging Neurosci 2022; 14:863673. [PMID: 35645782 PMCID: PMC9136081 DOI: 10.3389/fnagi.2022.863673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Predicting amnestic mild cognitive impairment (aMCI) in conversion and Alzheimer's disease (AD) remains a daunting task. Standard diagnostic procedures for AD population are reliant on neuroimaging features (positron emission tomography, PET), cerebrospinal fluid (CSF) biomarkers (Aβ1-42, T-tau, P-tau), which are expensive or require invasive sampling. The blood-based biomarkers offer the opportunity to provide an alternative approach for easy diagnosis of AD, which would be a less invasive and cost-effective screening tool than currently approved CSF or amyloid β positron emission tomography (PET) biomarkers. Methods We developed and validated a sensitive and selective immunoassay for total Tau in plasma. Robust signatures were obtained based on several clinical features selected by multiple machine learning algorithms between the three participant groups. Subsequently, a well-fitted nomogram was constructed and validated, integrating clinical factors and total Tau concentration. The predictive performance was evaluated according to the receiver operating characteristic (ROC) curves and area under the curve (AUC) statistics. Decision curve analysis and calibration curves are used to evaluate the net benefit of nomograms in clinical decision-making. Results Under optimum conditions, chemiluminescence analysis (CLIA) displays a desirable dynamic range within Tau concentration from 7.80 to 250 pg/mL with readily achieved higher performances (LOD: 5.16 pg/mL). In the discovery cohort, the discrimination between the three well-defined participant groups according to Tau concentration was in consistent agreement with clinical diagnosis (AD vs. non-MCI: AUC = 0.799; aMCI vs. non-MCI: AUC = 0.691; AD vs. aMCI: AUC = 0.670). Multiple machine learning algorithms identified Age, Gender, EMPG, Tau, ALB, HCY, VB12, and/or Glu as robust signatures. A nomogram integrated total Tau concentration and clinical factors provided better predictive performance (AD vs. non-MCI: AUC = 0.960, AD vs. aMCI: AUC = 0.813 in discovery cohort; AD vs. non-MCI: AUC = 0.938, AD vs. aMCI: AUC = 0.754 in validation cohort). Conclusion The developed assay and a satisfactory nomogram model hold promising clinical potential for early diagnosis of aMCI and AD participants.
Collapse
|
23
|
Hazan J, Alston D, Fox NC, Howard R. Practical application of Alzheimer's Disease Neuroimaging Initiative plasma P-tau181 reference data to support diagnosis of Alzheimer's disease. Int J Geriatr Psychiatry 2022; 37. [PMID: 34997780 DOI: 10.1002/gps.5670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/18/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To assess plasma phosphorylated tau181 (p-tau181) levels in Alzheimer's disease (AD), cognitively impaired non-AD participants (CI non-AD) and Control participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset that could potentially act as reference data for clinic diagnoses of AD. METHODS Data from 1558 participants (649 AD participants, 445 CI non-AD participants and 464 controls) were examined, comparing p-tau181 levels between Controls, AD and other dementias, stratified by age. RESULTS There were significant differences in plasma p-tau181 values between Controls and those with AD at all ages up to 85 years. There were also significant differences between AD and CI non-AD participants up to the age of 85 years. CONCLUSIONS Plasma P-tau181 may be a useful tool in the diagnosis of AD in those clinical settings where biomarkers have traditionally been less used. P-tau181 may be less useful as an aid to diagnosis in the very oldest-old. Further work is needed to establish the feasibility and utility of this biomarker within dementia diagnosis services not led by Neurologists, such as UK National Health Service Memory Services.
Collapse
Affiliation(s)
- Jemma Hazan
- Division of Psychiatry, University College London, London, UK
| | - Duncan Alston
- Institute of Neurology, University College London, London, UK
| | - Nick C Fox
- Institute of Neurology, University College London, London, UK
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
24
|
Valverde A, Gordón Pidal JM, Montero-Calle A, Arévalo B, Serafín V, Calero M, Moreno-Guzmán M, López MÁ, Escarpa A, Yáñez-Sedeño P, Barderas R, Campuzano S, Pingarrón JM. Paving the way for reliable Alzheimer's disease blood diagnosis by quadruple electrochemical immunosensing. ChemElectroChem 2022. [DOI: 10.1002/celc.202200055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alejandro Valverde
- Universidad Complutense de Madrid Facultad de Ciencias Quimicas Analytical Chemistry SPAIN
| | - José M. Gordón Pidal
- Universidad de Alcala Analytical Chemistry, Physical Chemistry and Chemical Engineering SPAIN
| | - Ana Montero-Calle
- Instituto de Salud Carlos III Chronic Disease Programme, UFIEC SPAIN
| | - Beatriz Arévalo
- Universidad Complutense de Madrid Facultad de Ciencias Quimicas Analytical Chemistry SPAIN
| | - Verónica Serafín
- Universidad Complutense de Madrid Facultad de Ciencias Quimicas Analytical Chemistry SPAIN
| | | | | | - Miguel Ángel López
- Universidad de Alcala Analytical Chemsitry, Physical Chemistry and Chemical Engineering SPAIN
| | - Alberto Escarpa
- Universidad de Alcala Analytical Chemistry, Physical Chemistry and Chemical Engineering SPAIN
| | - Paloma Yáñez-Sedeño
- Universidad Complutense de Madrid Facultad de Ciencias Quimicas Analytical Chemistry SPAIN
| | - Rodrigo Barderas
- Instituto de Salud Carlos III Chronic Disease Programme, UFIEC SPAIN
| | - Susana Campuzano
- Universidad Complutense de Madrid Facultad de Ciencias Quimicas Analytical Chemistry SPAIN
| | - José Manuel Pingarrón
- Universidad Complutense de Madrid Química Analítica Av. Complutense s/n 28040 Madrid SPAIN
| |
Collapse
|
25
|
Jalili R, Chenaghlou S, Khataee A, Khalilzadeh B, Rashidi MR. An Electrochemiluminescence Biosensor for the Detection of Alzheimer's Tau Protein Based on Gold Nanostar Decorated Carbon Nitride Nanosheets. Molecules 2022; 27:431. [PMID: 35056745 PMCID: PMC8779933 DOI: 10.3390/molecules27020431] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
Human Tau protein is the most reliable biomarker for the prediction of Alzheimer's disease (AD). However, the assay to detect low concentrations of tau protein in serum is a great challenge for the early diagnosis of AD. This paper reports an electrochemiluminescence (ECL) immunosensor for Tau protein in serum samples. Gold nanostars (AuNSs) decorated on carbon nitride nanosheets (AuNS@g-CN nanostructure) show highly strong and stable ECL activity compared to pristine CN nanosheets due to the electrocatalytic and surface plasmon effects of AuNSs. As a result of the strong electromagnetic field at branches, AuNSs showed a better ECL enhancement effect than their spherical counterpart. For the fabrication of a specific immunosensor, immobilized AuNSs were functionalized with a monoclonal antibody specific for Tau protein. In the presence of Tau protein, the ECL intensity of the immunosensor decreased considerably. Under the optimal conditions, this ECL based immunosensor exhibits a dynamic linear range from 0.1 to 100 ng mL-1 with a low limit of detection of 0.034 ng mL-1. The LOD is less than the Tau level in human serum; thus, this study provides a useful method for the determination of Tau. The fabricated ECL immunosensor was successfully applied to the detection of Tau, the biomarker in serum samples. Therefore, the present approach is very promising for application in diagnosing AD within the early stages of the disease.
Collapse
Affiliation(s)
- Roghayeh Jalili
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran or (R.J.); (S.C.)
| | - Salimeh Chenaghlou
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran or (R.J.); (S.C.)
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran or (R.J.); (S.C.)
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey
- Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russia
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz 51666-14711, Iran;
| | - Mohammad-Reza Rashidi
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz 51666-14711, Iran;
| |
Collapse
|
26
|
Hu CJ, Chiu MJ, Pai MC, Yan SH, Wang PN, Chiu PY, Lin CH, Chen TF, Yang FC, Huang KL, Hsu YT, Hou YC, Lin WC, Lu CH, Huang LK, Yang SY. Assessment of High Risk for Alzheimer's Disease Using Plasma Biomarkers in Subjects with Normal Cognition in Taiwan: A Preliminary Study. J Alzheimers Dis Rep 2021; 5:761-770. [PMID: 34870102 PMCID: PMC8609520 DOI: 10.3233/adr-210310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background In Alzheimer's disease (AD), cognitive impairment begins 10-15 years later than neurodegeneration in the brain. Plasma biomarkers are promising candidates for assessing neurodegeneration in people with normal cognition. It has been reported that subjects with the concentration of plasma amyloid-β 1-42×total tau protein higher than 455 pg2/ml2 are assessed as having a high risk of amnesic mild impairment or AD, denoted as high risk of AD (HRAD). Objective The prevalence of high-risk for dementia in cognitively normal controls is explored by assaying plasma biomarkers. Methods 422 subjects with normal cognition were enrolled around Taiwan. Plasma Aβ1-40, Aβ1-42, and T-Tau levels were assayed using immunomagnetic reduction to assess the risk of dementia. Results The results showed that 4.6% of young adults (age: 20-44 years), 8.5% of middle-aged adults (age: 45-64 years), and 7.3% of elderly adults (age: 65-90 years) had HRAD. The percentage of individuals with HRAD dramatically increased in middle-aged and elderly adults compared to young adults. Conclusion The percentage of HRAD in cognitively normal subjects are approximately 10%, which reveals that the potentially public-health problem of AD in normal population. Although the subject having abnormal levels of Aβ or tau is not definitely going on to develop cognitive declines or AD, the risk of suffering cognitive impairment in future is relatively high. Suitable managements are suggested for these high-risk cognitively normal population. Worth noting, attention should be paid to preventing cognitive impairment due to AD, not only in elderly adults but also middle-aged adults.
Collapse
Affiliation(s)
- Chaur-Jong Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Psychology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sui-Hing Yan
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Chunghwa, Taiwan.,MR-guided Focus Ultrasound Center, Chang Bin Show Chwan Memorial Hospital, Chunghwa, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Hsu
- Department of Neurology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Kai Huang
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | | |
Collapse
|
27
|
Jiao B, Liu H, Guo L, Liao X, Zhou Y, Weng L, Xiao X, Zhou L, Wang X, Jiang Y, Yang Q, Zhu Y, Zhou L, Zhang W, Wang J, Yan X, Tang B, Shen L. Performance of Plasma Amyloid β, Total Tau, and Neurofilament Light Chain in the Identification of Probable Alzheimer's Disease in South China. Front Aging Neurosci 2021; 13:749649. [PMID: 34776933 PMCID: PMC8579066 DOI: 10.3389/fnagi.2021.749649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the most common type of dementia and has no effective treatment to date. It is essential to develop a minimally invasive blood-based biomarker as a tool for screening the general population, but the efficacy remains controversial. This cross-sectional study aimed to evaluate the ability of plasma biomarkers, including amyloid β (Aβ), total tau (t-tau), and neurofilament light chain (NfL), to detect probable AD in the South Chinese population. Methods: A total of 277 patients with a clinical diagnosis of probable AD and 153 healthy controls with normal cognitive function (CN) were enrolled in this study. The levels of plasma Aβ42, Aβ40, t-tau, and NfL were detected using ultra-sensitive immune-based assays (SIMOA). Lumbar puncture was conducted in 89 patients with AD to detect Aβ42, Aβ40, t-tau, and phosphorylated (p)-tau levels in the cerebrospinal fluid (CSF) and to evaluate the consistency between plasma and CSF biomarkers through correlation analysis. Finally, the diagnostic value of plasma biomarkers was further assessed by constructing a receiver operating characteristic (ROC) curve. Results: After adjusting for age, sex, and the apolipoprotein E (APOE) alleles, compared to the CN group, the plasma t-tau, and NfL were significantly increased in the AD group (p < 0.01, Bonferroni correction). Correlation analysis showed that only the plasma t-tau level was positively correlated with the CSF t-tau levels (r = 0.319, p = 0.003). The diagnostic model combining plasma t-tau and NfL levels, and age, sex, and APOE alleles, showed the best performance for the identification of probable AD [area under the curve (AUC) = 0.89, sensitivity = 82.31%, specificity = 83.66%]. Conclusion: Blood biomarkers can effectively distinguish patients with probable AD from controls and may be a non-invasive and efficient method for AD pre-screening.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| |
Collapse
|
28
|
Gu J, Li Z, Chen H, Xu X, Li Y, Gui Y. Neuroprotective Effect of Trans-Resveratrol in Mild to Moderate Alzheimer Disease: A Randomized, Double-Blind Trial. Neurol Ther 2021; 10:905-917. [PMID: 34402024 PMCID: PMC8571425 DOI: 10.1007/s40120-021-00271-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction Amyloid-beta (Aβ) protein is a major component of the extracellular plaque found in the brains of individuals with Alzheimer's disease (AD). In this study, we investigated the effect of trans-resveratrol as an antagonist treatment for moderate to mild AD, as well as its safety and tolerability. Methods This was a case–control study that enrolled 30 selected patients who had been clinically diagnosed with moderate to mild AD. These patients were randomly divided into two groups, namely, a placebo group (n = 15) and a trans-resveratrol group (n = 15) who received 500 mg trans-resveratrol orally once daily for 52 weeks. Brain magnetic resonance imaging (MRI) examinations were performed on and cerebrospinal fluid (CSF) samples were obtained from all participants before (baseline) and after the study (52 weeks). Enzyme-linked immunosorbent assays were used to determine the levels of plasma Aβ40 and Aβ42 and CSF Aβ40 and Aβ42. Results The results showed that the changes over the study period in the levels of Aβ40 in the blood and CSF of the patients treated with trans-resveratrol were not statistically significant (P > 0.05). In contrast, patients who received placebo showed a significant decrease in Aβ40 levels compared with that at the beginning of the study (CSF Aβ40: P = 0.024, plasma Aβ40: P = 0.036). Analysis of the images on the brain MRI scans revealed that the brain volume of the patients treated with trans-resveratrol was significantly reduced at 52 weeks (P = 0.011) compared with that of patients in the placebo treatment group, Further analysis indicated that the level of matrix metallopeptidase 9 in the CSF of the patients treated with trans-resveratrol at 52 weeks decreased by 46% compared with that of patients in the placebo group (P = 0.033). Conclusion These results indicate that trans-resveratrol has potential neuroprotective roles in the treatment of moderate to mild AD and that its mechanism may involve a reduction in the accumulation and toxicity of Aβ in the brain of patients, thereby reducing neuroinflammation. Trial Registration Chinese clinical trial registry: CTR20151780X. Supplementary Information The online version contains supplementary material available at 10.1007/s40120-021-00271-2.
Collapse
Affiliation(s)
- Jiachen Gu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongshan Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huimin Chen
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaomin Xu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongang Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology, First People' Hospital of Wenling, Wenling, China
| | - Yaxing Gui
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|