1
|
Yang M, Hao J, Zhang R, He R, Ma H. Breeding High-Yield Ethyl Caproate-Producing Saccharomyces cerevisiae in Sake: Flux Regulation from Glycolytic Fermentation to the FAS Pathway and Alcohol Acyltransferase Overexpression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7990-8000. [PMID: 40106670 DOI: 10.1021/acs.jafc.4c11395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Ethyl caproate is the characteristic aroma compound with an apple-like scent in Ginjoka sake. However, the medium-chain acyl-CoA flux of the fatty acid synthesis (FAS) pathway originating from glycolytic fermentation and the precursor-induced alcohol acyltransferase (AAT) activity by natural yeast limits the ethyl caproate content in sake. Here, we established combinatorial strategies involving genetic engineering and adaptive laboratory evolution (ALE) to increase the ethyl caproate production by Saccharomyces cerevisiae. In this study, we screened Saccharomyces cerevisiae YH-2, which exhibited high ethanol and ester yields , achieving a trade-off between FAS flux and energy metabolism. Subsequently, the cerulenin-resistant mutant strain YH-2-34, after 15 passages of adaptive domestication, produced 4.13 times more caproic acid than the wild type. This increase is attributed to the G1250S variation in the FAS2 sequences, which mediate acyl-CoA chain length in the FAS pathway, thereby producing more caproyl-CoA as the precursor. While AAT activity increased 2.40 times in the mutant YH-2-34, both EEB1 and EHT1 genes, which together encode AAT responsible for esterifying ethyl caproate, played critical roles. Although pEEB1s overexpression affected cell viability and ethyl caproate production, pEHT1s overexpression successfully increased the yield of ethyl caproate during post-fermentation. Finally, the yield of YH-2-34 with EHT1 overexpression achieved a significant increase from 1.21 to 7.40 mg/L in sake fermentation. By regulating the flux from glycolytic fermentation to the FAS pathway and overexpressing AAT, we constructed a high-yield ethyl-caproate-producing Saccharomyces cerevisiae strain. This may bring practical transformations to traditional brewing industries.
Collapse
Affiliation(s)
- Mengyuan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jing Hao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Rong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
2
|
Sarnaik AP, Shinde S, Mhatre A, Jansen A, Jha AK, McKeown H, Davis R, Varman AM. Unravelling the hidden power of esterases for biomanufacturing of short-chain esters. Sci Rep 2023; 13:10766. [PMID: 37402758 DOI: 10.1038/s41598-023-37542-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Microbial production of esters has recently garnered wide attention, but the current production metrics are low. Evidently, the ester precursors (organic acids and alcohols) can be accumulated at higher titers by microbes like Escherichia coli. Hence, we hypothesized that their 'direct esterification' using esterases will be efficient. We engineered esterases from various microorganisms into E. coli, along with overexpression of ethanol and lactate pathway genes. High cell density fermentation exhibited the strains possessing esterase-A (SSL76) and carbohydrate esterase (SSL74) as the potent candidates. Fed-batch fermentation at pH 7 resulted in 80 mg/L of ethyl acetate and 10 mg/L of ethyl lactate accumulation by SSL76. At pH 6, the total ester titer improved by 2.5-fold, with SSL76 producing 225 mg/L of ethyl acetate, and 18.2 mg/L of ethyl lactate, the highest reported titer in E. coli. To our knowledge, this is the first successful demonstration of short-chain ester production by engineering 'esterases' in E. coli.
Collapse
Affiliation(s)
- Aditya P Sarnaik
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Somnath Shinde
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Abigail Jansen
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Amit Kumar Jha
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA
| | - Haley McKeown
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Ryan Davis
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA.
| | - Arul M Varman
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
3
|
Xue SJ, Zhang JR, Zhang RX, Qin Y, Yang XB, Jin GJ, Tao YS. Oxidation-reduction potential affects medium-chain fatty acid ethyl ester production during wine alcohol fermentation. Food Res Int 2022; 157:111369. [DOI: 10.1016/j.foodres.2022.111369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
|
4
|
Yang X, Zhang X, He X, Liu C, Zhao X, Han N. Downregulation of EHT1 and EEB1 in Saccharomyces cerevisiae Alters the Ester Profile of Wine during Fermentation. J Microbiol Biotechnol 2022; 32:761-767. [PMID: 35484971 PMCID: PMC9628906 DOI: 10.4014/jmb.2201.01008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022]
Abstract
EHT1 and EEB1 are the key Saccharomyces cerevisiae genes involved in the synthesis of ethyl esters during wine fermentation. We constructed single (Δeht1, Δeeb1) and double (Δeht1Δeeb1) heterogenous mutant strains of the industrial diploid wine yeast EC1118 by disrupting one allele of EHT1 and/or EEB1. In addition, the aromatic profile of wine produced during fermentation of simulated grape juice by these mutant strains was also analyzed. The expression levels of EHT1 and/or EEB1 in the relevant mutants were less than 50% of the wild-type strain when grown in YPD medium and simulated grape juice medium. Compared to the wild-type strain, all mutants produced lower amounts of ethyl esters in the fermented grape juice and also resulted in distinct ethyl ester profiles. ATF2, a gene involved in acetate ester synthesis, was expressed at higher levels in the EEB1 downregulation mutants compared to the wild-type and Δeht1 strains during fermentation, which was consistent with the content of acetate esters. In addition, the production of higher alcohols was also markedly affected by the decrease in EEB1 levels. Compared to EHT1, EEB1 downregulation had a greater impact on the production of acetate esters and higher alcohols, suggesting that controlling EEB1 expression could be an effective means to regulate the content of these aromatic metabolites in wine. Taken together, the synthesis of ethyl esters can be decreased by deleting one allele of EHT1 and EEB1 in the diploid EC1118 strain, which may modify the ester profile of wine more subtly compared to the complete deletion of target genes.
Collapse
Affiliation(s)
- Xue Yang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, P.R. China
| | - Xuenan Zhang
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, P.R. China
| | - Xi He
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, P.R. China,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, P.R. China
| | - Canzhen Liu
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, P.R. China
| | - Xinjie Zhao
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, P.R. China
| | - Ning Han
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, P.R. China,Corresponding author Phone: +86-053189631776 E-mail:
| |
Collapse
|
5
|
Zhong W, Liu S, Yang H, Li E. Effect of selected yeast on physicochemical and oenological properties of blueberry wine fermented with citrate-degrading Pichia fermentans. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Ribeiro-Filho N, Linforth R, Powell CD, Fisk ID. Influence of essential inorganic elements on flavour formation during yeast fermentation. Food Chem 2021; 361:130025. [PMID: 34029908 DOI: 10.1016/j.foodchem.2021.130025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/13/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022]
Abstract
The relative concentration of available inorganic elements is critical for yeast growth and metabolism and has potential to be a tool leading to directed yeast flavour formation during fermentation. This study investigates the influence of essential inorganic elements during alcoholic fermentation of brewers wort, fermented using three independent yeast strains, Saccharomyces pastorianus W34/70, and Saccharomyces cerevisiae strains M2 and NCYC2592 under a range of conditions replicated for each yeast strain. 10 treatments were applied: 1 control and 9 inorganic supplementations: standard brewers wort, ammonia-nitrogen, inorganic phosphate, potassium, magnesium, copper, zinc, iron, manganese and a composite mixture, Twenty-five chemical markers were evaluated by HPLC (ethanol, glycerol), and GC-MS (aroma). There was a significant change in volatile aroma compounds during fermentation, which was more prominent when supplemented with ammonia nitrogen, inorganic phosphate, potassium or magnesium (P < 0.05). Heavy metal ions mostly had a negative effect on the flavour formation.
Collapse
Affiliation(s)
- Normando Ribeiro-Filho
- DSER/Centre of Agrarian Science Campus II, Federal University of Paraiba, Areia, Paraiba, Brazil; Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Robert Linforth
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Chris D Powell
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Ian D Fisk
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK; The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Kong CL, Ma N, Yin J, Zhao HY, Tao YS. Fine tuning of medium chain fatty acids levels increases fruity ester production during alcoholic fermentation. Food Chem 2021; 346:128897. [PMID: 33406455 DOI: 10.1016/j.foodchem.2020.128897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022]
Abstract
Pichia fermentans Z9Y-3 and its intracellular enzymes were inoculated along with S. cerevisiae in synthetic grape must to modulate fruity ester production. The levels of ester-related enzymes, ester precursors, and fruity esters were monitored every 24 h during fermentation. Results showed that the levels of ethyl acetate, acetate higher alcohol esters (AHEs), short chain fatty acid ethyl esters (SFEs), and medium chain fatty acid ethyl esters (MFEs) were significantly enhanced in mixed fermentation. Pearson correlation analysis further revealed that higher alcohols and fatty acids played a more important role in fruity ester production than enzymes; Particularly, the correlation coefficient between fatty acids and MFEs was 0.940. In addition, supplementation of medium chain fatty acids (7.2 mg/L) at the metaphase of single S. cerevisiae fermentation improved ethyl acetate, AHE, SFE, and MFE production by 42.56%, 21.00%, 61.33%, and 90.04%, respectively, although the high level of ethyl acetate might result in off-flavors.
Collapse
Affiliation(s)
- Cai-Lin Kong
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Ma
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Yin
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong-Yu Zhao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong-Sheng Tao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center for Viti-viniculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Wang Z, Hong J, Ma S, Huang T, Ma Y, Liu W, Liu W, Liu Z, Song H. Heterologous expression of EUGT11 from Oryza sativa in Pichia pastoris for highly efficient one-pot production of rebaudioside D from rebaudioside A. Int J Biol Macromol 2020; 163:1669-1676. [PMID: 32976903 DOI: 10.1016/j.ijbiomac.2020.09.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/28/2022]
Abstract
Rebaudioside D is a promising sweetener due to its zero calorie and high sweetness. Here, a transglucosylase gene eugt11 from Oryza sativa was for the first time expressed in Pichia pastoris, and transformant XE-3 showed the highest expression levels in pH 5.5 BMMY media containing 0.75% methanol. The affinity-purified EUGT11 from XE-3 displayed the highest activity at pH 6.0-6.5 and 45 °C, compared to pH 8.5 and 35 °C for EUGT11 from Escherichia coli. One-pot synthesis with orthogonal design was employed to optimize the rebaudioside D production using XE-3, and the initial pH 7.0 of the medium appears to be a significant factor and delivers the highest conversion efficiency. A two-step temperature-control strategy was developed, and a conversion rate of 95.31% was achieved at 28/35 °C vs. 62.41% in a one-step process at 28 °C. This study provides a high-efficient whole-cell biocatalysts technology for the sweetener production.
Collapse
Affiliation(s)
- Zhenyang Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; R&D Division, Sinochem Health Company Ltd., Qingdao 266071, China
| | - Jiefang Hong
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
| | - Siyuan Ma
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tong Huang
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuanyuan Ma
- Biomass Conversion Laboratory, Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; Frontier Technology Institute (Wuqing), Tianjin University, Tianjin 30072, China.
| | - Wei Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenbin Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiming Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Hao Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; Frontier Technology Institute (Wuqing), Tianjin University, Tianjin 30072, China.
| |
Collapse
|
9
|
Reyes-Sánchez FJ, Páez-Lerma JB, Rojas-Contreras JA, López-Miranda J, Soto-Cruz NÓ, Reinhart-Kirchmayr M. Study of the Enzymatic Capacity of Kluyveromyces marxianus for the Synthesis of Esters. J Mol Microbiol Biotechnol 2020; 29:1-9. [PMID: 32325454 DOI: 10.1159/000507551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/24/2020] [Indexed: 11/19/2022] Open
Abstract
Recently, biotechnological opportunities have been found in non-Saccharomyces yeasts because they possess metabolic characteristics that lead to the production of compounds of interest. It has been observed that Kluyveromyces marxianus has a great potential in the production of esters, which are aromatic compounds of industrial importance. The genetic bases that govern the synthesis of esters include a large group of enzymes, among which the most important are alcohol acetyl transferases (AATases) and esterases (AEATases), and it is known that some are present in K. marxianus, because it has genetic characteristics like S. cerevisiae. It also has a physiology suitable for biotechnological use since it is the eukaryotic microorganism with the fastest growth rate and has a wide range of thermotolerance with respect to other yeasts. In this work, the enzymatic background of K. marxianus involved in the synthesis of esters is analyzed, based on the sequences reported in the NCBI database.
Collapse
Affiliation(s)
| | | | | | - Javier López-Miranda
- Chemistry and Biochemistry, TECNM/Instituto Tecnológico de Durango, Durango, Mexico
| | | | - Manuel Reinhart-Kirchmayr
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Guadalajara, Mexico
| |
Collapse
|
10
|
Mugabe W, Shao T, Li J, Dong Z, Yuan X. Effect of hexanoic acid, Lactobacillus plantarum and their combination on the aerobic stability of napier grass silage. J Appl Microbiol 2020; 129:823-831. [PMID: 32248604 DOI: 10.1111/jam.14650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/13/2020] [Accepted: 03/22/2020] [Indexed: 11/28/2022]
Abstract
AIMS The objective of this study was to evaluate the potential of hexanoic acid (Hex) as a silage additive. METHODS AND RESULTS The effect of Hex, Lactobacillus plantarum (Lp) and their combination (Hex + Lp) on the aerobic stability of napier grass silage was investigated. Napier grass was ensiled without additives (C) or with Lp, Hex or Hex + Lp for 60 days followed by 7 days of aerobic exposure. After 60 days of ensiling, the Lp silage had the lowest pH and the highest lactic acid (LA) concentration among all silage, whereas the highest water-soluble carbohydrates (WSC) content was observed in Hex + Lp silage, followed by Hex silage. After 60 days of ensiling, the population of yeasts in C and Lp silages was > 3·0 log10 CFU per g FW, while that of Hex and Hex + Lp was <2·0 log10 CFU per g FW. During aerobic exposure, the pH in the Lp and C silages increased (P < 0·05) above 7·0 on day 5. The pH of Hex silage was the lowest among all silages on day 3 and 5, followed by a significant (P < 0·05) increase until 7 days of aerobic exposure. There were no significant changes in pH and AA of Hex + Lp silage over the duration of aerobic exposure. The concentrations of LA in C, Lp and Hex silages decreased while that of Hex + Lp silage remained stable after 3 days of aerobic exposure. The Hex delayed the decline of WSC contents and the increase in yeasts over the aerobic exposure period. CONCLUSION Addition of Hex (97 h) and Hex + Lp (>168 h) improved aerobic stability (P < 0·05) as compared to the control (83 h). SIGNIFICANCE AND IMPACT OF THE STUDY Hex or in combination with L. plantarum inhibited the proliferation of yeasts during aerobic exposure of napier grass. Thus, Hex is an alternative antifungal additive to improve aerobic stability.
Collapse
Affiliation(s)
- Wazha Mugabe
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, China
| | - Xianjun Yuan
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
de Souza CEC, Ribeiro BD, Coelho MAZ. Characterization and Application of Yarrowia lipolytica Lipase Obtained by Solid-State Fermentation in the Synthesis of Different Esters Used in the Food Industry. Appl Biochem Biotechnol 2019; 189:933-959. [DOI: 10.1007/s12010-019-03047-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
|
12
|
Ester-Producing Mechanism of Ethanol O-acyltransferase EHT1 Gene in Pichia pastoris from Shanxi Aged Vinegar. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4862647. [PMID: 30719444 PMCID: PMC6335666 DOI: 10.1155/2019/4862647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 12/07/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022]
Abstract
The ethanol O-acyltransferase EHT1 is an important element of key signaling pathways and is widely expressed in yeast strains. In this study, we investigated the expression of EHT1 in the overexpression lines or knockout system of Pichia pastoris using qRT-PCR and western blotting. The amount of total protein was determined using the Bradford method; the esterase activity was determined using p-nitrophenyl acetate as a substrate, and the production of volatile fatty acids in wild-type, knockout, and over-expression systems was detected using SPME GC-MS. The esterase activity of EHT1-knockout P. pastoris was significantly lower than that in wild type (P<0.01), and the activities of esterase in three EHT1-overexpressing strains—OE-1, OE-2, and OE-3—were significantly higher than those in wild type (P<0.01). In the EHT1-knockout strain products, the contents of nine volatile fatty acids were significantly lower than those in wild type (P<0.01), and the relative percentages of three fatty acids, methyl nonanoate, methyl decanoate, and ethyl caprate, were significantly lower than those in the other six species in the wild-type and knockout groups (P<0.05). The nine volatile fatty acids in the fermentation products of the overexpressed EHT1 gene were significantly higher than those in the wild-type group (P<0.01). The relative percentages of the three fatty acid esters, methyl nonanoate, methyl caprate, and ethyl caprate, were significantly higher than those in the other six species (P<0.05). EHT1 plays an important regulatory role in esterase activity and the production of medium-chain volatile fatty acids.
Collapse
|
13
|
Rajapriya G, Morya VK, Mai NL, Koo YM. Aspergillus niger whole-cell catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids. Enzyme Microb Technol 2018; 111:67-73. [DOI: 10.1016/j.enzmictec.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/30/2017] [Accepted: 10/14/2017] [Indexed: 01/17/2023]
|
14
|
Juturu V, Wu JC. Heterologous Protein Expression in Pichia pastoris
: Latest Research Progress and Applications. Chembiochem 2017; 19:7-21. [DOI: 10.1002/cbic.201700460] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Veeresh Juturu
- Institute of Chemical and Engineering Sciences; Agency for Science; Technology and Research (A*STAR); 1 Pesek Road Jurong Island Singapore 627833 Singapore
| | - Jin Chuan Wu
- Institute of Chemical and Engineering Sciences; Agency for Science; Technology and Research (A*STAR); 1 Pesek Road Jurong Island Singapore 627833 Singapore
| |
Collapse
|
15
|
Wei YC, Braun-Galleani S, Henríquez MJ, Bandara S, Nesbeth D. Biotransformation of β-hydroxypyruvate and glycolaldehyde to l-erythrulose by Pichia pastoris strain GS115 overexpressing native transketolase. Biotechnol Prog 2017; 34:99-106. [PMID: 29086489 PMCID: PMC5836872 DOI: 10.1002/btpr.2577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/27/2017] [Indexed: 01/22/2023]
Abstract
Transketolase is a proven biocatalytic tool for asymmetric carbon-carbon bond formation, both as a purified enzyme and within bacterial whole-cell biocatalysts. The performance of Pichia pastoris as a host for transketolase whole-cell biocatalysis was investigated using a transketolase-overexpressing strain to catalyze formation of l-erythrulose from β-hydroxypyruvic acid and glycolaldehyde substrates. Pichia pastoris transketolase coding sequence from the locus PAS_chr1-4_0150 was subcloned downstream of the methanol-inducible AOX1 promoter in a plasmid for transformation of strain GS115, generating strain TK150. Whole and disrupted TK150 cells from shake flasks achieved 62% and 65% conversion, respectively, under optimal pH and methanol induction conditions. In a 300 μL reaction, TK150 samples from a 1L fed-batch fermentation achieved a maximum l-erythrulose space time yield (STY) of 46.58 g L-1 h-1 , specific activity of 155 U gCDW-1, product yield on substrate (Yp/s ) of 0.52 mol mol-1 and product yield on catalyst (Yp/x ) of 2.23g gCDW-1. We have successfully exploited the rapid growth and high biomass characteristics of Pichia pastoris in whole cell biocatalysis. At high cell density, the engineered TK150 Pichia pastoris strain tolerated high concentrations of substrate and product to achieve high STY of the chiral sugar l-erythrulose. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:99-106, 2018.
Collapse
Affiliation(s)
- Yu-Chia Wei
- Dept. of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT, U.K
| | | | - Maria José Henríquez
- Dept. of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT, U.K
| | - Sahan Bandara
- Dept. of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT, U.K
| | - Darren Nesbeth
- Dept. of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT, U.K
| |
Collapse
|
16
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
17
|
Trbojević Ivić J, Veličković D, Dimitrijević A, Bezbradica D, Dragačević V, Gavrović Jankulović M, Milosavić N. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4281-4287. [PMID: 26801832 DOI: 10.1002/jsfa.7641] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Biocatalysts are a promising alternative for the production of natural flavor compounds. Candida rugosa lipase (CRL) is a particularly important biocatalyst owing to its remarkable efficiency in both hydrolysis and synthesis. However, additional stabilization is necessary for successful industrial implementation. This study presents an easy and time-saving method for immobilizing this valuable enzyme on hydroxyapatite (HAP), a biomaterial with high protein-binding capacity. RESULTS Targeted immobilized CRL was obtained in high yield of ≥98%. Significant lipase stabilization was observed upon immobilization: at 60 °C, immobilized lipase (HAP-CRL) retained almost unchanged activity after 3 h, while free CRL lost 50% of its initial activity after only 30 min. The same trend was observed with tested organic solvents. Methanol and hexane had the most pronounced effect: after 3 h, only HAP-CRL was stable and active, while CRL was completely inactivated. The practical value of the prepared catalyst was tested in the synthesis of the aroma ester methyl acetate in hexane. Reaction yields were 2.6 and 52.5% for CRL and HAP-CRL respectively. CONCLUSION This research has successfully combined an industrially prominent biocatalyst, CRL, and a biocompatible, environmentally suitable carrier, HAP, into an immobilized preparation with improved catalytic properties. The obtained CRL preparation has excellent potential for the food and flavor industries, major consumers in the global enzyme market. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jovana Trbojević Ivić
- Innovation Center, Faculty of Chemistry, University of Belgrade, 11000, Belgrade, Serbia
| | - Dušan Veličković
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000, Belgrade, Serbia
| | - Aleksandra Dimitrijević
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Serbia
| | - Vladimir Dragačević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000, Belgrade, Serbia
| | | | - Nenad Milosavić
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY, 10032, USA
| |
Collapse
|